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This paper investigates the asymptotic behavior of weak solutions to the generalized nonlinear partial differential equation model.
It is proved that every perturbed weak solution of the perturbed generalized nonlinear partial differential equations asymptotically
converges to the solution of the original system under the large perturbation.

1. Introduction

In the past ten years, the study of the fractional order differ-
ential equation has attractedmore andmore attention. In this
study, we consider a class of two-dimensional fractional order
generalized nonlinear partial differential equation model
which is governed by the differential equation

𝜕

𝜕𝑡
𝑢 + 𝛼 (−Δ)

1/2
𝑢 + 𝛽 |𝑢|

2
𝑢 = 𝑔, in R

2
× (0,∞) (1)

together with the initial condition

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) . (2)

Here, 𝑢(𝑥, 𝑡) is unknown function. 𝛼, 𝛽 are positive constants,
(−Δ)
1/2 is the fractional power of the Laplacian Δ, and 𝑓(𝑥, 𝑡)

is an external force.
The model is relevant to the theory of the atmosphere

and ocean dynamics (refer to [1–4] and references therein).
It should be mentioned that there are many results on the
stability behaviors of the atmosphere and ocean dynamics
in which the derivation is mainly based on the linear and
nonlinear stability together with the numerical simulation
[5–7]. Recently, Hu [8] investigated the following semilinear
parabolic partial differential equation with Laplacian in R3:

𝜕
𝑡
V − ΔV + |V|𝑝−2 V = 0,

V (𝑥, 0) = V
0
(𝑥) ,

(3)

and derived the error estimates between the solution of
semilinear parabolic partial differential equation (3) and
the solution of the linear heat equation. However, it is a
challenging problem to consider the fractional order partial
differential equation due to some newdifficulty. Onemay also
refer to some interesting and important results on the stability
of the nonlinear partial differential equations [9–11].

In this study, we will investigate the asymptotic stability
for solution of the two-dimensional fractional order partial
differential equation (1) under the finite energy initial data
𝑢
0
.
To do so, we first consider the perturbed fractional order

partial differential equation:

𝜕

𝜕𝑡
V + 𝛼 (−Δ)1/2 V + 𝛽 |V|2 V = 𝑔,

V (𝑥, 0) = V
0
= 𝑢
0
+ 𝑤
0
.

(4)

Here, 𝑤
0
is any initial perturbation which may be large. We

will show that every perturbed solution V of the fractional
order partial differential equation (4) asymptotically con-
verges to that of fractional order partial differential equations
(1)-(2). That is to say,

‖V (𝑡) − 𝑢 (𝑡)‖𝐿2 󳨀→ 0, 𝑡 󳨀→ ∞. (5)

We now give the definition of solution for fractional order
partial differential equations (1)-(2) (refer to [12]).
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Definition 1. 𝑢(𝑥, 𝑡) is called a solution of fractional order
partial differential equations (1)-(2) with

𝑢
0
(𝑥) ∈ 𝐿

2
(R
2
) ,

𝑔 ∈ 𝐿
2

loc (0,∞; 𝐿
2
(R
2
)) ,

(6)

if the conditions

(i) 𝑢 ∈ 𝐿∞(0,∞; 𝐿
2
(R2)) ∩ 𝐿2(0,∞; 𝐻̇

1/2
(R2));

(ii) for any 𝜂 ∈ 𝐶∞
0
(R2 × [0, 𝑇)),

∫

𝑡

0

∫
R2
(𝛼 (−Δ)

1/4
𝑢 (−Δ)

1/4
𝜂 + 𝛽 |𝑢|

2
𝑢𝜂) 𝑑𝑥 𝑑𝑡

= ∫

𝑡

0

∫
R2
𝑢 ⋅ 𝜕
𝑡
𝜂 𝑑𝑥 𝑑𝑡 + ∫

R2
𝑢
0
𝜂 (0) 𝑑𝑥;

(7)

(iii) energy inequality

1

2

𝑑

𝑑𝑡
∫
R2
|𝑢|
2
𝑑𝑥 + 𝛼∫

R2

󵄨󵄨󵄨󵄨󵄨
(−Δ)
1/4

𝑢
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

+ 𝛽∫
R2
|𝑢|
4
𝑑𝑥 ≤ 0

(8)

are valid.

