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We establish a posteriori error estimate for finite volume element method of a second-order hyperbolic equation. Residual-type
a posteriori error estimator is derived. The computable upper and lower bounds on the error in the 𝐻

1-norm are established.
Numerical experiments are provided to illustrate the performance of the proposed estimator.

1. Introduction

The finite volume element method is a class of important
numerical tools for solving partial differential equations. Due
to the local conservation property and some other attractive
properties, it is wildly used in many engineering fields, such
as heat and mass transfer, fluid mechanics, and petroleum
engineering, especially for those arising from conservation
laws includingmass,momentum, and energy. For the second-
order hyperbolic equations, Li et al. [1] have proved the
optimal order of convergence in 𝐻

1-norm. In [2], Kumar
et al. have proved optimal order of convergence in 𝐿

2 and𝐻
1-

norm for the semidiscrete scheme and quasi-optimal order of
convergence in maximum norm.

Since the pioneering work of Babuvška and Rheinboldt
[3], the adaptive finite element methods based on a posteriori
error estimates have become a central theme in scientific and
engineering computations. Adaptive algorithm is among the
most important means to boost accuracy and efficiency of
the finite element discretization. The main idea of adaptive
algorithm is to use the error indicator as a guide which
shows whether further refinement of meshes is necessary.
A computable a posteriori error estimator plays a crucial
role in an adaptive procedure. A posteriori error analysis
for the finite volume element method has been studied in
[4–6] for the second-order elliptic problem, in [7–9] for
the convection-diffusion equations, in [10] for the parabolic

problems, in [11] for a model distributed optimal problem
governed by linear parabolic equations, in [12] for the Stokes
problem in two dimensions, and in [13] for the second-order
hyperbolic equations.

However, to the best of our knowledge, there are few
works related to the a posteriori error estimates of the finite
volume element method for the second-order hyperbolic
problems. The aim of this paper is to establish residual-type
a posteriori error estimator of the finite volume element
method for the second-order hyperbolic equation. We first
construct a computable a posteriori error estimator of the
finite volume element method.Then we analyze the residual-
type a posteriori error estimates and obtain the computable
upper and lower bounds on the error in the𝐻1-norm.

The organization of this paper is stated as follows. In
Section 2, we present the framework of the finite volume
element method for the second-order hyperbolic equation.
In Section 3, we establish the residual-type a posteriori error
estimator of the finite volume element method and derive
the upper and lower bounds on the error in the 𝐻

1-norm.
We provide some numerical experiments to illustrate the
performance of the error estimator in Section 4.

2. Finite Volume Element Formulation

We use standard notation for Sobolev spaces 𝑊
𝑠,𝑝

(Ω) with
the norm ‖𝑢‖

𝑠,𝑝,Ω
[14]. In order to simplify the notation, we
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Figure 1: (a) The dotted line shows the boundary of the corresponding control volume 𝑉
𝑧
with 𝑧, a common vertex. (b) A triangle 𝐾 is

partitioned into three subregions𝐾
𝑧
.

denote 𝑊
𝑠,2
(Ω) by 𝐻

𝑠
(Ω) and omit the index 𝑝 = 2 and Ω

whenever possible.
In this paper, we consider the following second-order

hyperbolic problem:

𝑢
𝑡𝑡
− ∇ ⋅ (𝑎 (𝑥) ∇𝑢) = 𝑓 (𝑥, 𝑡) , in Ω × (0, 𝑇] ,

𝑢 (𝑥, 𝑡) = 0, on 𝜕Ω × (0, 𝑇] ,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) ,

𝑢
𝑡
(𝑥, 0) = V

0
(𝑥) ,

in Ω,

(1)

where Ω ⊂ R2 is a polygonal bounded cross section,
possessed with a Lipschitz boundary 𝜕Ω. For simplicity, the
right-hand side 𝑓 is assumed to be measurable and square-
integrable on Ω × (0, 𝑇] and to be continuous with respect
to time. The initial datum 𝑢

0
and V

0
are assumed to be mea-

surable and square-integrable onΩ. 𝑎(𝑥, 𝑡) = (𝑎
𝑖𝑗
(𝑥, 𝑡))

2

𝑖,𝑗=1
is

a real-valued smooth matrix function, uniformly symmetric,
and positive definite inΩ.

The corresponding variational problem is to find 𝑢 ∈

𝐻
1

0
(Ω), for 𝑡 > 0, satisfying

(𝑢
𝑡𝑡
, V) + 𝑎 (𝑢, V) = (𝑓, V) , ∀V ∈ 𝐻

1

0
(Ω) , (2)

where the bilinear form 𝑎(⋅, ⋅) is defined by

𝑎 (𝑢, V) = ∫
Ω

𝑎 (𝑥) ∇𝑢 ⋅ ∇V 𝑑𝑥, ∀𝑢, V ∈ 𝐻
1

0
(Ω) . (3)

Denote by𝑇
ℎ
the primal quasi-uniform triangulation ofΩ

with ℎ = max ℎ
𝐾
, where ℎ

𝐾
is the diameter of the triangle𝐾 ∈

𝑇
ℎ
. Let U

ℎ
be the standard conforming finite element space

of piecewise linear functions, defined on the triangulation𝑇
ℎ
:

U
ℎ
= {𝑢 ∈ 𝐶 (Ω) : 𝑢|𝐾 is linear and 𝑢|𝜕Ω = 0, ∀𝐾

∈ 𝑇
ℎ
} .

(4)

Denote by 𝑇
∗

ℎ
the dual partition which is constructed in

the same way as in [1, 15]. Let 𝑧
𝐾
be the barycenter of 𝐾.

We connect 𝑧
𝐾

with the midpoints of the edges of 𝐾 by

straight line, thus partitioning𝐾 into three quadrilaterals𝐾
𝑧
,

𝑧 ∈ 𝑍
ℎ
(𝐾), where 𝑍

ℎ
(𝐾) are the vertices of 𝐾. Then with

each vertex 𝑧 ∈ 𝑍
ℎ

= ∪
𝐾∈𝑇ℎ

𝑍
ℎ
(𝐾), we associate a control

volume 𝑉
𝑧
, which consists of the union of the subregions𝐾

𝑧
,

sharing the vertex 𝑧 (see Figure 1). Finally, we obtain a group
of control volumes covering the domain Ω, which is called
the dual partition 𝑇

∗

ℎ
of the triangulation 𝑇

ℎ
. Denote by 𝑍

0

ℎ

the set of interior vertices of 𝑍
ℎ
and denote by E

ℎ
the set of

all interior edges of 𝑇
ℎ
, respectively.

The partition 𝑇
∗

ℎ
is regular or quasi-uniform, if there

exists a positive constant 𝐶 > 0 such that

𝐶
−1
ℎ
2
≤ meas (𝑉

𝑧
) ≤ 𝐶ℎ

2
, ∀𝑉

𝑧
∈ 𝑇

∗

ℎ
. (5)

The dual partition 𝑇
∗

ℎ
will also be quasi-uniform [5] if

the finite element triangulation 𝑇
ℎ
is quasi-uniform. The test

function spaceV
ℎ
is defined by

V
ℎ
= {V ∈ 𝐿

2
(Ω) : V|𝑉𝑧 is constant and V|𝜕Ω

= 0 ∀𝑉
𝑧
∈ 𝑇

∗

ℎ
} .

(6)

For any 𝑢
ℎ

∈ U
ℎ
, we define an interpolation operator Π

ℎ
:

U
ℎ
→ V

ℎ
, such that

Π
ℎ
𝑢
ℎ
= ∑

𝑧∈𝑍
0

ℎ

𝑢
ℎ
(𝑧) Ψ

𝑧
, (7)

where Ψ
𝑧
is the characteristic function of the control volume

𝑉
𝑧
.
According to [16], for each 𝑢

ℎ
∈ U

ℎ
, there exists a pos-

itive constant 𝐶 independent of ℎ, such that Π
ℎ
satisfies the

following inequality:
𝑢ℎ − Π

ℎ
𝑢
ℎ

0,𝐾
≤ 𝐶ℎ

𝐾

𝑢ℎ
1,𝐾

, ∀𝐾 ∈ 𝑇
ℎ
. (8)

Introduce the following adjoint elliptic problem:

−∇ ⋅ (𝑎 (𝑥) ∇𝑢) = 𝑓 in Ω, with 𝑢 = 0 on 𝜕Ω. (9)

Denote by T : 𝐿
2
(Ω) → 𝐻

2
(Ω)⋂𝐻

1

0
(Ω) the solution

operator of this problem, so that

𝑎 (T𝑓, 𝜑) = (𝑓, 𝜑) , ∀𝜑 ∈ 𝐻
1

0
(Ω) . (10)
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Define negative norms by

‖V‖−𝑠 = sup{
(V, 𝜑)
𝜑

𝑠

; 𝜑 ∈ 𝐻
𝑠
(Ω)} ,

for 𝑠 ≥ 0 integer.

