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The orbital dynamics around irregular shaped bodies is an actual topic in astrodynamics, because celestial bodies are not perfect
spheres. When it comes to small celestial bodies, like asteroids and comets, it is even more import to consider the nonspherical
shape. The gravitational field around them may generate trajectories that are different from Keplerian orbits. Modeling an irregular
body can be a hard task, especially because it is difficult to know the exact shape when observing it from the Earth, due to their
small sizes and long distances. Some asteroids have been observed, but it is still a small amount compared to all existing asteroids
in the Solar System. An approximation of their shape can be made as a sum of several known geometric shapes. Some three-
dimensional figures have closed equations for the potential and, in this work, the formulation of a cube is considered. The results
give the mappings showing the orbits that are less perturbed and then have a good potential to be used by spacecrafts that need
to minimize station-keeping maneuvers. Points in the orbit that minimizes the perturbations are found and they can be used for

constellations of nanosatellites.

1. Introduction

The main reason to study the properties of irregular bodies
in space science is because there are many irregular small
bodies in the Solar System. Most of them are located between
the orbits of Mars and Jupiter, in the main asteroid belt.
According to their orbits, comets and asteroids are also called
NEOs, abbreviation for near Earth objects. For asteroids, they
can also be called NEAs, meaning near Earth asteroids. These
are objects with orbits passing near the orbit of the Earth, as
the name already says. The NEAs are divided in four groups,
depending on the perihelion distance, aphelion distance and
the semimajor axis of the orbit: Atiras, Athens, Apollos, and
Amors [1].

Geometric figures with nonspherical shapes can be used
as a model for the irregular bodies, and this technique
can be very useful in the preliminary study of trajectories
around asteroids. Initial works about the formulation for the
potential of rectangular objects were made by MacMillan [2],
and this type of research continued being developed on the
next decades [3-7]. Studies of the property of orbits around

elongated rectangular objects were also developed by Broucke
and Prado [8].

There are some works related to the potential of a cube.
Michalodimitrakis and Bozis [9] studied the two-body prob-
lem with a massive point particle and a homogeneous cube
and proved the existence of a ring-type bounded motion.
The gravitational field around a cube was also analyzed by
Chappell et al. [10]. The search for periodic orbits around
a fixed homogeneous cube and the potential based on the
polyhedron method for a cube given by a volume integral
were studied by Liu et al. [11, 12].

In this work, the gravitational perturbation due to the
shape of a cube is analyzed. The formulation of the potential
for the cube is given by closed equations [2, 13]. The perturba-
tion is studied with a method that measures the amount of the
change made in the velocity over the time, which can be seen
in more details in previous works by Prado [14, 15], Sanchez
et al. [16], and Oliveira and Prado [17]. This methodology
consists in calculating the integral of the acceleration over the
time, which will be referred here as the perturbation integral
and will be explained in the next sessions.



2. Problem Formulation

The potential of a cube can be found in the literature in terms
of spherical harmonics, and the expansion limited to order
four is shown here in (1). An expansion with higher degrees
can be found in Broucke and Prado [8]
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where ¢ is the latitude; A is the longitude; P, sin (¢) represents
a Legendre polynomial in sin(¢) = z/r; Py, is the associate
Legendre polynomial, where P,, = 105 cos(¢); and the two
stokes coeflicients are C,, = —7/30 and C,, = —1/720.

Approximations of the potential for a cube can be found
in the literature as a closed equation [2] and is given by
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where G is the gravitational constant 6.67384 X
101 (m3/kg-s2); m is the mass of the cube; e; is the
length of the edges of the cube; and r is the distance between
the spacecraft and the center of the body.