Our result now reads.

Theorem 2. Assume 𝑢(𝑥, 𝑡) a solution of fractional order
differential equations (1)-(2) with 𝑢

0
(𝑥) ∈ 𝐿

2
(R2), 𝑔 ∈

𝐿
2

loc(0,∞; 𝐿
2
(R2)); then, for any large initial perturbation

𝑤
0
∈ 𝐿
2
(R2), the solution V(𝑥, 𝑡) of the perturbed fractional

order partial differential equation (4) asymptotically converges
to the global solution 𝑢(𝑥, 𝑡) as

‖V (𝑡) − 𝑢 (𝑡)‖𝐿2 󳨀→ 0, 𝑡 󳨀→ ∞. (9)

Remark 3. An important feature is that our result here has
not small assumption on the initial perturbation 𝑤

0
.

Remark 4. Ourmethods are mainly based on the generalized
Fourier splitting methods which are first used by Schonbek
[13] (see also [14–16]) on the time decay issue of the classic
Navier-Stokes equations and related partial differential equa-
tions [17].

2. Preliminaries

In this study, we denote by 𝐶’s the abstractly positive con-
stants which may be different from line to line. We denoted
by 𝐿𝑝(R2) the usual Lebesgue space with the norm

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩𝐿𝑝 =

{{{

{{{

{

(∫
R2

󵄨󵄨󵄨󵄨𝜑 (𝑥)
󵄨󵄨󵄨󵄨
𝑝

𝑑𝑥)

1/𝑝

, 1 ≤ 𝑝 < ∞,

esssup
𝑥∈R2

󵄨󵄨󵄨󵄨𝜑 (𝑥)
󵄨󵄨󵄨󵄨 , 𝑝 = ∞.

(10)

We also denoted by 𝐻̇
𝑠
(R2) the homogeneous fractional

Sobolev space:

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩𝐻̇𝑠 = (∫

R2

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨
2𝑠 󵄨󵄨󵄨󵄨𝜑

󵄨󵄨󵄨󵄨
2

𝑑𝜉)

1/2

. (11)

Here, 𝜑 is Fourier transformation:

𝜑 (𝜉) = ∫
R2
𝑒
−𝑖𝑥⋅𝜉

𝜑 (𝑥) 𝑑𝑥. (12)

In order to prove our main result, we now give some
important lemmas which play a central role in the argument
of the next section.

Lemma 5 (Gagliardo-Nirenberg inequality [18]). Assume
𝑓 ∈ 𝑊

𝑚,𝑝
(R2) ∩ 𝐿𝑞(R2); then

󵄩󵄩󵄩󵄩󵄩
𝐷
𝑗
𝑓
󵄩󵄩󵄩󵄩󵄩𝐿𝑟(R2)

≤ 𝐶
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩
1−𝜆

𝐿
𝑞
(R2)

󵄩󵄩󵄩󵄩𝐷
𝑚
𝑓
󵄩󵄩󵄩󵄩
𝜆

𝐿
𝑝
(R2)

. (13)

Here, 𝑝, 𝑞, 𝑟, 𝑛, 𝑚, 𝑗, 𝜆 satisfy

1

𝑟
−
𝑗

𝑛
= (1 − 𝜆)

1

𝑞
+ 𝜆(

1

𝑝
−
𝑚

𝑛
) (14)

with

1 < 𝑝, 𝑞, 𝑟 ≤ ∞,

0 ≤ 𝑗 < 𝑚,
𝑗

𝑚
≤ 𝜆 < 1.

(15)

Lemma 6. Assume 𝑓 ∈ 𝐿
∞
(0,∞; 𝐿

2
(R2)) ∩

𝐿
2
(0,∞; 𝐻̇

1/2
(R2)); then

{∫

∞

0

(∫
R2

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨
𝑞

𝑑𝑥)

𝑝/𝑞

𝑑𝑡}

1/𝑝

≤ 𝐶 (16)

with
1

𝑝
+
2

𝑞
= 1 (17)

is valid.