(11)

In fact, by Cauchy-Schwarz inequality, we obtain

(V, 𝜑)
𝜑

1

≤
‖V‖ 𝜑


𝜑

1

≤
‖V‖ 𝜑

1
𝜑

1

= ‖V‖ . (12)

For our error analysis in the next section, it will be convenient
to introduce such a norm defined by

|V|−𝑠 = (T
𝑠V, V)1/2 , for 𝑠 ≥ 0 integer. (13)

According toThomée [17], we have the following lemma.

Lemma 1. The norm |V|
−𝑠
is equivalent to ‖V‖

−𝑠
and (T𝑓, 𝑔) =

(𝑓,T𝑔), where 𝑠 is a nonnegative integer. Particularly, ‖TV‖
1

is equivalent to ‖V‖
−1

when 𝑠 = 1.
In order to get the fully discrete finite volume element

method of (1), we give a partition of the time interval [0, 𝑇]:
0 = 𝑡

0
< 𝑡

1
< ⋅ ⋅ ⋅ < 𝑡

𝑁−1
< 𝑡

𝑁
= 𝑇. Let 𝜏

𝑛
= 𝑡

𝑛
− 𝑡

𝑛−1
,

𝜏 = max
1≤𝑛≤𝑁

𝜏
𝑛
, 𝑈𝑛

ℎ
= 𝑈

ℎ
(𝑡
𝑛
), and 𝑈

𝑛,1/2

ℎ
= (𝑈

𝑛+1

ℎ
+ 𝑈

𝑛−1

ℎ
)/2.

With the help of Π
ℎ
, we obtain the fully discrete finite volume

element method of (1): to find 𝑈
𝑛

ℎ
∈ U

ℎ
, for 1 ≤ 𝑛 ≤ 𝑁, such

that

(𝜕
𝑡
𝜕𝑈

𝑛

ℎ
, Π

ℎ
𝜒) + 𝑎 (𝑈

𝑛,1/2

ℎ
, Π

ℎ
𝜒) = (𝑓

𝑛
, Π

ℎ
𝜒) ,

∀𝜒 ∈ U
ℎ
,

𝑈
0

ℎ
= 𝑢

0
,

𝜕𝑈
1

ℎ
= V

0
,

(14)

where

𝜕
𝑡
𝜕𝑈

𝑛

ℎ
=

𝜕
𝑡
𝑈
𝑛

ℎ
− 𝜕

𝑡
𝑈
𝑛−1

ℎ

𝜏
𝑛

=

(𝑈
𝑛+1

ℎ
− 𝑈

𝑛

ℎ
) /𝜏

𝑛+1
− (𝑈

𝑛

ℎ
− 𝑈

𝑛−1

ℎ
) /𝜏

𝑛

𝜏
𝑛

.

(15)

By setting V = 𝜕𝑢/𝜕𝑡 = 𝑢
𝑡
and Y = (

𝑢

V ), the notation ∇ ⋅

(𝑎(𝑥)∇)𝜙 = ∇ ⋅ (𝑎(𝑥)∇𝜙), (1) can equivalently be written as

Y
𝑡
− (

0 1

∇ ⋅ (𝑎 (𝑥) ∇) 0
)Y = 𝐹, (16)

where 𝐹 = (
0

𝑓 ).
Let 𝑉𝑛

ℎ
= 𝜕𝑈

𝑛+1

ℎ
; we define

𝑈
𝜏
=

𝑡 − 𝑡
𝑛−1

𝜏
𝑛

𝑈
𝑛

ℎ
+ (1 −

𝑡 − 𝑡
𝑛−1

𝜏
𝑛

)𝑈
𝑛−1

ℎ
, 1 ≤ 𝑛 ≤ 𝑁,

𝑉
𝜏
=

𝑡 − 𝑡
𝑛−1

𝜏
𝑛

𝑉
𝑛

ℎ
+ (1 −

𝑡 − 𝑡
𝑛−1

𝜏
𝑛

)𝑉
𝑛−1

ℎ
, 1 ≤ 𝑛 ≤ 𝑁.

(17)

The residual system, with 𝑌
𝜏
= (

𝑈𝜏

𝑉𝜏
), is defined as follows:

(Y − 𝑌
𝜏
)
𝑡
− (

0 1

∇ ⋅ (𝑎 (𝑥) ∇) 0
) (Y − 𝑌

𝜏
) = (

𝑃
𝑢

𝑃V
)

𝑖𝑛 Ω × [0, 𝑇] ,

𝑢 − 𝑈
𝜏
= 0

𝑜𝑛 𝜕Ω × [0, 𝑇] ,

(Y − 𝑌
𝜏
) (⋅, 0) = 0 𝑖𝑛 Ω,

(18)

where the quantities 𝑃
𝑢

in 𝐿
1
(0, 𝑇; 𝐿

2
(Ω)) and 𝑃V in

𝐿
1
(0, 𝑇;𝐻

−1
(Ω)) are affine functions on each interval

[𝑡
𝑛−1

, 𝑡
𝑛
], 1 ≤ 𝑛 ≤ 𝑁, that

𝑃
𝑢
(⋅, 𝑡) =

{

{

{

𝑉
𝜏
− 𝑉

𝑛−1

ℎ
, 2 ≤ 𝑛 ≤ 𝑁,

0, 𝑛 = 1.

(19)

And the quantities 𝑃V are defined as follows.
From the fully discrete algorithm (14), for any 𝜑 ∈

𝐻
1

0
(Ω), V ∈ U

ℎ
, we have

(𝜕
𝑡
𝜕𝑈

𝑛

ℎ
, 𝜑) + 𝑎 (𝑈

𝑛,1/2

ℎ
, 𝜑)

= − (𝑓
𝑛
− 𝜕

𝑡
𝜕𝑈

𝑛

ℎ
, 𝜑 − Π

ℎ
V) + (𝑓

𝑛
, 𝜑)

+ 𝑎 (𝑈
𝑛,1/2

ℎ
, 𝜑) − 𝑎 (𝑈

𝑛,1/2

ℎ
, Π

ℎ
V) .

(20)

Since (𝑉
𝜏
)
𝑡
= 𝜕

𝑡
𝜕𝑈

𝑛

ℎ
, by (2) and (20), for 𝑡 ∈ (𝑡

𝑛−1
, 𝑡
𝑛
], we get

((V − 𝑉
𝜏
)
𝑡
, 𝜑) + 𝑎 (𝑢 − 𝑈

𝑛,1/2

ℎ
, 𝜑)

= (𝑓
𝑛
− 𝜕

𝑡
𝜕𝑈

𝑛

ℎ
, 𝜑 − Π

ℎ
V) + (𝑓 − 𝑓

𝑛
, 𝜑)

− 𝑎 (𝑈
𝑛,1/2

ℎ
, 𝜑) + 𝑎 (𝑈

𝑛,1/2

ℎ
, Π

ℎ
V) .

(21)

Adding the term 𝑎(𝑈
𝑛,1/2

ℎ
− 𝑈

𝜏
, 𝜑) into the two hand sides of

(21), we get

((V − 𝑉
𝜏
)
𝑡
, 𝜑) + 𝑎 (𝑢 − 𝑈

𝜏
, 𝜑)

= (𝑓
𝑛
− 𝜕

𝑡
𝜕𝑈

𝑛

ℎ
, 𝜑 − Π

ℎ
V) + (𝑓 − 𝑓

𝑛
, 𝜑)

− [𝑎 (𝑈
𝑛,1/2

ℎ
, 𝜑) − 𝑎 (𝑈

𝑛,1/2

ℎ
, Π

ℎ
V)]

+ 𝑎 (𝑈
𝑛,1/2

ℎ
− 𝑈

𝜏
, 𝜑) .

(22)

So on each interval [𝑡
𝑛−1

, 𝑡
𝑛
] (2 ≤ 𝑛 ≤ 𝑁), we have

(𝑃V, 𝜑) = (𝑓
𝑛
− 𝜕

𝑡
𝜕𝑈

𝑛

ℎ
, 𝜑 − Π

ℎ
V)

− [𝑎 (𝑈
𝑛,1/2

ℎ
, 𝜑) − 𝑎 (𝑈

𝑛,1/2

ℎ
, Π

ℎ
V)]

+ 𝑎 (𝑈
𝑛,1/2

ℎ
− 𝑈

𝜏
, 𝜑) + (𝑓 − 𝑓

𝑛
, 𝜑) ,

∀𝜑 ∈ 𝐻
1

0
(Ω) , V ∈ U

ℎ
.

(23)
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We define

(𝐿
𝑛
, 𝜑) = (𝑓

𝑛
− 𝜕

𝑡
𝜕𝑈

𝑛

ℎ
, 𝜑 − Π

ℎ
V)

− [𝑎 (𝑈
𝑛,1/2

ℎ
, 𝜑) − 𝑎 (𝑈

𝑛,1/2

ℎ
, Π

ℎ
V)] .

(24)

Then the term 𝑃V on the interval [𝑡
𝑛−1

, 𝑡
𝑛
] (2 ≤ 𝑛 ≤ 𝑁) can be

written as

(𝑃V, 𝜑) = (𝐿
𝑛
, 𝜑) + 𝑎 (𝑈

𝑛,1/2

ℎ
− 𝑈

𝜏
, 𝜑) + (𝑓 − 𝑓

𝑛
, 𝜑) ,

∀𝜑 ∈ 𝐻
1

0
(Ω) , V ∈ U

ℎ
.