Another closed expression for the potential of a cube can
be seen in Kellog [13], in the form of the equation shown
below:
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The term r is replaced by

r=x?+y*+ 2% (4)

Having the equation for the potential, the first step is to
obtain the acceleration by calculating the partial derivatives
of the potential. Neglecting the Keplerian term, to consider
only the perturbative potential, the derivatives with respect to
x, ¥, and z of the disturbing potential are shown in (5). They
are obtained using the potential shown in (2). The potential
without the Keplerian term (perturbing term) is indicated by
V instead of V'
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The acceleration for the cube is obtained in order to study
the effects of the shape of the body. By calculating the integral
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of the acceleration for one orbital period, the perturbation
can be analyzed in terms of the variation of the velocity
caused in the spacecraft. This integral, that is given by (6), will
be called the perturbation integral (PI), which can be seen in
previous works by Prado [14, 15], and Oliveira and Prado [17]

T
PI = J |Grad (V)| dt, (6)
0
where Grad (V) is the gradient of the potential.

The expression for the mean anomaly is shown by (7).
Then, after some arrangements, (8) is replaced in (6), so that
the integral PI can be evaluated in terms of the eccentric
anomaly [14, 15, 18]

M=M,+n(t—ty),

(7)
M = E —esin (E),
dM = ndt = (1 —ecos(E))dE, (8)
1 2
PI=— J |Grad (V)| (1 = ecos (E)) dE, 9)
n Jo

where M is the mean anomaly, 7 is the mean motion, e is the
eccentricity, and E is the eccentric anomaly of the spacecraft
orbiting the cube.

After the substitutions are made, the expression for the
perturbation integral of a cube may now be obtained by
calculating the integral given by

PI

27 2 2 2 (10)
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The perturbation integral depends on the initial values
of the orbital elements. The results will be shown for several
different conditions, and the search for the least perturbed
orbits can be obtained from those mappings.

The next step is to consider that small bodies, in the
same way as the planets, are spinning [19]. Most of them are
rotating around one principal axis, but some asteroids were
found to be spinning in more than one axis like, for example,
the asteroid Toutatis, said to be in tumbling rotation [20-
22]. To take into account that rotation is an important factor,
even more in the case of gravitational perturbation of non-
spherical bodies. Therefore, the results will also consider the
cases of a rotating cube.

3. Results

The next sessions will show some results for the PI under
different conditions, in order to map the orbits to find the
ones that are less perturbed.

3.1. Varying Initial Configurations. The results presented next
intend to show the differences of having a body that cannot
be treated as a point mass. An orbit around an irregular
body is different from a Keplerian orbit, and the perturbation
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FIGURE 1: Acceleration for one revolution around a cube, for
equatorial, polar orbit, i = 45°, and a Keplerian orbit.
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FIGURE 2: Acceleration considering the disturbing term for one
revolution around a cube, for equatorial and polar orbit, i = 45°.

generated due to the asymmetric shape of the orbited body
must be considered.

Figure 1shows the acceleration using the potential for one
revolution around the cube, considering inclinations of 0°,
45°, and 90° for the orbit of the spacecraft. The green line
shows a Keplerian orbit around a sphere that has the same
mass of the cube, as a comparison. The following results were
obtained for a circular orbit using the value of 4 x 10" kg for
the mass of the cube, length of the edge of the cube of 5 km,
and orbital radius of 10 km.

It can be noticed from Figures 1and 2 that the acceleration
for equatorial and polar orbits is the same, as expected, due to
the symmetry of the cube. Equatorial and polar orbits make
the spacecraft pass exactly by the same mass distribution. The
spacecraft starts its motion in front of the middle point of