Proof of Lemma 6. Since 𝑓 satisfies

ess sup
0<𝑡<∞

(∫
R2

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨
2

𝑑𝑥)

+ {∫

∞

0

∫
R2

󵄨󵄨󵄨󵄨󵄨
(−Δ)
1/4

𝑓
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 𝑑𝑡}

1/2

:= 𝐶,

(18)

applying Gagliardo-Nirenberg inequality in Lemma 6,
the direct computation becomes

{∫

∞

0

(∫
R2

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨
𝑞

𝑑𝑥)

𝑝/𝑞

𝑑𝑡}

1/𝑝

≤ {∫

∞

0

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩
𝑝𝜃

𝐿
2

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

𝑝(1−𝜃)

𝐿
4

𝑑𝑠}

1/𝑝

,

(19)
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where

1

𝑞
=
𝜃

2
+ (1 − 𝜃)

1

4
(20)

for

0 ≤ 𝜃 ≤ 1. (21)

Since
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿4 ≤ 𝐶

󵄩󵄩󵄩󵄩󵄩
(−Δ)
1/4

𝑓
󵄩󵄩󵄩󵄩󵄩𝐿2

, (22)

thus, we have

{∫

∞

0

(∫
R2

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨
𝑞

𝑑𝑥)

𝑝/𝑞

𝑑𝑡}

1/𝑝

≤ 𝐶{∫

∞

0

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩
𝑝𝜃

𝐿
2

󵄩󵄩󵄩󵄩󵄩
(−Δ)
1/4

𝑓
󵄩󵄩󵄩󵄩󵄩

𝑝(1−𝜃)

𝐿
2

𝑑𝑠}

1/𝑝

≤ 𝐶{ess sup
0<𝑡<∞

(∫
R2

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨
2

𝑑𝑥)}

𝜃

⋅ {∫

∞

0

󵄩󵄩󵄩󵄩󵄩
(−Δ)
1/4

𝑓
󵄩󵄩󵄩󵄩󵄩

𝑝(1−𝜃)

𝐿
2

𝑑𝑠}

1/𝑝

≤ 𝐶{ess sup
0<𝑡<∞

(∫
R2

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨
2

𝑑𝑥)}

𝜃

⋅ {∫

∞

0

󵄩󵄩󵄩󵄩󵄩
(−Δ)
1/4

𝑓
󵄩󵄩󵄩󵄩󵄩

𝑝(1−𝜃)

𝐿
2

𝑑𝑠}

(1/(𝑝(1−𝜃)))(1−𝜃)

≤ 𝐶

⋅ ess sup
0<𝑡<∞

(∫
R2

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨
2

𝑑𝑥)

+ 𝐶{∫

∞

0

∫
R2

󵄨󵄨󵄨󵄨󵄨
(−Δ)
1/4

𝑓
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 𝑑𝑡}

1/2

≤ 𝐶,

(23)

where we used the following relation:

𝑝 (1 − 𝜃) = 2. (24)

That is to say,

1

𝑝
+
2

𝑞
= 1 2 ≤ 𝑞 ≤ 4. (25)

In particular, we take 𝑝 = 𝑞; then

𝑝 = 𝑞 = 3. (26)

Then,

∫

∞

0

∫
R2

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨
3

𝑑𝑥 𝑑𝑡 ≤ 𝐶. (27)

Hence, we complete the proof of Lemma 6.

Lemma 7. Suppose 𝑢(𝑥, 𝑡), V(𝑥, 𝑡) are two solutions of frac-
tional order differential equations (1)-(2) and the perturbed
fractional order partial differential equation (4) with

𝑢
0
(𝑥) , 𝑤

0
(𝑥) ∈ 𝐿

2
(R
2
) ,

𝑔 ∈ 𝐿
2

loc (0,∞; 𝐿
2
(R
2
)) .

