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Copyright © 2015 Karen López Buriticá et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

This paper analyzes the dynamics of a system that models the formation of biofilms in a continuous stirred-tank reactor (CSTR)
when it is utilized for wastewater treatment.The growth rate of the microorganisms is modeled using two different kinetics, Monod
and Haldane kinetics, with the goal of studying the influence of each in the system. The equilibrium points are identified through
a stability analysis, and the bifurcations found are characterized.

1. Introduction

Water is the most important natural resource without which
life could not exist. It is the most abundant liquid on Earth,
covering 71% of the Earth’s surface, of which only 3% is
fresh water. Water use results in a decrease in water quality,
and serious environmental deterioration results from directly
returningwater to the environment; therefore, in recent years,
the construction of increasingly more efficient treatment
plants has gained vital importance. Consequently, the role of
biological processing in wastewater treatment has increased
considerably where biofilm reactors are one of the most
interesting [1]. Biofilms are thin layers of microorganisms
that adhere to a solid surface; they can develop on almost
any type of surface exposed to an aqueous medium, and
they are utilized in wastewater treatment to eliminate and
oxidize organic and inorganic components. The biomass
concentration in a biofilm can be ten times larger than its
concentration in a liquid culture [2].This reduces the volume
of the equipment for a constant rate of elimination per unit
volume.

A theoretical analysis of the formation of biofilms was
performed in [2], and in [3, 4] characterization and analysis
of biofilm use in wastewater treatment were conducted.
Experimental results on a pilot scale have demonstrated the

efficiency of biofilm reactors for treating wastewater. For
example, (1) that contained molasses as a source of carbon
in different conditions of the influent [1]; (2) with a vertically
moving biofilm reactor (VMBR) followed by a stratified sand
filter [5]; and (3) in combination with treatment by activated
sludge [6].

The implementation of a pilot plant to study these
procedures can be costly, which makes mathematical models
and computer simulations essential to describe, predict, and
control the complex interactions present in the reactor [7].
For several years, researchers have focused on developing
mathematical methods that more realistically simulate the
behavior of a biofilm reactor. For example, in [8] a biofilm
reactor model was proposed based on physiological aspects.
By time, the models began to involve more variables [9–11].
“However, these often turned out to be unsatisfactory due to
certain intrinsic deficiencies. For example, in [8] the model
only took account of the accumulation of active biomass
and inactive biomass of biofilms and in [9–11] the model
was mostly used to study the morphology and structure of
biofilms, so mechanisms and kinetics processes of biofilm
formation have not yet been well understood” [12].

In [12] amodel is proposed “which attempts to summarize
the factors influencing biofilm formation and eliminating the
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deficiency of existing models and to study the kinetic mech-
anisms from a new perspective.” This model describes the
formation of microbial populations in an aqueous medium
inside a reactor and the mechanism under which bacteria
can be suspended in the water or colonize the surface.
The model in [12] considers extremely thin biofilms so it
can be considered that all the microorganisms receive the
substrate at the same time, therefore the model incorporates
this condition by ignoring diffusion reactions. There are
many applications where thin biofilms are desirable and
detachment procedure is considered to keep such a condition
[13–15].

In this paper, the model in [12] is also considered. How-
ever, our bifurcational and dynamical analysis included not
only the Monod kinetics but also the Haldane kinetics. Some
bifurcations are found, including a transcritical bifurcation
that does not observe the conditions in Sotomayor theorem.

In [16] themodel proposed in [12] is reformulated to study
the behavior of the suspended microorganisms.

2. Materials and Methods

2.1. Mathematical Model. The continuous stirred-tank reac-
tor described in [12] was chosen as the model reactor.
The system consists of three ordinary nonlinear differential
equations andmodels the formation of heterotrophic aerobic
biofilms inside the reactor, taking into account both the
microorganisms adhered to the biofilms and themicroorgan-
isms that are suspended. In addition to studying the influence
of the various parameters in biofilm formation, in [12] the
system is established and modeled using Monod kinetics,
the equilibrium corresponding to the washing condition. In
the present work, the system is also analyzed as modeled
by Haldane kinetics and more equilibrium points are found
and their stability is studied, in addition to characterizing the
bifurcations that they represent. As bifurcation parameter of
the system, the dilution coefficient 𝐷 ∈ [0, 1] was chosen,
due to this parameter allows to control the residence time of
wastewater in the reactor.