the face, which is the position with the smallest potential,
due to the largest distance between the subspacecraft point
and the spacecraft. The potential increase with the spacecraft
going to the position near the edge of the cube reaches its
maximum at this point and then decreases again until the
middle of the next face is reached. This geometry is repeated
until a complete revolution around the cube is completed.
For an orbit with inclination of 45°, the spacecraft also starts
its motion near the face, in the position of the minimum
potential. Then it moves in the direction of the vertex, where
the potential reaches its maximum value, which is higher
than its equivalent for equatorial and polar orbits. After that,
the spacecraft passes near the middle point of the edge,
where it reaches an intermediate minimum (between both
maximum). The acceleration at this point is smaller than
the one achieved by the spacecraft at the vertex but higher
than the values when it is crossing the equatorial plane. The
motion is repeated again for a full revolution. It is also visible
from Figure 1(a) that the potential affecting the spacecraft is
smaller than the Keplerian one when the spacecraft passes
near the face of the cube, which is explained by the largest
distance of the face to the spacecraft when compared to the
distance from a sphere of the same mass. The opposite occurs
when the spacecraft passes near the edges, and near this
position the potential is larger than the equivalent one from
the sphere. It is important to note that the difference in the
potential of the cube when compared to the sphere is larger
when passing near the face, which means that the potential
is smaller near the faces but the perturbation is larger. The
points where the green line (Keplerian orbit) crosses with the
potential of the cube represent positions where the magnitude
of the potential of the sphere is the same as the potential
from the cube, but they are not equilibrium points, because
the three components of the acceleration are not the same.
But they are points where the difference of the potentials is
interesting and deserves to be investigated. Figure 2 shows
the acceleration due to the perturbation term only, after
subtracting the Keplerian term, which also represents the
difference between the potential of a cube and a sphere.
There are the points where this difference is at minimum.
Those points are the best ones to locate a satellite that is
moving in a synchronous orbit with the cube (same period
of rotation), because the efforts to keep this geometry are at
minimum. Those points are interesting to place spacecrafts
that have the goal of staying in near stable orbits. Since
most of the efforts in interplanetary research will probably
be done by constellations of nanosatellites instead of single
larger spacecrafts, one or more of the satellites could stay in
one of those points to be used as a communication satellite
to transfer information from the others, in different orbits to
explore more the body, to the Earth. They would be similar
to geostationary satellites in orbit around the Earth. For
equatorial and polar orbits there are periodic oscillations, for
the physical reasons already explained, based in the regions
of the cube (face or edge) that the spacecraft is passing by.
The inclined orbit shows more oscillations, with six maxima
and minima for each period, due to the passages by the faces,
edges, and vertexes.
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FIGURE 3: Perturbation integral versus inclination for circular orbit
around a cube.

The perturbation integral, or PI, gives the variation of
velocity over the time after one revolution of the spacecraft.
Therefore, by analyzing the variation of the values of PI,
it is possible to obtain the most or the least perturbed
orbits, depending on the initial orbital elements chosen. This
integral is obtained by the integration of the equation for
the acceleration of the cube (showed by (5)) for one orbital
period of the spacecraft. For a circular orbit with argument of
periapsis and right ascension of ascending node equal zero,
the PI is given by

PI

495G M>mr* (6865 + 372 cos [4i] + 315 cos [8i]) (1)
- 147456na'? :