(25)

When 𝑡 ∈ [0, 𝑡
1
],

𝑃V (⋅, 𝑡) = 𝑓 (⋅, 𝑡) + ∇ ⋅ (𝑎 (𝑥) ∇ (𝑢
0
+ 𝑡V

0
)) . (26)

3. Residual-Type A Posteriori Error Estimates

In this section, wewill construct the residual-type a posteriori
error estimates of the finite volume element method for (1).
We introduce the jump of a vector-valued function across
the edge 𝐸 ∈ E

ℎ
which will be used in the residual-type a

posteriori error estimates. Let 𝐸 be an interior edge shared
by elements 𝐾

+
and 𝐾

−
. Define the unit normal vectors n

𝐾+

and n
𝐾−

on 𝐸 pointing exterior to 𝐾
+
and 𝐾

−
, respectively.

Let k be a vector-valued function that is smooth inside each
of the elements𝐾

+
and𝐾

−
. k+ and k− denote the traces of k on

𝐸 taken from within the interior of 𝐾
+
and 𝐾

−
, respectively.

Then the jump of k on the edge 𝐸 is defined by [k]
𝐸

= k+ ⋅

n
𝐾+

+ k− ⋅ n
𝐾−
. We denote space refinement indicator by 𝜂

𝑛

𝑠

defined by

R
𝑛

𝐾
= 𝑓

𝑛
− 𝜕

𝑡
𝜕𝑈

𝑛

ℎ
+ ∇ ⋅ (𝑎 (𝑥) ∇𝑈

𝑛,1/2

ℎ
) ,

R
𝑛

𝐸
= − [𝑎 (𝑥) ∇𝑈

𝑛,1/2

ℎ
]
𝐸
,

𝜂
𝑛

𝑠
= ( ∑

𝐾∈𝑇ℎ

ℎ
2

𝐾

R
𝑛

𝐾



2

0,𝐾
+ ∑

𝐸∈Eℎ

ℎ
𝐸

R
𝑛

𝐸



2

0,𝐸
)

1/2

.

(27)

We define time refinement indicator 𝜂𝑛
𝑡
as

𝜂
𝑛

𝑡
= 𝜏

𝑛


𝑈
𝑛

ℎ
− 𝑈

𝑛−1

ℎ

1
+ 𝜏

𝑛


𝑉
𝑛

ℎ
− 𝑉

𝑛−1

ℎ


. (28)

3.1. Upper Bound. The Scott-Zhang interpolation function
I

ℎ
: 𝐻

1

0
(Ω) → U

ℎ
is introduced in the following lemma

[18].

Lemma 2. For each 𝜑 ∈ 𝐻
1

0
(Ω), a positive constant 𝐶 is

independent of ℎ
𝐾
and ℎ

𝐸
such that, for any 𝐾 ∈ 𝑇

ℎ
, 𝐸 ∈ E

ℎ

Iℎ
𝜑
1,Ω

≤ 𝐶
𝜑

1,Ω
,

𝜑 −I
ℎ
𝜑
0,𝐾

≤ 𝐶ℎ
𝐾

𝜑
1,𝜔𝐾

,

𝜑 −I
ℎ
𝜑
0,𝐸

≤ 𝐶ℎ
1/2

𝐸

𝜑
1,𝜔𝐸

,

(29)

where 𝜔
𝐾
= ⋃

𝐾

⋂𝐾 ̸=0

𝐾
 and 𝜔

𝐸
= ⋃

𝐾⋂𝐸 ̸=0
𝐾.

We also introduce the trace theorem [14].

Lemma 3 (trace theorem). There exists a positive constant 𝐶
independent of ℎ

𝐸
such that

‖𝜔‖
2

0,𝐸
≤ 𝐶 (ℎ

−1

𝐸
‖𝜔‖

2

0,𝐾
+ ℎ

𝐸 ‖∇𝜔‖
2

0,𝐾
) ,

∀𝜔 ∈ 𝐻
1
(𝐾) , 𝐸 ∈ 𝜕𝐾, ∀𝐾 ∈ 𝑇

ℎ
.

(30)

Then we can get the following theorem for the upper bound of
the error.

Theorem 4. The following a posteriori error estimate holds
between the solution 𝑢 of (1) and the solution (𝑈

𝑛

ℎ
)
1≤𝑛≤𝑁

of (14),
for 2 ≤ 𝑚 ≤ 𝑁:

𝑢
𝑚
− 𝑈

𝑚

ℎ

 +



𝑘=𝑚

∑

𝑘=1

∫

𝑡𝑘

𝑡𝑘−1

(𝑈
𝜏
− 𝑢) 𝑑𝑡

1

≤ 𝐶

𝑚

∑

𝑛=2

(𝜏
𝑛
(𝜂

𝑛

𝑡
+ 𝜂

𝑛

𝑠
)) + 𝐶

𝑚

∑

𝑛=2

∫

𝑡𝑛

𝑡𝑛−1

𝑓 (⋅, 𝑡) − 𝑓
𝑛 𝑑𝑡

+ 𝐶∫

𝑡1

0

𝑓 (⋅, 𝑡) + ∇ ⋅ (𝑎 (𝑥) ∇ (𝑢
0
+ 𝑡V

0
))
 𝑑𝑡.

(31)

Proof. Taking the inner product of (18) with (
𝑢−𝑈𝜏

T(V−𝑉𝜏)
) and

setting

𝑍 (𝑡) = (
𝑢 − 𝑈

𝜏



2

+
V − 𝑉

𝜏



2

−1
)
1/2

, (32)

we obtain, for 𝑡 ∈ [𝑡
𝑛−1

, 𝑡
𝑛
],

1

2

𝑑𝑍
2

𝑑𝑡
= (𝑃

𝑢
, 𝑢 − 𝑈

𝜏
) + (𝑃V,T (V − 𝑉

𝜏
)) ≤

𝑃𝑢


𝑢

− 𝑈
𝜏

 +

∇ ⋅ (𝑎 (𝑥) ∇ (𝑈

𝑛,1/2

ℎ
− 𝑈

𝜏
))

−1

⋅
T (V − 𝑉

𝜏
)
1

+
𝐿

𝑛−1

T (V − 𝑉
𝜏
)
1

+
𝑓 (⋅, 𝑡)

− 𝑓
𝑛

T (V − 𝑉
𝜏
)
 ≤

𝑃𝑢


𝑢 − 𝑈
𝜏

 + 𝐶

∇

⋅ (𝑎 (𝑥) ∇ (𝑈
𝑛,1/2

ℎ
− 𝑈

𝜏
))

−1

V − 𝑉
𝜏

−1
+ 𝐶

𝐿
𝑛−1

⋅
V − 𝑉

𝜏

−1
+ 𝐶

𝑓 (⋅, 𝑡) − 𝑓
𝑛

V − 𝑉
𝜏

−1

≤ 𝐶(
𝑃𝑢



2

+
𝐿

𝑛

2

−1
+
𝑓 (⋅, 𝑡) − 𝑓

𝑛

2

+

∇ ⋅ (𝑎 (𝑥) ∇ (𝑈

𝑛,1/2

ℎ
− 𝑈

𝜏
))



2

−1
)

1/2

𝑍;

(33)

hence,

𝑑𝑍

𝑑𝑡
≤ 𝐶 (

𝑃𝑢


2

+
𝐿

𝑛

2

−1
+
𝑓 (⋅, 𝑡) − 𝑓

𝑛

2

+

∇ ⋅ (𝑎 (𝑥) ∇ (𝑈

𝑛,1/2

ℎ
− 𝑈

𝜏
))



2

−1
)

1/2

≤ 𝐶 (
𝑃𝑢



+
𝐿

𝑛−1
+
𝑓 (⋅, 𝑡) − 𝑓

𝑛

+

∇ ⋅ (𝑎 (𝑥) ∇ (𝑈

𝑛,1/2

ℎ
− 𝑈

𝜏
))

−1
) .

(34)
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Integrating the inequality from 𝑡
𝑛−1

to 𝑡
𝑛
(2 ≤ 𝑛 ≤ 𝑁), we

have

𝑍 (𝑡
𝑛
) − 𝑍 (𝑡

𝑛−1
) ≤ 𝐶∫

𝑡𝑛

𝑡𝑛−1

(
𝑃𝑢

 +
𝐿

𝑛−1

+
𝑓 (⋅, 𝑡) − 𝑓

𝑛

+

∇ ⋅ (𝑎 (𝑥) ∇ (𝑈

𝑛,1/2

ℎ
− 𝑈

𝜏
))

−1
) 𝑑𝑡.