The following assumptions are made with respect to the
dynamics of the formation of biofilms.The three-dimensional
structure of the biofilms is ignored because the biofilms are
considered to be infinitely thin. There are a finite number of
colonization sites available on the support surface, as well as
maximum possible surface density of adhered microorgan-
isms.The adhered cells are separated outside the fluid at a rate
proportional to its density and the daughter cells of adhered
microorganisms compete for space on the support surface—
a fraction 𝐺 of the daughter cells finds adhesion sites and a
fraction 1 − 𝐺 does not. The function 𝐺 decreases with the
number of daughter cells (as the number of daughter cells
increases, the number of available sites to occupy decreases),
where 𝐺 = (1 − 𝑊)/(1.1 − 𝑊), which is a function of
probability [12].

The reactor dynamics are described by the following
equations:

𝑑𝑆

𝑑𝑡
= 𝐷 (𝑆0 − 𝑆) − 𝛾

−1
𝜇 (𝑆) [𝑋

𝑢

+𝑋
𝑤

] ,

𝑑𝑋
𝑢

𝑑𝑡
= 𝑋
𝑢

[𝜇 (𝑆) −𝐷− 𝑘] + 𝛽𝑋
𝑤

+𝑋
𝑤

𝜇 (𝑆) [1−𝐺 (𝑊)] − 𝛼𝑋
𝑢

[1−𝑊] ,

𝑑𝑋
𝑤

𝑑𝑡
= 𝑋
𝑤

[𝜇 (𝑆) 𝐺 (𝑊)−𝛽− 𝑘] + 𝛼𝑋
𝑢

[1−𝑊] .

(1)

The following parameters are used for the numerical simula-
tion:

𝛾 = 0.5,

𝑘 = 0.01,

𝑋
𝑤,𝑚

= 5000,

𝐷 = 1,

𝛽 = 0.03,

𝛼 = 0.1,

𝑆0 = 500,

𝜇
𝑚

= 0.12,

𝐾
𝑆

= 80,

𝑋
𝑢

(0) = 1000.

(2)

These values are taken from [12].
The growth of the suspended and adhered microorgan-

isms in the reactor is a nonlinear natural phenomenon that
can be analyzed using nonlinear dynamics, which provides a
global perspective of the types of behavior in the system, such
as equilibrium states, stability, and bifurcations.

2.2. Monod Kinetics. The suspended and adhered microor-
ganisms inside the reactor consume the organic matter
present in the wastewater to be treated. The specific rate of
substrate consumption is the “speed” at which the organism
consumes the substrate. Although the growth of microorgan-
isms is a complex phenomenon, there are equations that can
model this behavior. Monod’s equation is the simplest and
most widely utilized equation for describing the kinetics of
microbial growth. It is a function of the limiting substrate
and is expressed as 𝜇(𝑆) = 𝜇

𝑚

𝑆/(𝐾
𝑆

+ 𝑆) where 𝜇
𝑚

is
the maximum growth rate. 𝐾

𝑆

is the concentration of the
substrate corresponding to the half of the maximum growth
rate of (𝑆) and represents the affinity of the microorganisms
for the substrate. If the organism has a great affinity for the
limiting substrate, the value of𝐾

𝑆

is low [17].

2.2.1. Equilibrium Points. A point 𝑥0 ∈ R𝑛 is an equilibrium
point or a critical point of �̇� = f(𝑥) if f(𝑥0) = 0. In this point,
the system remains in a stationary state; that is, if 𝜙

𝑡

: 𝑈 →

R𝑛 is the flux of the system, then 𝜙
𝑡

(𝑥0) = 𝑥0 ∀𝑡 ∈ R [18, 19].
The system has an equilibrium in the washing condition

for any set of values of the parameters, in this equilibrium
there aren’tmicroorganisms adhere or suspended, but there is
substrate into the reactor. Exists other equilibrium physically
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feasible when the microorganisms adhere to the support
surface and finally two equilibria in the case where suspended
microorganisms do not adhere to the support surface.

(i) First equilibriumpoint, corresponding to thewashing
condition, is 𝐸1 = (𝑆0, 0, 0).

(ii) If 𝛼 ̸= 0, that is, there adherence of microorganisms
to biofilms, then a nontrivial equilibrium point exists:
𝐸2 = (𝑆

∗

, 𝑋
∗

𝑢

, 𝑋
∗

𝑤

) ̸= (0, 0, 0). This equilibrium point
cannot be found analytically.