This analytical equation shows the dependence of the PI
with the semimajor axis and inclination of the orbit, and
it allows us to find the orbits that are less perturbed. The
dependence with the semimajor axis quantifies the expected
fast decrease with increase of this variable. A simple analysis
shows that when the spacecraft is far from the cube, it feels
that the gravitational potential is like the one generated
by a sphere, so the perturbations go to zero. Although
expected, this integral allows a better comparison of values
by presenting an objective form to quantify the different
effects of the geometric shape. A more interesting result is
the study with respect to the inclination. The values for the
perturbation integral that are obtained by (11) shown in a
graph as a function of the inclination. Figure 3 shows the
results. The existence of four points of global minimum,
two global maxima, and two more local maxima is noticed.
Those extreme points represent orbits that would require
maximum and minimum fuel consumptions for a spacecraft
that needs to make station keeping maneuvers to stay all
the time in a Keplerian orbit. This hypothesis is usually too
strong and not common in real missions, but it is used here
to map trajectories, expecting that the more perturbed orbits
present faster and larger variations of the Keplerian elements,
with a good potential to require more fuel consumption
for the station keeping maneuvers. This is the reason for
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justifying this type of mappings for the orbits. Figure 3 shows
that the minima are located at the inclinations of 0.45, 1.10,
2.05, and 2.65 radians and the maxima are located at the
inclinations of zero and = radians. The difference in the
values of the PI is near 0.000006 m/s, which represents
about 14%, not a negligible amount. For orbits with smaller
semimajor axis, this difference increases in absolute values.
It means that a graph similar to Figure 3 is important for
mission designers planning orbits around a body that has a
geometrical form similar to a cube. A deep physical analysis
of the perturbations can explain that the maximum PI for the
polar and equatorial orbits is due to the larger distances from
the spacecraft to the cube, when compared to a sphere with
the same mass, because it passes near the faces of the cube.
So the perturbation results from a gravity field that is weaker
than the one generated by a sphere or point of mass. The
spacecraft tends to move away from the body. In the opposite
side, the 45-degree inclined orbit has its maximum value for
the PI due to the smaller distances from the spacecraft to
the cube, when compared to a sphere with the same mass,
because it is passing near the edges and the vertex of the
cube. So the perturbation results from a gravity field that is
stronger than the one generated by a sphere or point of mass
and the spacecraft is more attracted by the body, tending to
reduce the distance spacecraft cube. Figure 3 shows that the
value of the PI is larger for the polar and equatorial orbits,
when compared to the 45-degree inclined orbit, which means
that the excess of distances experienced by the polar and
equatorial orbits is larger, in magnitude, than the smaller
distances experienced by the 45-degree inclined orbit.

The previous results were obtained considering circular
orbits. It is now interesting to study eccentric orbits. A graph
of the variation of the PI with respect to the inclination is
shown in Figure 4, now considering different values for the
eccentricity. The initial values used for the eccentricity were
zero (circular orbit), 0.1, 0.2, and 0.3. The effect of the eccen-
tricity for equatorial and polar orbits are the same, which can
be seen better in Figure 4(b) that plotted the variation of PI
with the eccentricity for orbits with inclination of 0°, 90°, and
45°. Figure 4(a) shows the same values, but the eccentricity
goes up to 0.7, which generate results that are too similar to
allow a good comparison among the orbits. It is demonstrated
that, as the eccentricity increases, the higher are the values for
the PI and consequently eccentric orbits are more perturbed
than circular orbits. This happens slightly faster for orbits
with inclination of 45°. The physical reason for this effect
is that eccentric orbits cause closer approximations of the
spacecraft to the cube, during the periapsis passages, so
it feels stronger perturbations during these passages and
these passages contribute to the accumulated effects of the
perturbation during one orbital period. Figure 4(b) shows
the same information shown in Figure 4(a), but reducing the
interval of eccentricities to a maximum of 0.3. It is possible to
see an inversion in the values of the PI at e = 0.15. The polar
and the equatorial orbits are less perturbed than the inclined
45° after this limit and less perturbed before that.

Figure 5(a) shows the value of the PI (m/s) as a function
of the inclination for different values of the eccentricity. The
same oscillations are noticed for each value of the eccentricity.
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FIGURE 4: (a) Perturbation integral versus eccentricity. Solid line is for equatorial and polar orbits, and dashed line is for i = 45°, for
eccentricities up to 0.7. (b) Perturbation integral versus eccentricity. Solid line is for equatorial and polar orbits, and dashed line is for i = 45°,

for eccentricities up to 0.3.