(35)

Using Lemma 1, we obtain

∫

𝑡𝑛

𝑡𝑛−1


∇ ⋅ (𝑎 (𝑥) ∇ (𝑈

𝑛,1/2

ℎ
− 𝑈

𝜏
))

−1
𝑑𝑡

= ∫

𝑡𝑛

𝑡𝑛−1


∇ ⋅ (𝑎 (𝑥) ∇ (𝑈

𝑛,1/2

ℎ
− 𝑈

𝑛

ℎ
+ 𝑈

𝑛

ℎ
− 𝑈

𝜏
))

−1
𝑑𝑡

≤ 𝐶

𝑈
𝑛

ℎ
− 𝑈

𝑛−1

ℎ

1
∫

𝑡𝑛

𝑡𝑛−1

(1 −
𝑡 − 𝑡

𝑛−1

𝜏
𝑛

)𝑑𝑡

+ 𝐶
𝜏
𝑛

2


𝑈
𝑛+1

ℎ
− 𝑈

𝑛

ℎ

1
+ 𝐶

𝜏
𝑛

2


𝑈
𝑛

ℎ
− 𝑈

𝑛−1

ℎ

1

≤ 𝐶𝜏
𝑛


𝑈
𝑛+1

ℎ
− 𝑈

𝑛

ℎ

1
+ 𝐶𝜏

𝑛


𝑈
𝑛

ℎ
− 𝑈

𝑛−1

ℎ

1
,

∫

𝑡𝑛

𝑡𝑛−1

𝑃𝑢 (⋅, 𝑡)
 𝑑𝑡 =


𝑉
𝑛

ℎ
− 𝑉

𝑛−1

ℎ


∫

𝑡𝑛

𝑡𝑛−1

𝑡 − 𝑡
𝑛−1

𝜏
𝑛

𝑑𝑡

=
𝜏
𝑛

2


𝑉
𝑛

ℎ
− 𝑉

𝑛−1

ℎ


.

(36)

By the definition of 𝜂𝑛
𝑡
, we get

𝑍 (𝑡
𝑛
) − 𝑍 (𝑡

𝑛−1
)

≤ 𝐶(𝜏
𝑛
𝜂
𝑛

𝑡
+ 𝜏

𝑛

𝐿
𝑛−1

+ ∫

𝑡𝑛

𝑡𝑛−1

𝑓 (⋅, 𝑡) − 𝑓
𝑛 𝑑𝑡) .

(37)

In order to estimate ‖𝐿𝑛‖
−1
, we choose V = I

ℎ
𝜑 in (24); then

(𝐿
𝑛
, 𝜑) = (𝑓

𝑛
− 𝜕

𝑡
𝜕𝑈

𝑛

ℎ
, 𝜑 − Π

ℎ
V)

− [𝑎 (𝑈
𝑛,1/2

ℎ
, 𝜑) − 𝑎 (𝑈

𝑛,1/2

ℎ
, Π

ℎ
V)]

= (𝑓
𝑛
− 𝜕

𝑡
𝜕𝑈

𝑛

ℎ
, 𝜑 − V)

+ (𝑓
𝑛
− 𝜕

𝑡
𝜕𝑈

𝑛

ℎ
, V − Π

ℎ
V)

− [𝑎 (𝑈
𝑛,1/2

ℎ
, 𝜑) − 𝑎 (𝑈

𝑛,1/2

ℎ
, V)]

− [𝑎 (𝑈
𝑛,1/2

ℎ
, V) − 𝑎 (𝑈

𝑛,1/2

ℎ
, Π

ℎ
V)]

≜ I
1
+I

2
+I

3
+I

4
.

(38)

Using Green’s formula, we have

I
3
= − (𝑎 (𝑥) ∇𝑈

𝑛,1/2

ℎ
, ∇ (𝜑 − V))

= − ∑

𝐾∈𝑇ℎ

(𝑎 (𝑥) ∇𝑈
𝑛,1/2

ℎ
, ∇ (𝜑 − V))

= ∑

𝐾∈𝑇ℎ

(∇ ⋅ (𝑎 (𝑥) ∇𝑈
𝑛,1/2

ℎ
) , 𝜑 − V)

0,𝐾

− ∑

𝐸∈Eℎ

([𝑎 (𝑥) ∇𝑈
𝑛,1/2

ℎ
]
𝐸
, 𝜑 − V)

0,𝐸
.

(39)

By the definition ofR𝑛

𝐾
,R𝑛

𝐸
, we get

I
1
+I

3

= ∑

𝐾∈𝑇ℎ

(𝑓
𝑛
− 𝜕

𝑡
𝜕𝑈

𝑛

ℎ
+ ∇ ⋅ (𝑎 (𝑥) ∇𝑈

𝑛,1/2

ℎ
) , 𝜑 − V)

0,𝐾

− ∑

𝐸∈Eℎ

([𝑎 (𝑥) ∇𝑈
𝑛,1/2

ℎ
]
𝐸
, 𝜑 − V)

0,𝐸

= ∑

𝐾∈𝑇ℎ

(R
𝑛

𝐾
, 𝜑 − V)

0,𝐾
+ ∑

𝐸∈Eℎ

(R
𝑛

𝐸
, 𝜑 − V)

0,𝐸
.

(40)

From Cauchy-Schwarz inequality and Lemma 2, we can get

I1
+I

3

 ≤ 𝐶 ∑

𝐾∈𝑇ℎ

{ℎ
𝐾

R
𝑛

𝐾

0,𝐾

𝜑
1,𝜔𝐾

}

+ 𝐶 ∑

𝐸∈Eℎ

{ℎ
1/2

𝐸

R
𝑛

𝐸

0,𝐸

𝜑
1,𝜔𝐸

} .

(41)

ForI
4
, sinceΠ

ℎ
V is a constant in𝐾⋂𝐾

∗

𝑧
, 𝑧 ∈ 𝑍

ℎ
(𝐾), 𝐾

∗

𝑧
∈

𝑇
∗

ℎ
, we have

∫
𝐾

𝑎 (𝑥) ∇𝑈
𝑛,1/2

ℎ
⋅ ∇V 𝑑𝑥

= ∑

𝑧∈𝑍ℎ(𝐾)

∫
𝐾⋂𝐾

∗
𝑧

𝑎 (𝑥) ∇𝑈
𝑛,1/2

ℎ
⋅ ∇ (V − Π

ℎ
V) 𝑑𝑥

= − ∑

𝑧∈𝑍ℎ(𝐾)

∫
𝐾⋂𝐾

∗
𝑧

∇ ⋅ (𝑎 (𝑥) ∇𝑈
𝑛,1/2

ℎ
) ⋅ (V − Π

ℎ
V) 𝑑𝑥

+ ∑

𝑧∈𝑍ℎ(𝐾)

∫
𝜕(𝐾⋂𝐾

∗
𝑧
)

𝑎 (𝑥) ∇𝑈
𝑛,1/2

ℎ
⋅ n (V − Π

ℎ
V) 𝑑𝑠

= −∫
𝐾

∇ ⋅ (𝑎 (𝑥) ∇𝑈
𝑛,1/2

ℎ
) ⋅ (V − Π

ℎ
V) 𝑑𝑥

+ ∫
𝜕𝐾

𝑎 (𝑥) ∇𝑈
𝑛,1/2

ℎ
⋅ n (V − Π

ℎ
V) 𝑑𝑠

+ ∑

𝑧∈𝑍ℎ(𝐾)

∫
𝐾⋂𝜕𝐾

∗
𝑧

𝑎 (𝑥) ∇𝑈
𝑛,1/2

ℎ
⋅ n (V − Π

ℎ
V) 𝑑𝑠.

(42)
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Since 𝑎(𝑥)∇𝑈𝑛

ℎ
and V are continuous inside each element𝐾 ∈

𝑇
ℎ
, we have

∑

𝑧∈𝑍ℎ(𝐾)

∫
𝐾⋂𝜕𝐾

∗
𝑧

𝑎 (𝑥) ∇𝑈
𝑛

ℎ
⋅ nV 𝑑𝑠 = 0,

∑

𝑧∈𝑍ℎ(𝐾)

∫
𝐾⋂𝜕𝐾

∗
𝑧

𝑎 (𝑥) ∇𝑈
𝑛,1/2

ℎ
⋅ nV 𝑑𝑠 = 0.

(43)

Thus,

I
4
= ∑

𝐾∈𝑇ℎ

(∇ ⋅ (𝑎 (𝑥) ∇𝑈
𝑛,1/2

ℎ
) , V − Π

ℎ
V)

0,𝐾

− ∑

𝐸∈Eℎ

([𝑎 (𝑥) ∇𝑈
𝑛,1/2

ℎ
]
𝐸
, V − Π

ℎ
V)

0,𝐸
.

(44)

Then we get

I
2
+I

4
= ∑

𝐾∈𝑇ℎ

(𝑓
𝑛
− 𝜕

𝑡
𝜕𝑈

𝑛

ℎ
+ ∇ ⋅ (𝑎 (𝑥) ∇𝑈

𝑛,1/2

ℎ
) , V

− Π
ℎ
V)

0,𝐾
− ∑

𝐸∈Eℎ

([𝑎 (𝑥) ∇𝑈
𝑛,1/2

ℎ
]
𝐸
, V − Π

ℎ
V)

0,𝐸

= ∑

𝐾∈𝑇ℎ

(R
𝑛

𝐾
, V − Π

ℎ
V)

0,𝐾
+ ∑

𝐸∈Eℎ

(R
𝑛

𝐸
, V − Π

ℎ
V)

0,𝐸
.