(iii) If 𝛼 = 0, there exist two equilibrium points:

𝐸3 = (𝑆,𝑋𝑢, 𝑋𝑤) = (
(𝐷 + 𝑘)𝐾

𝑆

𝜇
𝑚

− 𝐷 − 𝑘
,
𝛾𝐷 (𝑆0 − 𝑆)

𝐷 + 𝑘
, 0) (3)

with 𝜇(𝑆) − 𝐷 − 𝑘 = 0.
This point is physically possible if 𝜇

𝑚

−𝐷− 𝑘 > 0 and
𝑆0 − 𝑆 > 0; that is,

𝐷 <
𝑆0 (𝜇𝑚 − 𝑘) − 𝑘𝐾𝑆

𝑆0 + 𝐾𝑆
= 0.093448. (4)

𝐸4 = (𝑆, 𝑋𝑢, 𝑋𝑤), where

𝑋
𝑢

=
𝛾 (𝑆0 − 𝑆) (𝜇 (𝑆) − 𝑘)

𝜇 (𝑆)

𝑋
𝑤

=
1.1 (𝛽 + 𝑘) − 𝜇 (𝑆)
𝛽 + 𝑘 − 𝜇 (𝑆)

𝑋
𝑤𝑚

.

(5)

Substituting𝑋
𝑢

and𝑋
𝑤

in the following equation, one
can solve 𝑆. Consider

𝐷(𝑆
𝑜

− 𝑆) − 𝛾
−1
𝜇 (𝑆) (𝑋

𝑢

+𝑋
𝑤

) = 0. (6)

2.2.2. Equilibrium Point Stability. An equilibrium point of a
dynamical system is stable in Lyapunov sense if all trajectories
with initial conditions near the equilibrium point remain in
that vicinity. The equilibrium point is asymptotically stable,
that is, the trajectories always tend toward the equilibrium
point. Lyapunov’s indirect method is outlined in [20] and
demonstrated in [21], and it provides a procedure to deter-
mine the local stability of a hyperbolic equilibriumpoint. Fur-
thermore, the Hartman-Grobman theorem states that, near a
hyperbolic equilibriumpoint, the nonlinear systempresents a
behavior qualitatively equivalent to that of the corresponding
linear system [22, 23], where a hyperbolic equilibrium point
is an equilibrium point in which its Jacobian matrix does not
have eigenvalues with zero real part.

In the following, the stability of the equilibrium points
is analyzed by Lyapunov’s indirect method, linearizing the
system and calculating its eigenvalues. To analyze the location
in the plane of the eigenvalues, the Routh-Hurwitz criterion
was utilized.

At the equilibrium point 𝐸1, the Jacobian matrix of the
system is

[
[
[

[

−𝐷 −𝛾
−1
𝜇 (𝑆0) −𝛾

−1
𝜇 (𝑆0)

0 𝜇 (𝑆0) − 𝐷 − 𝑘 − 𝛼 𝜇 (𝑆0) [1 − 𝐺 (0)] + 𝛽
0 𝛼 𝜇 (𝑆0) 𝐺 (0) − 𝑘 − 𝛽

]
]
]

]

. (7)

Let 𝐴 be a submatrix, such that

𝐴 = [

𝜇 (𝑆0) − 𝐷 − 𝑘 − 𝛼 𝜇 (𝑆0) [1 − 𝐺 (0)] + 𝛽
𝛼 𝜇 (𝑆0) 𝐺 (0) − 𝑘 − 𝛽

] . (8)

The eigenvalues 𝜆1, 𝜆2, and 𝜆3 of the matrix 𝐽
𝐸1

are the roots
of the equation:

(𝜆
2
− 𝛿𝜆+ 𝜏) (𝜆 +𝐷) = 0,

𝛿 = tr (𝐴) ,

𝜏 = det (𝐴) ,

𝜆1,2 =
𝛿 ± √𝛿2 − 4𝜏

2
,

𝜆3 = −𝐷.