The results also emphasize the increase of the PI with the
eccentricity. It is visible that the eccentricity has stronger
effects when compared to the inclination. Figures 5(b), 5(c),
and 5(d) show the same information of Figure 5(a), but for
each eccentricity in order to give more details about each
curve. From Figure 5(a) it is visible that the amplitude of
oscillation of the curves increases with the eccentricity of
the orbit. The combination of Figures 5(a), 5(b), 5(c), and
5(d) show that the increase of the eccentricity makes the
values of the local maximum (inclination near 45 degrees)
increase until a point (near e = 0.2) where they become
the global maximum. The global maxima of the circular
orbits (equatorial and polar orbits) decrease in magnitude.
When the eccentricity reaches the value 0.3, the figure shows
only two maxima. The explanation for this phenomenon
comes from the analysis already made regarding the physical
reasons to have maximum at the polar, equatorial, and 45-
degree inclined orbits. The polar and the equatorial orbits
have their maximum based on the larger distances spacecraft
cube, when compared to a sphere of the same mass, so the
increase of the eccentricity that causes an approximation
spacecraft cube during the passages of the spacecraft by the
periapsis of the orbit works against the physical reason of
the perturbation. In the opposite side, the 45-degree inclined
orbits have their maximum based on the smaller distances
spacecraft cube, when compared to a sphere of the same
mass, so the increase of the eccentricity works in favor of
the physical reason of the perturbation. So the net result is
an increase of the PI for all orbits, because the spacecraft
gets closer to the cube and it increases the perturbations, but
this increase is different for each inclination. It is stronger
for the 45-degree inclined orbit, causing an inversion of the
large maximum. The minima are located in about the same
positions, with a small shift to the left of the scale, which
means that the increase of the eccentricity reduces the value of

the inclination that generates the minimum perturbation. The
physical reason is the same as explained above. The increase
of the eccentricity makes the spacecraft pass closer to the
cube, so the minimum perturbed orbits have smaller values
for the inclination, to be far away from the edges and vertexes,
that have their perturbations increased by the closer distances
generated by larger eccentricities.

Another relevant analysis to be made is the influence of
the semimajor axis of the orbit. Figure 6 shows, for a circular
equatorial orbit, the PI (m/s) as a function of the semimajor
axis from 75 km to 25 km, for inclinations of 0, 45°, and 90°.
The dependence of the perturbation relative to the semimajor
axis is very clear, and when moving away from the body
the value for PI decreases fast. The perturbation is larger for
smaller distances, which is an expected result, because the
perturbation in the potential equation for a cube changes at
a rate of 1/r°. The interesting aspect of the results shown
here is that they can quantify the values involved using a new
approach.

From the results presented here, there are two main things
that need to be emphasized: first, the smaller the semimajor
axis is, the larger the values of the PI are; second, as shown
in Figure 4, eccentric orbits have a higher value for the PI.
Therefore, close eccentric orbits are the situations where
the effects are larger, which means that the orbits are more
perturbed.

Besides the semimajor axis and the eccentricity, from the
results obtained studying the inclination, it was proved that
orbits passing near the vertex and edges of the cube are more
affected and that there are maximum and minimum values
for the perturbation as a function of the inclination. Another
important consideration to take into account when study-
ing nonspherical objects is that these objects are rotating.
Therefore, the results for a rotating cube will be analyzed and
showed next.
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3.2. Adding Rotation. The results presented up to now consid-
ered that the cube is standing still. The next step is to consider
that the cube is rotating around one of the principal axes
(x, ¥, and z). Since the small celestial bodies are spinning,
adding this fact will enrich the analysis of the gravitational
perturbation due to the shape of the object.

The rotation of an object may be obtained with a rotation
matrix considering the direction of the rotation, which is usu-
ally represented by three matrices with respect to the axes of

i (1 —ez)a(cos [Q] Cos [v + o] — cos [i] sin [Q] sin [ f + 0]) 7

symmetry. If the object is rotating only in one principal axis,
one of the rotation matrices is applied; therefore, knowing the
direction in which the body is spinning is important. There
can also be rotation in more than one axis, as already found
in asteroids, and thus the sequence of the rotations must be
chosen properly. The coordinates for rotation in x, y, and
z axes, obtained by multiplying each rotation matrix by the
position coordinates with respect to the orbital elements, are
represented by the following equations:

(1 - ez) acos [wt] (cos [ f + o] sin [Q] + cos [i] cos [Q] sin [ f + o])

1+ecos|f]
(1 - ez)asin [i] sin [ f + o] sin [wt]