(45)

By (8) and Cauchy-Schwarz inequality, we obtain



∑

𝐾∈𝑇ℎ

(R
𝑛

𝐾
, V − Π

ℎ
V)

0,𝐾



≤ 𝐶 ∑

𝐾∈𝑇ℎ

{ℎ
𝐾

R
𝑛

𝐾

0,𝐾 ‖V‖1,𝐾}

≤ 𝐶( ∑

𝐾∈𝑇ℎ

ℎ
2

𝐾

R
𝑛

𝐾



2

0,𝐾
)

1/2

( ∑

𝐾∈𝑇ℎ

‖V‖2
1,𝐾

)

1/2

= 𝐶( ∑

𝐾∈𝑇ℎ

ℎ
2

𝐾

R
𝑛

𝐾



2

0,𝐾
)

1/2

Iℎ
𝜑
1,Ω

≤ 𝐶( ∑

𝐾∈𝑇ℎ

ℎ
2

𝐾

R
𝑛

𝐾



2

0,𝐾
)

1/2

𝜑
1

.



∑

𝐸∈Eℎ

(R
𝑛

𝐸
, V − Π

ℎ
V)

0,𝐸



≤ ∑

𝐸∈Eℎ

R
𝑛

𝐸

0,𝐸

V − Π
ℎ
V0,𝐸

≤ ( ∑

𝐸∈Eℎ

ℎ
𝐸

R
𝑛

𝐸



2

0,𝐸
)

1/2

⋅ ( ∑

𝐸∈Eℎ

ℎ
−1

𝐸

V − Π
ℎ
V

2

0,𝐸
)

1/2

.

(46)

Since Π
ℎ
V is a piecewise constant function, by Lemma 3 and

(8), we get

∑

𝐸∈Eℎ

ℎ
−1

𝐸

V − Π
ℎ
V

2

0,𝐸

≤ 𝐶 ∑

𝐸∈Eℎ

(ℎ
−2

𝐸

V − Π
ℎ
V

2

0,𝐾
+ |V|2

1,𝐾
) ≤ 𝐶 ‖V‖2

1

≤ 𝐶
𝜑



2

1
.

(47)

Substituting the estimate of I
1
–I

4
into (38) and by the

definition of 𝜂𝑛
𝑠
, we have

(𝐿
𝑛
, 𝜑) ≤ 𝐶𝜂

𝑛

𝑠

𝜑
1

; (48)

hence
(𝐿

𝑛
, 𝜑)

𝜑
1

≤ 𝐶𝜂
𝑛

𝑠
,

𝐿
𝑛−1

≤ 𝐶𝜂
𝑛

𝑠
.

(49)

Substituting the estimation of ‖𝐿𝑛‖
−1

into (37), we get

𝑍 (𝑡
𝑛
) − 𝑍 (𝑡

𝑛−1
)

≤ 𝐶(𝜏
𝑛
𝜂
𝑛

𝑡
+ 𝜏

𝑛
𝜂
𝑛

𝑠
+ ∫

𝑡𝑛

𝑡𝑛−1

𝑓 (⋅, 𝑡) − 𝑓
𝑛 𝑑𝑡) .

(50)

Summing (50) from 𝑛 = 2 to 𝑛 = 𝑚, we obtain

𝑍 (𝑡
𝑚
) − 𝑍 (𝑡

1
) ≤ 𝐶

𝑚

∑

𝑛=2

(𝜏
𝑛
(𝜂

𝑛

𝑡
+ 𝜂

𝑛

𝑠
))

+ 𝐶

𝑚

∑

𝑛=2

∫

𝑡𝑛

𝑡𝑛−1

𝑓 (⋅, 𝑡) − 𝑓
𝑛 𝑑𝑡.

(51)

For 𝑛 = 1, we have

𝑍 (𝑡
1
) − 𝑍 (𝑡

0
)

≤ 𝐶∫

𝑡1

0

𝑓 (⋅, 𝑡) + ∇ ⋅ (𝑎 (𝑥) ∇ (𝑢
0
+ 𝑡V

0
))
 𝑑𝑡.

(52)

Noting that 𝑍(𝑡
0
) = 𝑍(0) = 0, then

𝑍 (𝑡
𝑚
)

≤ 𝐶

𝑚

∑

𝑛=2

(𝜏
𝑛
(𝜂

𝑛

𝑡
+ 𝜂

𝑛

𝑠
)) + 𝐶

𝑚

∑

𝑛=2

∫

𝑡𝑛

𝑡𝑛−1

𝑓 (⋅, 𝑡) − 𝑓
𝑛 𝑑𝑡

+ 𝐶∫

𝑡1

0

𝑓 (⋅, 𝑡) + ∇ ⋅ (𝑎 (𝑥) ∇ (𝑢
0
+ 𝑡V

0
))
 𝑑𝑡.

(53)

By the fact that (1/√2)(𝑎 + 𝑏) ≤ √𝑎2 + 𝑏2 ≤ 𝑎 + 𝑏 (𝑎, 𝑏 > 0),
we have

𝑢
𝑚
− 𝑈

𝑚

ℎ

 +
V
𝑚
− 𝑉

𝑚

ℎ

−1

≤ 𝐶

𝑚

∑

𝑛=2

(𝜏
𝑛
(𝜂

𝑛

𝑡
+ 𝜂

𝑛

𝑠
)) + 𝐶

𝑚

∑

𝑛=2

∫

𝑡𝑛

𝑡𝑛−1

𝑓 (⋅, 𝑡) − 𝑓
𝑛 𝑑𝑡

+ 𝐶∫

𝑡1

0

𝑓 (⋅, 𝑡) + ∇ ⋅ (𝑎 (𝑥) ∇ (𝑢
0
+ 𝑡V

0
))
 𝑑𝑡.

(54)
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In view of the definition of the operatorT, we have

T
𝜕V
𝜕𝑡

+ 𝑢 = T𝑓 (⋅, 𝑡) , (55)

T
𝜕𝑉

𝜏

𝜕𝑡
+ 𝑈

𝑚,1/2

ℎ
= T𝑓 (⋅, 𝑡

𝑚
) , 𝑡 ∈ [𝑡

𝑚−1
, 𝑡
𝑚
] . (56)

Subtracting (56) from (55), we get

T
𝜕 (V − 𝑉

𝜏
)

𝜕𝑡

+ (𝑢 − 𝑈
𝑚,1/2

ℎ
) = T (𝑓 (⋅, 𝑡) − 𝑓 (⋅, 𝑡

𝑚
)) ,

(57)

T
𝜕 (V − 𝑉

𝜏
)

𝜕𝑡
+T (𝑓 (⋅, 𝑡

𝑚
) − 𝑓 (⋅, 𝑡))

+ (𝑈
𝜏
− 𝑈

𝑚,1/2

ℎ
) = (𝑈

𝜏
− 𝑢) .

(58)

Integrating (58) from 𝑡
𝑚−1

to 𝑡
𝑚
, we obtain

T (V𝑚 − 𝑉
𝑚

ℎ
) −T (V𝑚−1 − 𝑉

𝑚−1

ℎ
)

+ ∫

𝑡𝑚

𝑡𝑚−1

T (𝑓 (⋅, 𝑡
𝑚
) − 𝑓 (⋅, 𝑡)) 𝑑𝑡

+ ∫

𝑡𝑚

𝑡𝑚−1

(𝑈
𝜏
− 𝑈

𝑚,1/2

ℎ
) 𝑑𝑡 = ∫

𝑡𝑚

𝑡𝑚−1

(𝑈
𝜏
− 𝑢) 𝑑𝑡.

(59)

Summing (59) from 𝑘 = 1 to 𝑘 = 𝑚, we obtain

𝑘=𝑚

∑

𝑘=1

∫

𝑡𝑘

𝑡𝑘−1

(𝑈
𝜏
− 𝑢) 𝑑𝑡

= T (V𝑚 − 𝑉
𝑚

ℎ
)

+

𝑘=𝑚

∑

𝑘=1

∫

𝑡𝑘

𝑡𝑘−1

T (𝑓 (⋅, 𝑡
𝑘
) − 𝑓 (⋅, 𝑡)) 𝑑𝑡

+

𝑘=𝑚

∑

𝑘=1

∫

𝑡𝑘

𝑡𝑘−1

(𝑈
𝜏
− 𝑈

𝑘,1/2

ℎ
) 𝑑𝑡.