(9)

It is readily apparent that

max {𝜇 −𝐷−𝑘−𝛼, 𝜇𝐺− 𝑘−𝛽} < 𝜆1. (10)

Substituting the values of the parameters, one obtains that
𝜇(𝑆0)𝐺(0) − 𝑘 − 𝛽 > 0. Therefore, 𝐸

1

is unstable.
For the equilibriumpoint𝐸2, numerically performing the

stability analysis, we find that it is always stable.
The algorithm is as follows: for a given value of 𝐷

the equilibrium point is found using the Newton-Raphson
method, and the equilibrium curve is constructed using
the same method taking the previous equilibrium as the
initial condition. Every equilibrium point is evaluated in the
Jacobian matrix, and the eigenvalues are calculated. If they
are all negative, the equilibrium is stable. If either of them is
negative, the equilibrium is unstable and if at least one has a
zero real part, it is not possible to decide on the stability of the
equilibrium.

At the equilibrium point 𝐸3, the Jacobian matrix of the
system is

[
[
[

[

−𝐷 − 𝛾
−1
𝑋
𝑢

𝜇


−𝛾
−1
𝜇 −𝛾

−1
𝜇

𝑋
𝑢

𝜇
 0 𝛽 + 𝜇 [1 − 𝐺 (0)]

0 0 𝜇𝐺 (0) − 𝛽 − 𝑘

]
]
]

]

=
[
[

[

𝑎11 𝑎12 𝑎13

𝑎21 0 𝑎23

0 0 𝑎33

]
]

]

(11)

and its characteristic polynomial is

𝜆
3
− (𝑎11 + 𝑎33) 𝜆

2
+ (𝑎11𝑎33 − 𝑎12𝑎21) 𝜆 + 𝑎12𝑎21𝑎33

= 0 𝑎11, 𝑎12 < 0, 𝑎21 > 0.
(12)

We establish the following array:

𝜆
3

1 𝑎11𝑎33 − 𝑎12𝑎21

𝜆
2

− (𝑎11 + 𝑎33) 𝑎12𝑎21𝑎33

𝜆
1
𝑎11𝑎33 −

𝑎11𝑎12𝑎21
𝑎11 + 𝑎33

0

𝜆
0

𝑎12𝑎21𝑎33

(13)
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The Routh-Hurwitz stability criterion states that the number
of roots of the characteristic polynomial with a positive real
part is equal to the number of sign changes of the coefficients
of the first column of the array.

𝑎11 + 𝑎33 is negative. Indeed 𝑎11 + 𝑎33 = (𝐷𝐺(0) − 𝐷) +
(𝑘𝐺(0) − 𝑘) − 𝛾−1𝑋

𝑢

𝜇


(𝑆) − 𝛽 < 0 given that 𝐷𝐺(0) − 𝐷 < 0
and 𝑘𝐺(0) − 𝑘 < 0.

If 𝑎33 < 0 then 𝑎11𝑎33 > 0 and 𝑎11𝑎33 − 𝑎11𝑎12𝑎21/(𝑎11 +
𝑎33) > 0.

If 𝑎33 < 0 then𝐷 < (𝛽 + 𝑘 − 𝑘𝐺(0))/𝐺(0).
Therefore, for𝐷 < 0.034, 𝑎12𝑎21𝑎33 > 0.
If 𝑎33 > 0 then𝐷 > (𝛽 + 𝑘 − 𝑘𝐺(0))/𝐺(0).
Therefore, for𝐷 > 0.034, 𝑎12𝑎21𝑎33 < 0.
In summary, we have

𝐷 < 0.034 0.034 < 𝐷 < 0.093448

𝜆
3
+

𝜆
2
+

𝜆
1
+

𝜆
0
+

𝜆
3
+

𝜆
2
+

𝜆
1
𝑥

𝜆
0
−

(14)

If𝐷 < 0.034, there are no sign changes, and, thus, the real part
of all the eigenvalues is negative, and the equilibrium point is
stable. If 0.034 < 𝐷 < 0.093448 there is always a sign change
(𝑥 is unknown and it does notmatter, because anyway there is
a sign change), whichmeans that there is an eigenvalue with a
positive real part, and, thus, the equilibrium point is unstable.

For the equilibrium point 𝐸
4

, the characteristic polyno-
mial is 𝜆3 + 𝑏𝜆2 + 𝑐𝜆 + 𝑑 = 0, where

𝑏 = − (𝑎11 + 𝑎22 + 𝑎33) ,

𝑐 = − (𝑎12𝑎21 + 𝑎32𝑎23 + 𝑎13𝑎31 − 𝑎11𝑎33 − 𝑎22𝑎33

− 𝑎11𝑎22) ,

𝑑 = − 𝑎11𝑎22𝑎33 − 𝑎12𝑎23𝑎31 − 𝑎13𝑎21𝑎32 + 𝑎12𝑎21𝑎33

+ 𝑎32𝑎23𝑎11 + 𝑎13𝑎31𝑎22.