—
NS K
[
®

1+ecos|f]
(1 —ez)ucos [wt] sin [i] sin [ f + o]

(1 - ez) a(cos [f + o] sin[Q] + cos [i] cos [Q] sin [ f + 0]) sin [wt]

- >

1+ecos|f]

L 1+ecos|[f]

i (1 —ez)acos [wt] (cos [Q] cos [ f + 0] — cos [i] sin [Q] sin [ f + o])
+

1+ecos|f] J

(1 - ez)asin [i] sin [ f + o] sin [wt] ]

1+ecos|[f]

(1 —ez)a(cos [f + 0] sin [Q] + cos [i] cos [Q] sin [ f + o])

1+ecos[f]

(1 - ez)acos [wt] sin [i] sin [ f + o]

(1 - ez) a(cos [Q] cos [f + o] — cos [i] sin [Q] sin [ f + 0]) sin [wt]

1+ecos|[f]

L 1+ecos[f]

1+ecos|[f] _

(1 7ez)usin [wt] (cos [0+ f]sin [Q] + cos [i] cos [Q] sin [0 + f]) (1 7ez)acos [wt] (cos [Q] cos [0 + f] — cos [i] sin [Q] sin [0 + f])
+

where a is the semimajor axis, e is the eccentricity, i is the
inclination, w is the angular velocity, f is the true anomaly, o
is the argument of periapsis, and ( is the right ascension of
ascending node.

Several rotation periods were tested in order to compare
the differences from a nonrotating situation, and among the
rotations with different velocities. Reminding that the mass
used was 4 x 10'*kg and the edge length of the cube is
5km. The cube is assumed to have homogeneous density of
3.2g/cm’, which is near the values found for the density of
many asteroids [23, 24]. For all the examples that will be
presented in the case of a rotating cube, the orbit is circular.
Figure 7 gives the PI (m/s) as a function of the inclination for
different angular velocities about the z axis.

The letter R in the figures stands for the rotation period,
where R 0 means that the cube is not spinning. The
physical reason to have different values when the cube is
rotating is that the spacecraft passes by different parts of
the cube. If it spends more time near the faces, the total
perturbation increases. If it spends more time near the
equilibrium position, which is a position where the potentials
of a sphere and a cube are the same, the total value of the
perturbation decreases. From Figure 7, it is noticeable that
the results are not symmetric around the polar orbit, since
prograde and retrograde orbits have different rotations with

X 1+ecos|f] 1+ecos[f]
| (1 - ez) acos [wt] (cos [0 + f]sin [Q] + cos [i] cos [Q] sin [0 + f]) (1 - ez)usin [wt] (cos [Q] cos [0+ f] — cos[i] sin [Q] sin [0 + f])
y, - 1+ecos|[f] * 1+ecos|f] ’
z 1, (1 —ez)usin [i]sin [0+ f]
1+ecos|[f]

(12)

respect to the cubic body and so the regions where the
subsatellite point passes are different. The equatorial orbits
are the ones where the rotation generates smaller effects.
The polar orbits have stronger effects when compared to the
equatorial orbits, showing a decrease in the total perturbation
effects. The largest reduction of the perturbation occurs near
the inclination of 1 rad. In general, the rotations decreased the
value of the PI. Retrograde orbits are different from direct
orbits. Since they are rotating in the opposite direction of
the cube, the edges and vertices spend more times by the
spacecraft and it increases the perturbation. It is important
to note the large reduction of the PI, going from near
0.000042 m/s for an equatorial orbit to near 0.000026 m/s in
the minimum situation (inclination near 1rad), a reduction
of about 38%. The period of the rotation of the cube also
has some effects in the perturbation, with the largest one
simulated (24 hours) being the one that generates the smallest
perturbations. Anyway, those differences are small when
compared to the reduction generated by the inclusion of the
rotation.