(28)

Then,
󵄨󵄨󵄨󵄨󵄨
(̂𝑢 − V) (𝜉, 𝑡)

󵄨󵄨󵄨󵄨󵄨
≤
󵄨󵄨󵄨󵄨󵄨
𝑒
−𝛼|𝜉|𝑡

𝑤
0

󵄨󵄨󵄨󵄨󵄨
+ 𝐶. (29)

Proof of Lemma 7. Since 𝑢(𝑥, 𝑡), V(𝑥, 𝑡) are two solutions of
fractional order partial differential equations (1)-(2) and the
perturbed fractional order differential equation (4), then we
take 𝑤 = 𝑢 − V which satisfies the following equations
formally:

𝜕

𝜕𝑡
𝑤 + 𝛼 (−Δ)

1/2
𝑤 + (𝛽 |𝑢|

2
𝑢 − 𝛽 |V|2 V) = 0,

𝑤 (𝑥, 0) = 𝑤
0
.

(30)

Taking Fourier transformation to both sides of the equa-
tion (30), one shows that

𝑤
𝑡
+ 𝛼

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨 𝑤 = −

̂
(𝛽 |𝑢|

2
𝑢 − 𝛽 |V|2 V),

𝑤 (𝑡, 0) = 𝑤
0
.

(31)

By solving this ordinary partial differential equation ,
󵄨󵄨󵄨󵄨𝑤 (𝜉, 𝑡)

󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑒
−𝛼|𝜉|𝑡

𝑤
0
+ ∫

𝑡

0

𝑒
−𝛼|𝜉|𝑡

{−
̂

(𝛽 |𝑢|
2
𝑢 − 𝛽 |V|2 V)} 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨󵄨
𝑒
−𝛼|𝜉|𝑡

𝑤
0

󵄨󵄨󵄨󵄨󵄨
+ 𝐶∫

𝑡

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

̂
|𝑢|
2
𝑢

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑑𝑠 + 𝐶∫

𝑡

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

̂
|V|2 V

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑑𝑠

≤
󵄨󵄨󵄨󵄨󵄨
𝑒
−𝛼|𝜉|𝑡

𝑤
0

󵄨󵄨󵄨󵄨󵄨
+ 𝐶∫

𝑡

0

(∫
R2
|𝑢|
3
𝑑𝑥) 𝑑𝑠

+ 𝐶∫

𝑡

0

(∫
R2
|𝑢|
3
𝑑𝑥) 𝑑𝑠.

(32)

According to the definitions of 𝑢, V, that is,

𝑢, V ∈ 𝐿∞ (0,∞; 𝐿
2
(R
2
)) ∩ 𝐿

2
(0,∞; 𝐻̇

1/2
(R
2
)) , (33)

then applying Lemma 6, we obtain

∫

∞

0

∫
R2
|𝑢|
3
𝑑𝑥 𝑑𝑡 ≤ 𝐶,

∫

∞

0

∫
R2
|V|3 𝑑𝑥 𝑑𝑡 ≤ 𝐶.

(34)

Thus,
󵄨󵄨󵄨󵄨𝑤 (𝜉, 𝑡)

󵄨󵄨󵄨󵄨 ≤
󵄨󵄨󵄨󵄨󵄨
𝑒
−𝛼|𝜉|𝑡

𝑤
0

󵄨󵄨󵄨󵄨󵄨
+ 𝐶, (35)

which completes the proof of Lemma 7.
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3. Stability of the Solution

We now prove Theorem 2. Firstly, as stated in the proof of
Lemma 7, since 𝑢(𝑥, 𝑡), V(𝑥, 𝑡) are two solutions of (1)-(2) and
(4), respectively, we take 𝑤 = 𝑢 − V; then

𝜕

𝜕𝑡
𝑤 + 𝛼 (−Δ)

1/2
𝑤 + (𝛽 |𝑢|

2
𝑢 − 𝛽 |V|2 V) = 0,

𝑤 (𝑥, 0) = 𝑤
0
.