(60)

Thus, we have



𝑘=𝑚

∑

𝑘=1

∫

𝑡𝑘

𝑡𝑘−1

(𝑈
𝜏
− 𝑢) 𝑑𝑡

1

≤
T (V𝑚 − 𝑉

𝑚

ℎ
)
1

+



𝑘=𝑚

∑

𝑘=1

∫

𝑡𝑘

𝑡𝑘−1

T (𝑓 (⋅, 𝑡
𝑘
) − 𝑓 (⋅, 𝑡)) 𝑑𝑡

1

+



𝑘=𝑚

∑

𝑘=1

∫

𝑡𝑘

𝑡𝑘−1

(𝑈
𝜏
− 𝑈

𝑘,1/2

ℎ
) 𝑑𝑡

1

≤ 𝐶
V

𝑚
− 𝑉

𝑚

ℎ

−1

+ 𝐶

𝑘=𝑚

∑

𝑘=1

∫

𝑡𝑘

𝑡𝑘−1


𝑓 (⋅, 𝑡

𝑘
) − 𝑓 (⋅, 𝑡)

−1
𝑑𝑡

+

𝑘=𝑚

∑

𝑘=1

∫

𝑡𝑘

𝑡𝑘−1

(

𝑈
𝜏
− 𝑈

𝑘

ℎ

1
+

𝑈
𝑘

ℎ
− 𝑈

𝑘,1/2

ℎ

1
) 𝑑𝑡.

(61)

Then,


𝑘=𝑚

∑

𝑘=1

∫

𝑡𝑘

𝑡𝑘−1

(𝑈
𝜏
− 𝑢) 𝑑𝑡

1

≤ 𝐶
V

𝑚
− 𝑉

𝑚

ℎ

−1

+ 𝐶

𝑘=𝑚

∑

𝑘=1

∫

𝑡𝑘

𝑡𝑘−1


𝑓 (⋅, 𝑡

𝑘
) − 𝑓 (⋅, 𝑡)


𝑑𝑡

+ 𝐶

𝑘=𝑚

∑

𝑘=1

𝜏
𝑘


𝑈
𝑘

ℎ
− 𝑈

𝑘−1

ℎ

1
.

(62)

By (62) and (54), we have

𝑢
𝑚
− 𝑈

𝑚

ℎ

 +



𝑘=𝑚

∑

𝑘=1

∫

𝑡𝑘

𝑡𝑘−1

(𝑈
𝜏
− 𝑢) 𝑑𝑡

1

≤ 𝐶

𝑚

∑

𝑛=2

(𝜏
𝑛
(𝜂

𝑛

𝑡
+ 𝜂

𝑛

𝑠
)) + 𝐶

𝑚

∑

𝑛=2

∫

𝑡𝑛

𝑡𝑛−1

𝑓 (⋅, 𝑡) − 𝑓
𝑛 𝑑𝑡

+ 𝐶∫

𝑡1

0

𝑓 (⋅, 𝑡) + ∇ ⋅ (𝑎 (𝑥) ∇ (𝑢
0
+ 𝑡V

0
))
 𝑑𝑡.

(63)

3.2. Lower Bound. In order to derive the local lower bounds
on the error, we will introduce some properties of the bubble
functions. For each triangle𝐾 ∈ 𝑇

ℎ
, denote by 𝜆

𝐾,1
, 𝜆

𝐾,2
, 𝜆

𝐾,3

the barycentric coordinates. Define the element-bubble func-
tion 𝜓

𝐾
by

𝜓
𝐾
= 27𝜆

𝐾,1
𝜆
𝐾,2

𝜆
𝐾,3

, in 𝐾;

𝜓
𝐾
= 0, in Ω \ 𝐾.

(64)

Assume that 𝐾 and 𝐾
 share the edge 𝐸 ∈ E

ℎ
. Let the

barycentric coordinates with respect to the end points of 𝐸
be 𝜆

𝐸,1
and 𝜆

𝐸,2
. Define the edge-bubble function 𝜓

𝐸
by

𝜓
𝐸
= 4𝜆

𝐸,1
𝜆
𝐸,2

, in 𝜔
𝐸
= 𝐾 ∪ 𝐾


;

𝜓
𝐸
= 0, in Ω \ 𝜔

𝐸
.

(65)

For properties of the bubble functions, we have the following
lemma [19].
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Lemma 5. For each of the elements 𝐾 ∈ 𝑇
ℎ
and 𝐸 ∈ E

ℎ
,

functions 𝜓
𝐾
and 𝜓

𝐸
have the following properties:

supp𝜓
𝐾
⊂ 𝐾,

max
𝑥∈𝐾

𝜓
𝐾
= 1,

∫
𝐾

𝜓
𝐾
𝑑𝑥 =

9

20
|𝐾| ∼ ℎ

2

𝐾
,

∇𝜓𝐾

0,𝐾
≤ 𝐶ℎ

−1

𝐾

𝜓𝐾

0,𝐾
.

𝜓
𝐾
∈ [0, 1] ,

supp𝜓
𝐸
⊂ 𝜔

𝐸
,

max
𝑥∈𝜔𝐸

𝜓
𝐸
= 1,

∫
𝐸

𝜓
𝐸
𝑑𝑠 =

2

3
ℎ
𝐸
,

∫
𝜔𝐸

𝜓
𝐸
𝑑𝑥 =

1

3

𝜔𝐸

 ∼ ℎ
2

𝐸
,

∇𝜓𝐸

0,𝜔𝐸
≤ 𝐶ℎ

−1

𝐸

𝜓𝐸

0,𝜔𝐸
,

𝜓
𝐸
∈ [0, 1] .

(66)

We define the average ofR𝑛

𝐾
on𝐾 (R𝑛

𝐾
) and the average ofR𝑛

𝐸

on 𝐸 (R𝑛

𝐸
) by

R𝑛

𝐾
=

1

|𝐾|
∫
𝐾

R
𝑛

𝐾
𝑑𝑥,

R𝑛

𝐸
=

1

ℎ
𝐸

∫
𝐸

R
𝑛

𝐸
𝑑𝑠.

(67)

Then we have the following local lower bounds.

Theorem 6. For any 𝐾 ∈ 𝑇
ℎ
, 𝐸 ∈ E

ℎ
, the following local

posteriori lower bounds on the error 𝑢𝑛 −𝑈
𝑛

ℎ
hold for a positive

constant 𝐶 independent of ℎ
𝐾
and ℎ

𝐸
:

ℎ
𝐾

R
𝑛

𝐾

0,𝐾
≤ 𝐶(

𝑢
𝑛
− 𝑈

𝑛

ℎ

1,𝐾
+ ℎ

𝐾


𝑢
𝑛

𝑡𝑡
− 𝜕

𝑡
𝜕𝑈

𝑛

ℎ

0,𝐾

+

𝑈
𝑛+1

ℎ
− 𝑈

𝑛

ℎ

1,𝐾
+

𝑈
𝑛

ℎ
− 𝑈

𝑛−1

ℎ

1,𝐾

+ 2ℎ
𝐾


R

𝑛

𝐾
−R𝑛

𝐾

0,𝐾
) ,

(68)

ℎ
1/2

𝐸

R
𝑛

𝐸

0,𝐸
≤ 𝐶(

𝑢
𝑛
− 𝑈

𝑛

ℎ

1,𝜔𝐸

+ ℎ
𝐸


𝑢
𝑛

𝑡𝑡
− 𝜕

𝑡
𝜕𝑈

𝑛

ℎ

0,𝜔𝐸
+

𝑈
𝑛+1

ℎ
− 𝑈

𝑛

ℎ

1,𝜔𝐸

+

𝑈
𝑛

ℎ
− 𝑈

𝑛−1

ℎ

1,𝜔𝐸
+ ℎ

𝐸


R

𝑛

𝐾
−R𝑛

𝐾

0,𝜔𝐸

+ ℎ
1/2

𝐸


R

𝑛

𝐸
−R𝑛

𝐸

0,𝐸
) .

(69)

Proof. By triangle inequality, we have
R

𝑛

𝐾

0,𝐾
≤

R𝑛

𝐾

0,𝐾
+

R

𝑛

𝐾
−R𝑛

𝐾

0,𝐾
. (70)

By the properties of 𝜓
𝐾
, the definition of R𝑛

𝐾
, and Green’s

formulation, we have


R𝑛

𝐾



2

0,𝐾
∼ (R𝑛

𝐾
, 𝜓

𝐾
R𝑛

𝐾
)

= (R
𝑛

𝐾
, 𝜓

𝐾
R𝑛

𝐾
) − (R

𝑛

𝐾
−R𝑛

𝐾
, 𝜓

𝐾
R𝑛

𝐾
)

= (𝑓
𝑛
− 𝜕

𝑡
𝜕𝑈

𝑛

ℎ
+ ∇ ⋅ (𝑎 (𝑥) ∇𝑈

𝑛,1/2

ℎ
) , 𝜓

𝐾
R𝑛

𝐾
)

− (R
𝑛

𝐾
−R𝑛

𝐾
, 𝜓

𝐾
R𝑛

𝐾
)

= (𝑓
𝑛
− 𝑢

𝑛

𝑡𝑡
, 𝜓

𝐾
R𝑛

𝐾
) + (𝑢

𝑛

𝑡𝑡
− 𝜕

𝑡
𝜕𝑈

𝑛

ℎ
, 𝜓

𝐾
R𝑛

𝐾
)

+ (∇ ⋅ (𝑎 (𝑥) ∇𝑈
𝑛,1/2

ℎ
) , 𝜓

𝐾
R𝑛

𝐾
)

− (R
𝑛

𝐾
−R𝑛

𝐾
, 𝜓

𝐾
R𝑛

𝐾
)

= 𝑎 (𝑢
𝑛
, 𝜓

𝐾
R𝑛

𝐾
)

− ∫
𝐾

𝑎 (𝑥) ∇𝑈
𝑛,1/2

ℎ
⋅ ∇ (𝜓

𝐾
R𝑛

𝐾
) 𝑑𝑥

+ (𝑢
𝑛

𝑡𝑡
− 𝜕

𝑡
𝜕𝑈

𝑛

ℎ
, 𝜓

𝐾
R𝑛

𝐾
) − (R

𝑛

𝐾
−R𝑛

𝐾
, 𝜓

𝐾
R𝑛

𝐾
)

= ∫
𝐾

𝑎 (𝑥) ∇ (𝑢
𝑛
− 𝑈

𝑛,1/2

ℎ
) ⋅ ∇ (𝜓

𝐾
R𝑛

𝐾
) 𝑑𝑥

+ (𝑢
𝑛

𝑡𝑡
− 𝜕

𝑡
𝜕𝑈

𝑛

ℎ
, 𝜓

𝐾
R𝑛

𝐾
) − (R

𝑛

𝐾
−R𝑛

𝐾
, 𝜓

𝐾
R𝑛

𝐾
)

≡ P
1
+P

2
+P

3
.