Figure 8 shows the perturbation integral as a function of
the inclination for a cube rotating around the y axis. Each
line color represents a different angular velocity, and the blue
line shows the case of a fixed cube. The same representation
is used in all similar figures. The figure is now symmetric
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FIGURE 8: Perturbation integral versus inclination for different
rotation periods in y axis for circular orbits with semimajor axis of
10 km.

with respect to the polar orbit and the minimum is near
0.55rad. The reduction of the PI is again very large when
compared to the fixed case, reaching a value near 33% at
the minimum perturbation point. For the polar orbits, the
perturbation is almost the same with and without rotation of
the cube. When the period of rotation is 10 hours, the rotating
situation generates even more perturbation. All those effects
are a result of the averaged distance between the spacecraft
and the mass distribution of the cube.

The last case of rotation is in the x axis, showed in
Figure 9. It is noticed that, now, some periods of rotation
decrease too much the PI, generating orbits with lower
perturbation. The results are now more dependent of the
period of the rotation. The results have symmetry around the
polar orbit again. In general, polar and equatorial orbits are
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FIGURE 9: Perturbation integral versus inclination for different
rotation periods around the x axis.
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FIGURE 10: Acceleration for one revolution, for different inclinations,
with rotation around the z axis and period of 5 hours.

more perturbed in the nonrotating case. When the body is
rotating, the inclination of the orbit plays an important role
in the stability of the orbit. For example, there are studies
that suggest that retrograde orbits are more stable against
the effects of perturbation around nonuniform gravitational
fields [25-27]. Also, depending on the rotation axis and
the period of rotation, the orbit could be synchronous or
resonant. It is clear that the minimum perturbation situation
changes with the inclination of the orbit, so the decision of
the best orbit to place a satellite needs to take into account
the period of rotation of the body.

The acceleration that the spacecraft feels due to a rotating
cube is very dependent on the inclination of the orbit.
Figure 10 shows the acceleration for an orbit with different
values for the inclination, with a rotation period of 5 hours
around the z axis.
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FIGURE 11: Acceleration for one revolution, for different rotation
inclinations with rotation around the y axis, with rotation period
of 5 hours.
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FIGURE 12: Acceleration for one revolution, for different rotation
inclinations with rotation around the x axis, with rotation period
of 5 hours.

Still considering a rotation period of 5 hours, Figure 11
shows the acceleration for different inclinations for a cube
with rotation about the y axis. In this case, the results for
retrograde orbits are the same as for the prograde orbits,
because the rotation axis in this case influences the orbits on
the equatorial plane in the same way.

The last graph showing the acceleration for a rotating
cube is around the x axis and can be seen in Figure 12. For
this direction of rotation, the inclination of 45° is affected
differently compared to the rest of the initial inclinations
used.

3.3. Lagrange’s Planetary Equations. Considering that there is
a gravitational perturbation, the variation of each orbital ele-
ment can be obtained using Lagrange’s planetary equations.
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FIGURE 13: da/dt as a function of the semimajor axis around a cube.

The disturbing potential of the cube with respect to a sphere
is used, and six differential equations are obtained to express
the evolution of the Keplerian elements of the orbit of the
spacecraft. These equations are given by

da_ 20V
dt  naoM’
de_1-cov i@
dt  na’e OM na’e 0o’
di _ 1 8V+ coti ov
dt na* V1 — e2sini 0Q  na2\1 - e?sini 00
(13)
do V1-¢é? 8V_ coti )%
dt B na’e Oe na’vV1 —e?sini 81’
aQ 1 ov
dt  na2V1-elsini 0i
M 20V 1-dav
dt na da  na’e Oe