(36)

Taking the 𝐿2 inner product of (36), it follows that

𝑑

𝑑𝑡
∫
R2
|𝑤 (𝑡)|

2
𝑑𝑥 + 2𝛼∫

R2

󵄨󵄨󵄨󵄨󵄨
(−Δ)
1/4

𝑤
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

= −2𝛽∫
R2
(|𝑢|
2
𝑢 − |V|2 V)𝑤𝑑𝑥.

(37)

For the right hand side of above equation,

∫
R2
(|𝑢|
2
𝑢 − |V|2 V)𝑤𝑑𝑥

= ∫
R2
|𝑢|
4
𝑑𝑥 − ∫

R2
|𝑢|
2
𝑢V 𝑑𝑥 − ∫

R2
|V|2 𝑢V 𝑑𝑥

+ ∫
R2
|V|4 𝑑𝑥;

(38)

since

∫
R2
|𝑢|
2
𝑢V 𝑑𝑥 ≤ (∫

R2
|𝑢|
4
𝑑𝑥)

3/4

(∫
R2
|V|4 𝑑𝑥)

1/4

,

∫
R2
|V|2 𝑢V 𝑑𝑥 ≤ (∫

R2
|V|4 𝑑𝑥)

3/4

(∫
R2
|𝑢|
4
𝑑𝑥)

1/4

,

(39)

thus,

∫
R2
(|𝑢|
2
𝑢 − |V|2 V)𝑤𝑑𝑥

≥ {(∫
R2
|𝑢|
4
𝑑𝑥)

3/4

− (∫
R2
|V|4 𝑑𝑥)

3/4

}

⋅ {(∫
R2
|𝑢|
4
𝑑𝑥)

1/4

− (∫
R2
|V|4 𝑑𝑥)

1/4

} ≥ 0.

(40)

Inserting the above inequality into the right hand side of (37),
it follows that

𝑑

𝑑𝑡
∫
R2
|𝑤 (𝑡)|

2
𝑑𝑥 + 2𝛼∫

R2

󵄨󵄨󵄨󵄨󵄨
(−Δ)
1/4

𝑤
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 ≤ 0. (41)

Applying Parseval inequality,

𝑑

𝑑𝑡
∫
R2

󵄨󵄨󵄨󵄨𝑤 (𝜉, 𝑡)
󵄨󵄨󵄨󵄨
2

𝑑𝜉 + 2𝛼∫
R2

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑤 (𝜉, 𝑡)

󵄨󵄨󵄨󵄨
2

𝑑𝜉 ≤ 0. (42)

Let

𝑟 (𝑡) = {𝜉 ∈ R
2
:
󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨 ≤

4

𝛼 (1 + 𝑡)
} ,

2𝛼 (1 + 𝑡)
4
∫
R2

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑤 (𝜉, 𝑡)

󵄨󵄨󵄨󵄨
2

𝑑𝜉

= 2𝛼 (1 + 𝑡)
4
∫
𝑟(𝑡)
𝑐

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑤 (𝜉, 𝑡)

󵄨󵄨󵄨󵄨
2

𝑑𝜉

+ 2𝛼 (1 + 𝑡)
4
∫
𝑟(𝑡)

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑤 (𝜉, 𝑡)

󵄨󵄨󵄨󵄨
2

𝑑𝜉

≥ 2𝛼 (1 + 𝑡)
4
∫
𝑟(𝑡)
𝑐

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑤 (𝜉, 𝑡)

󵄨󵄨󵄨󵄨
2

𝑑𝜉

≥ 4 (1 + 𝑡)
3
∫
R2

󵄨󵄨󵄨󵄨𝑤 (𝜉, 𝑡)
󵄨󵄨󵄨󵄨
2

𝑑𝜉

− 4 (1 + 𝑡)
3
∫
𝑟(𝑡)

󵄨󵄨󵄨󵄨𝑤 (𝜉, 𝑡)
󵄨󵄨󵄨󵄨
2

𝑑𝜉.