(71)

For P
1
, with Cauchy-Schwarz inequality and Lemma 5, we

get

P1

 ≤ 𝐶

𝑢
𝑛
− 𝑈

𝑛,1/2

ℎ

1,𝐾


∇ (𝜓

𝐾
R𝑛

𝐾
)
0,𝐾

= 𝐶

𝑢
𝑛
− 𝑈

𝑛,1/2

ℎ

1,𝐾

∇𝜓𝐾

0,𝐾


R𝑛

𝐾



≤ 𝐶ℎ
−1

𝐾


𝑢
𝑛
− 𝑈

𝑛,1/2

ℎ

1,𝐾

𝜓𝐾

0,𝐾


R𝑛

𝐾



= 𝐶ℎ
−1

𝐾


𝑢
𝑛
− 𝑈

𝑛,1/2

ℎ

1,𝐾


𝜓
𝐾
R𝑛

𝐾

0,𝐾

≤ 𝐶ℎ
−1

𝐾


𝑢
𝑛
− 𝑈

𝑛,1/2

ℎ

1,𝐾


R𝑛

𝐾

0,𝐾
.

(72)

By Cauchy-Schwarz inequality and Lemma 5, we obtain

P2

 ≤

𝑢
𝑛

𝑡𝑡
− 𝜕

𝑡
𝜕𝑈

𝑛

ℎ

0,𝐾


𝜓
𝐾
R𝑛

𝐾

0,𝐾

≤ 𝐶

𝑢
𝑛

𝑡𝑡
− 𝜕

𝑡
𝜕𝑈

𝑛

ℎ

0,𝐾


R𝑛

𝐾

0,𝐾
,

P3

 ≤

R

𝑛

𝐾
−R𝑛

𝐾

0,𝐾


𝜓
𝐾
R𝑛

𝐾

0,𝐾

≤

R

𝑛

𝐾
−R𝑛

𝐾

0,𝐾


R𝑛

𝐾

0,𝐾
.

(73)
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Combining (71)–(73), we obtain

ℎ
𝐾

R
𝑛

𝐾

0,𝐾
≤ 𝐶(


𝑢
𝑛
− 𝑈

𝑛,1/2

ℎ

1,𝐾

+ ℎ
𝐾


𝑢
𝑛

𝑡𝑡
− 𝜕

𝑡
𝜕𝑈

𝑛

ℎ

0,𝐾
+ 2ℎ

𝐾


R

𝑛

𝐾
−R𝑛

𝐾

0,𝐾
)

≤ 𝐶 (
𝑢

𝑛
− 𝑈

𝑛

ℎ

1,𝐾
+ ℎ

𝐾


𝑢
𝑛

𝑡𝑡
− 𝜕

𝑡
𝜕𝑈

𝑛

ℎ

0,𝐾

+

𝑈
𝑛+1

ℎ
− 𝑈

𝑛

ℎ

1,𝐾
+

𝑈
𝑛

ℎ
− 𝑈

𝑛−1

ℎ

1,𝐾

+ 2ℎ
𝐾


R

𝑛

𝐾
−R𝑛

𝐾

0,𝐾
) .

(74)

For (69), by triangle inequality, similarly we have

ℎ
1/2

𝐸

R
𝑛

𝐸

0,𝐸
≤ ℎ

1/2

𝐸


R𝑛

𝐸

0,𝐸
+ ℎ

1/2

𝐸


R

𝑛

𝐸
−R𝑛

𝐸

0,𝐸
. (75)

By Lemma 5 and Green’s formulation, we get


R𝑛

𝐸



2

0,𝐸
∼ (R𝑛

𝐸
, 𝜓

𝐸
R𝑛

𝐸
)
0,𝐸

= (R
𝑛

𝐸
, 𝜓

𝐸
R𝑛

𝐸
)
0,𝐸

+ (R𝑛

𝐸
−R

𝑛

𝐸
, 𝜓

𝐸
R𝑛

𝐸
)
0,𝐸

= (𝑎 (𝑥) ∇𝑈
𝑛,1/2

ℎ
, ∇ (𝜓

𝐸
R𝑛

𝐸
))

0,𝜔𝐸

+ (∇ ⋅ (𝑎 (𝑥) ∇𝑈
𝑛,1/2

ℎ
) , 𝜓

𝐸
R𝑛

𝐸
)
0,𝜔𝐸

+ (R𝑛

𝐸
−R

𝑛

𝐸
, 𝜓

𝐸
R𝑛

𝐸
)
0,𝐸

= ∫
𝜔𝐸

𝑎 (𝑥) ∇𝑈
𝑛,1/2

ℎ
⋅ ∇ (𝜓

𝐸
R𝑛

𝐸
) 𝑑𝑥

− ∫
𝜔𝐸

𝑎 (𝑥) ∇𝑢
𝑛
⋅ ∇ (𝜓

𝐸
R𝑛

𝐸
) 𝑑𝑥

+ ∫
𝜔𝐸

𝑎 (𝑥) ∇𝑢
𝑛
⋅ ∇ (𝜓

𝐸
R𝑛

𝐸
) 𝑑𝑥

+ (∇ ⋅ (𝑎 (𝑥) ∇𝑈
𝑛,1/2

ℎ
) , 𝜓

𝐸
R𝑛

𝐸
)
0,𝜔𝐸

+ (R𝑛

𝐸
−R

𝑛

𝐸
, 𝜓

𝐸
R𝑛

𝐸
)
0,𝐸

= ∫
𝜔𝐸

𝑎 (𝑥) ∇ (𝑈
𝑛,1/2

ℎ
− 𝑢

𝑛
) ⋅ ∇ (𝜓

𝐸
R𝑛

𝐸
) 𝑑𝑥

+ (∇ ⋅ (𝑎 (𝑥) ∇𝑈
𝑛,1/2

ℎ
) , 𝜓

𝐸
R𝑛

𝐸
)
0,𝜔𝐸

+ ∫
𝜔𝐸

(𝑓
𝑛
− 𝜕

𝑡
𝜕𝑈

𝑛

ℎ
) (𝜓

𝐸
R𝑛

𝐸
) 𝑑𝑥

+ ∫
𝜔𝐸

(𝜕
𝑡
𝜕𝑈

𝑛

ℎ
− 𝑢

𝑛

𝑡𝑡
) (𝜓

𝐸
R𝑛

𝐸
) 𝑑𝑥

+ (R𝑛

𝐸
−R

𝑛

𝐸
, 𝜓

𝐸
R𝑛

𝐸
)
0,𝐸

= ∫
𝜔𝐸

𝑎 (𝑥) ∇ (𝑈
𝑛,1/2

ℎ
− 𝑢

𝑛
) ⋅ ∇ (𝜓

𝐸
R𝑛

𝐸
) 𝑑𝑥

+ (R
𝑛

𝐾
, 𝜓

𝐸
R𝑛

𝐸
)
0,𝜔𝐸

+ (𝜕
𝑡
𝜕𝑈

𝑛

ℎ
− 𝑢

𝑛

𝑡𝑡
, 𝜓

𝐸
R𝑛

𝐸
)

+ (R𝑛

𝐸
−R

𝑛

𝐸
, 𝜓

𝐸
R𝑛

𝐸
)
0,𝐸

≡ O
1
+ O

2
+ O

3
+ O

4
.