The variation rate of the semimajor axis, eccentricity, and
inclination, as a function of the semimajor axis, is shown
in Figures 13, 14, and 15, respectively. The results are for one
revolution considering an equatorial orbit, a polar orbit,
and an orbit with inclination of 45°. For the integration
of the Lagrange equations, the magnitude was used to
avoid compensations that leads to near zero integrals, but
that still disturbs the orbits. This view of the mapping of
the orbits is different from the view that comes from the
integral approach, and it complements the study. The integral
approach shows the magnitude of the total perturbation in
the orbit of the spacecraft, independent of which orbital
element is affected. The approach using Lagrange’s planetary
equations studies the perturbation of each orbital element
individually, so the relation between the results has to be
seen under this perspective. In general, the graphs showed
that the evolution of the orbital elements as functions of
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FIGURE 14: de/dt as a function of the semimajor axis around a cube.
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FIGURE 15: di/dt as a function of the semimajor axis around a cube.

the semimajor axis, using Lagrange’s planetary equations,
have a good correlation with the results presented for the
perturbation integral method. It shows that the further from
the body the spacecraft is, the smaller the change in the orbital
elements is. It is noticed that there are some cases where the
rate of variation is zero, like the polar orbit for the variation
of the eccentricity and the equatorial orbit for the variation of
the inclination. This point is not against the integral approach,
which shows that the orbit is perturbed, because the rates of
variation of the other elements are not zero. This situation
just shows that the existing perturbation is disturbing another
orbital element.

A complete comparison between both approaches is
not possible due to the singularities of Lagrange’s planetary
equations in the eccentricity and inclination. A future work
can extend this comparison in further details by using
nonsingular variables. One more example is possible and
is shown in Figure 16 that illustrates another example of
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FIGURE 16: da/dt as a function of the eccentricity around a cube.

the connection of the PI with the Lagrange equations, show-
ing the variation rate of the semimajor axis as a function of the
eccentricity. It shows a near zero value at the beginning, with
only a slight motion for all the curves, increasing drastically
after eccentricity 0.5. Similarly to what happens for the PI, the
fast increase of the time derivatives of the Keplerian elements
starts near e = 0.5.

4. Conclusions

This work presented an analysis of the gravitational pertur-
bation due to a nonspherical body. For this study, the closed
form equation for the potential of a cube was considered,
allowing working analytically most of the time. Using a
methodology called the Perturbation Integral, or PI, it was
possible to quantify the perturbation for the specific initial
conditions tested. This integral gives the change in the
velocity over the time and, therefore, it is an efficient way to
search for the least perturbed orbits. An alternative tool to
study the variation of the orbital elements was used, which
consisted in the analysis of the rate of change of the orbital
elements separately by using Lagrange’s planetary equations,
and it was shown that both methods have a good correlation.
Comparing the results coming from a sphere with the cube it
was proved that, close to the body, the orbit acts different from
a Keplerian orbit, and therefore the gravitational perturbation
should be considered properly. Since small celestial bodies are
rotating, it was also considered the case of a spinning cube,
which was tested for rotation in the three principal axes.
Using the equations for a cube is helpful to test the
method because its shape has a predictable behavior and
it could also be used to model an irregular body with the
sum of cubes. In space missions, it is important to know
the perturbations acting on the spacecraft, because it could
displace the vehicle from the desired trajectory or even
damage it. In the case of missions to small bodies like
asteroids, a perturbation that must be considered is due to
the irregularity of the shape of the body, especially very close
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to the body. Therefore, the search for the least perturbed and
more stable orbits is an important topic.

The results showed that circular orbits are less per-
turbed than eccentric orbits and they quantified the expected
decrease of the perturbation with the increase of the semima-
jor axis. Regarding the inclination of the orbits, the existence
of a minimum for some values of the inclination is shown,
which is an indication that some orbits are less perturbed than
others. This fact can be used for the orbit selection during a
preliminary mission design. The results also show and explain
the inversion of the global maximum of the PI with respect to
the inclination when the eccentricity of the orbit increases,
as well as the shift to lower inclinations of the respective
minimum.

The addition of the rotation of the cube showed interest-
ing results, usually decreasing the perturbation of the orbit
when compared to the nonrotating case. The inclination of
the orbit that generates minimum perturbation changes with
the rotation, so this fact should not be neglected.
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