(43)

Thus, we have

𝑑

𝑑𝑡
∫
R2

󵄨󵄨󵄨󵄨𝑤 (𝜉, 𝑡)
󵄨󵄨󵄨󵄨
2

𝑑𝜉 + 4 (1 + 𝑡)
−1
∫
R2

󵄨󵄨󵄨󵄨𝑤 (𝜉, 𝑡)
󵄨󵄨󵄨󵄨
2

𝑑𝜉

≤ −4 (1 + 𝑡)
−1
∫
𝑟(𝑡)

󵄨󵄨󵄨󵄨𝑤 (𝜉, 𝑡)
󵄨󵄨󵄨󵄨
2

𝑑𝜉.

(44)

Multiplying both sides of (44) by (1 + 𝑡)4 and taking the
direct computation, one shows that

𝑑

𝑑𝑡
((1 + 𝑡)

4
∫
R2

󵄨󵄨󵄨󵄨𝑤 (𝜉, 𝑡)
󵄨󵄨󵄨󵄨
2

𝑑𝜉)

≤ 𝐶 (1 + 𝑡)
3
∫
𝑟(𝑡)

󵄨󵄨󵄨󵄨𝑤 (𝜉, 𝑡)
󵄨󵄨󵄨󵄨
2

𝑑𝜉.

(45)

Applying Lemma 7, we have

𝐶 (1 + 𝑡)
3
∫
𝑟(𝑡)

󵄨󵄨󵄨󵄨𝑤 (𝜉, 𝑡)
󵄨󵄨󵄨󵄨
2

𝑑𝜉

≤ 𝐶 (1 + 𝑡)
3
∫
𝑟(𝑡)

{
󵄨󵄨󵄨󵄨󵄨
𝑒
−𝛼|𝜉|𝑡

𝑤
0

󵄨󵄨󵄨󵄨󵄨
+ 𝐶}
2

𝑑𝜉

≤ 𝐶 (1 + 𝑡)
3
∫
R2

󵄨󵄨󵄨󵄨󵄨
𝑒
−𝛼|𝜉|𝑡

𝑤
0

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝜉

+ 𝐶 (1 + 𝑡)
3
∫
𝑟(𝑡)

1𝑑𝜉

≤ 𝐶 (1 + 𝑡)
3
∫
R2

󵄨󵄨󵄨󵄨󵄨
𝑒
−𝛼|𝜉|𝑡

𝑤
0

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝜉 + 𝐶 (1 + 𝑡) .

(46)
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Then, integrating in time,

∫
R2

󵄨󵄨󵄨󵄨𝑤 (𝜉, 𝑡)
󵄨󵄨󵄨󵄨
2

𝑑𝜉

≤ 𝐶 (1 + 𝑡)
−4 󵄩󵄩󵄩󵄩𝑤0

󵄩󵄩󵄩󵄩𝐿2

+ 𝐶 (1 + 𝑡)
−4
{(1 + 𝑡)

3
∫
R2

󵄨󵄨󵄨󵄨󵄨
𝑒
−𝛼|𝜉|𝑡

𝑤
0

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝜉}

+ 𝐶 (1 + 𝑡)
−2

≤ 𝐶 (1 + 𝑡)
−2

+ 𝐶 (1 + 𝑡)
−4
{(1 + 𝑡)

3
∫
R2

󵄨󵄨󵄨󵄨󵄨
𝑒
−𝛼|𝜉|𝑡

𝑤
0

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝜉}

(47)

since

(1 + 𝑡)
−4
{(1 + 𝑡)

3
∫
R2

󵄨󵄨󵄨󵄨󵄨
𝑒
−𝛼|𝜉|𝑡

𝑤
0

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝜉} 󳨀→ 0 (48)

as 𝑡 → ∞.
Hence,

∫
R2

󵄨󵄨󵄨󵄨𝑤 (𝜉, 𝑡)
󵄨󵄨󵄨󵄨
2

𝑑𝜉 󳨀→ 0 (49)

as 𝑡 → ∞.
That is,

‖V (𝑡) − 𝑢 (𝑡)‖𝐿2 󳨀→ 0, 𝑡 󳨀→ ∞, (50)

which implies that the proof of Theorem 2 is completed.
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