(76)

Now we will estimate the right-hand terms of (76). By
Lemma 5 and the Cauchy-Schwarz inequality, we obtain

O1

 ≤ 𝐶

𝑈
𝑛,1/2

ℎ
− 𝑢

𝑛1,𝜔𝐸


∇ (𝜓

𝐸
R𝑛

𝐸
)
0,𝜔𝐸

= 𝐶

𝑈
𝑛,1/2

ℎ
− 𝑢

𝑛1,𝜔𝐸

∇𝜓𝐸

0,𝜔𝐸


R𝑛

𝐸



≤ 𝐶ℎ
−1

𝐸


𝑈
𝑛,1/2

ℎ
− 𝑢

𝑛1,𝜔𝐸

𝜓𝐸

0,𝜔𝐸


R𝑛

𝐸



≤ 𝐶ℎ
−1/2

𝐸


𝑈
𝑛,1/2

ℎ
− 𝑢

𝑛1,𝜔𝐸


R𝑛

𝐸

0,𝐸
,

O2

 ≤
R

𝑛

𝐾

0,𝜔𝐸


𝜓
𝐸
R𝑛

𝐸

0,𝜔𝐸

=
R

𝑛

𝐾

0,𝜔𝐸

𝜓𝐸

0,𝜔𝐸


R𝑛

𝐸


≤ 𝐶ℎ

𝐸

R
𝑛

𝐾

0,𝜔𝐸


R𝑛

𝐸



≤ 𝐶ℎ
1/2

𝐸

R
𝑛

𝐾

0,𝜔𝐸


R𝑛

𝐸

0,𝐸
,

O3

 ≤

𝜕
𝑡
𝜕𝑈

𝑛

ℎ
− 𝑢

𝑛

𝑡𝑡

0,𝜔𝐸


𝜓
𝐸
R𝑛

𝐸

0,𝜔𝐸

≤ 𝐶ℎ
1/2

𝐸


𝑢
𝑛

𝑡𝑡
− 𝜕

𝑡
𝜕𝑈

𝑛

ℎ

0,𝜔𝐸


R𝑛

𝐸

0,𝐸
,

O4

 ≤

R𝑛

𝐸
−R

𝑛

𝐸

0,𝐸


𝜓
𝐸
R𝑛

𝐸

0,𝐸

≤

R𝑛

𝐸
−R

𝑛

𝐸

0,𝐸


R𝑛

𝐸

0,𝐸
.

(77)

Combining (77) with (76), we get


R𝑛

𝐸

0,𝐸
≤ 𝐶ℎ

−1/2

𝐸


𝑈
𝑛,1/2

ℎ
− 𝑢

𝑛1,𝜔𝐸
+ 𝐶ℎ

1/2

𝐸

R
𝑛

𝐾

0,𝜔𝐸

+ 𝐶ℎ
1/2

𝐸


𝑢
𝑛

𝑡𝑡
− 𝜕

𝑡
𝜕𝑈

𝑛

ℎ

0,𝜔𝐸

+

R𝑛

𝐸
−R

𝑛

𝐸

0,𝐸
.

(78)

With (74), we obtain

ℎ
1/2

𝐸

R
𝑛

𝐸

0,𝐸
≤ 𝐶


𝑢
𝑛
− 𝑈

𝑛,1/2

ℎ

1,𝜔𝐸
+ 𝐶ℎ

𝐸


𝑢
𝑛

𝑡𝑡

− 𝜕
𝑡
𝜕𝑈

𝑛

ℎ

0,𝜔𝐸
+ 𝐶ℎ

𝐸


R

𝑛

𝐾
−R𝑛

𝐾

0,𝜔𝐸
+ ℎ

1/2

𝐸


R

𝑛

𝐸

−R𝑛

𝐸

0,𝐸
≤ 𝐶(


𝑢
𝑛
− 𝑈

𝑛

ℎ
+ 𝑈

𝑛

ℎ
− 𝑈

𝑛,1/2

ℎ

1,𝜔𝐸

+ ℎ
𝐸


𝑢
𝑛

𝑡𝑡
− 𝜕

𝑡
𝜕𝑈

𝑛

ℎ

0,𝜔𝐸
+ ℎ

𝐸


R

𝑛

𝐾
−R𝑛

𝐾

0,𝜔𝐸
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Table 1: Error estimates for Case 1.

ℎ

𝑢
𝑁
− 𝑈

𝑁

ℎ

0
Rate 

𝑢
𝑁
− 𝑈

𝑁

ℎ

1
Rate O𝑁 N𝑁 R

1/2
2

1.3839𝑒 − 02 — 1.6047𝑒 − 01 — 0.4589 21.3382 46.4952
1/2

3
4.0831𝑒 − 03 1.7610 8.2097𝑒 − 02 0.9669 0.4417 21.1967 47.9920

1/2
4

9.3149𝑒 − 04 2.1321 4.1279𝑒 − 02 0.9919 0.4307 21.0618 48.9005
1/2

5
2.0574𝑒 − 04 2.1787 2.0670𝑒 − 02 0.9979 0.4247 20.9680 49.3734

1/2
6

4.6977𝑒 − 05 2.1308 1.0338𝑒 − 02 0.9996 0.4215 20.9138 49.6128

Table 2: Error estimates for Case 2.

ℎ

𝑢
𝑁
− 𝑈

𝑁

ℎ

0
Rate 

𝑢
𝑁
− 𝑈

𝑁

ℎ

1
Rate O𝑁 N𝑁 R

1/2
2

1.2513𝑒 − 01 — 2.3532 — 6.6633 66.7292 10.0144
1/2

3
3.2994𝑒 − 02 1.9232 1.1822 0.9931 6.3537 64.6603 10.1768

1/2
4

8.1195𝑒 − 03 2.0227 5.9245𝑒 − 01 0.9967 6.1806 63.5799 10.2870
1/2

5
1.8443𝑒 − 03 2.1383 2.9641𝑒 − 01 0.9991 6.0904 63.0179 10.3471

1/2
6

4.0436𝑒 − 04 2.1894 1.4822𝑒 − 01 0.9999 6.0444 62.7297 10.3782

+ ℎ
1/2

𝐸


R

𝑛

𝐸
−R𝑛

𝐸

0,𝐸
) ≤ 𝐶 (

𝑢
𝑛
− 𝑈

𝑛

ℎ

1,𝜔𝐸

+ ℎ
𝐸


𝑢
𝑛

𝑡𝑡
− 𝜕

𝑡
𝜕𝑈

𝑛

ℎ

0,𝜔𝐸
+

𝑈
𝑛+1

ℎ
− 𝑈

𝑛

ℎ

1,𝜔𝐸

+

𝑈
𝑛

ℎ
− 𝑈

𝑛−1

ℎ

1,𝜔𝐸
+ ℎ

𝐸


R

𝑛

𝐾
−R𝑛

𝐾

0,𝜔𝐸

+ ℎ
1/2

𝐸


R

𝑛

𝐸
−R𝑛

𝐸

0,𝐸
) .

(79)

4. Numerical Examples

Now we present some numerical examples to show the
performance of the proposed error estimator. We consider
problem (1) in Ω × [0, 𝑇] = [0, 1; 0, 1] × [0, 1]. We discretize
Ω into 𝑁 number of rectangles in each direction and then
each rectangle is divided into two triangles, resulting in a
mesh with size ℎ = √2/𝑁. Discretize time by taking time
step 𝜏

𝑛
= Δ𝑡 = ℎ. We consider the following two cases.

Case 1. Consider

𝑎 (𝑥, 𝑦) = 1 + sin(
𝜋

4
𝑥) + sin(

𝜋

4
𝑦) + 𝑒

2𝑥
+ 𝑒

2𝑦
,

𝑢 (𝑥, 𝑦, 𝑡) = 𝑥 (1 − 𝑥) 𝑦 (1 − 𝑦) 𝑒
𝑡
.

(80)

Case 2. Consider

𝑎 (𝑥, 𝑦) = 𝑒
(𝑥+𝑦)/2

,

𝑢 (𝑥, 𝑦, 𝑡) = sin (𝜋𝑥) sin (𝜋𝑦) 𝑒
𝑡
.

(81)

Define

O
𝑚

=

𝑚

∑

𝑛=2

𝑢
𝑛
− 𝑈

𝑛

ℎ

1
,

N
𝑚

=

𝑚

∑

𝑛=2

(𝜂
𝑛

𝑡
+ 𝜂

𝑛

𝑠
) ,

R =
N𝑚

O𝑚
.

(82)

We present the results of the above cases when 𝑚 = 𝑁 at
Tables 1 and 2.

FromTables 1 and 2 we can see that the global a posteriori
error estimator can predict the exact global error. The error
estimator is reliable as evidenced by the ratio R listed on
the tables. This list shows that the ratio R is converging to a
constant when the mesh size is decreased by half. This shows
that the proposed global a posteriori error estimator is robust
for predicting the error in the finite volume element method.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work is supported by National Natural Science Foun-
dation of China (nos. 11301456, 11426193, and 11571297)
and Shandong Province Natural Science Foundation (nos.
ZR2014AP003 and ZR2014AM003).

References

[1] R. Li, Z. Chen, and W. Wu, Generalized Difference Methods
for Differential Equations Numerical Analysis of Finite Volume
Methods, Marcel Dekker, New York, NY, USA, 2000.



Mathematical Problems in Engineering 11

[2] S. Kumar, N. Nataraj, and A. K. Pani, “Finite volume element
method for second order hyperbolic equations,” International
Journal ofNumerical Analysis andModeling, vol. 5, no. 1, pp. 132–
151, 2008.
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