(15)

By virtue of the Routh-Hurwitz criterion, one has

𝜆
3

1 𝑐

𝜆
2

𝑏 𝑑

𝜆
1
𝑐1 =

𝑏𝑐 − 𝑑

𝑏
0

𝜆
0

𝑑

(16)

Numerically, it is found that, for values 𝐷 < 0.034, there is
a sign change, and, thus, the equilibrium point is unstable,
whereas for values 𝐷 > 0.034, there is no sign change, and,
thus, the equilibrium point is stable.

2.2.3. One-Parameter Bifurcations. The fact that the dynam-
ics of a system can change drastically as one or more of
its parameters are varied is well known. This qualitative or
structural change is known as a bifurcation. In general, bifur-
cation theory studies the structural changes that a dynamical
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Figure 1: Transcritical bifurcation varying𝐷. Stable: blue. Unstable:
green.

system can undergo as its parameters are varied; further
bifurcations only occur in nonhyperbolic equilibria [19, 24].

In what follows, the transcritical bifurcation described in
[25] is presented because it is precisely the one studied in this
work.

Let 𝑥 = 𝑥
0

be a nonhyperbolic equilibrium point. The
structure of the system is characterized as follows.

(i) Two curves of equilibrium points 𝜙(𝑡) and 𝜓(𝑡) pass
through 𝑥

0

.
(ii) Both curves exist on both sides 𝑥

0

.
(iii) The stability of the curves is interchanged as they pass

through 𝑥
0

.

The system presents a transcritical bifurcation in the equilib-
rium curves 𝐸3 and 𝐸4 in fact.

When 𝛼 = 0, for the point 𝐸3, an eigenvalue 𝜆 = 0 exists
if 𝑎12𝑎21𝑎33 = 0, given that 𝑎12 < 0 and 𝑎21 > 0; then 𝑎33 must
be zero. That is,

𝜇 (𝑆) 𝐺 (0) − 𝛽 − 𝑘 = 0 with 𝜇 (𝑆) = 𝐷 + 𝑘. (17)

Thus

𝐷 =
𝛽 + 𝑘 − 𝑘𝐺 (0)

𝐺 (0)
=
𝛽 + 𝑘 (1 − 𝐺 (0))

𝐺 (0)

=
0.03 + 0.01 (1 − 10/11)

10/11
= 0.034.

(18)

The equilibrium point in the bifurcation parameter is as
follows: (𝑆, 𝑋

𝑢

, 𝑋
𝑤

) = (46.31, 175.28, 0).
The equilibrium curve 𝐸3 is stable for 𝐷 < 0.034 and

unstable for𝐷 > 0.034. For 𝐸4 the equilibria are unstable for
𝐷 < 0.034 and stable for 𝐷 > 0.034. Figures 1 and 2 show
how the equilibrium curves of the points 𝐸3 and 𝐸4 cross
each other and interchange stability, such that a transcritical
bifurcation appears.

These results can be used at the moment to choose an
efficient dilution coefficient 𝐷; that is, if the reactor starts
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Figure 2: Transcritical bifurcation varying𝐷. Stable: blue. Unstable:
green.

its functioning without microorganisms adhered, the correct
election for 𝐷 is a value less than 0.034 h−1, because in this
interval for 𝐷 the reactor is stable and this means that the
reactor works well and the organic and inorganic material is
being removed from the water. In the case that the reactor
starts its functioning with any microorganisms adhered, the
correct election for𝐷 is a value between 0.034 h−1 and 1 h−1,
for the same reasons given before.

On the other hand, the Sotomayor theorem establishes
conditions for the presence of a transcritical bifurcation in
a system. However, the system studied in this work presents
a transcritical bifurcation but does not satisfy the Sotomayor
theorem. So, the conditions of Sotomayor theorem are suffi-
cient but not necessary and one example was found.

The Sotomayor theorem is stated as follows.
Consider a continuous time system that depends on a

one-dimensional parameter:

�̇� = f (𝑥, 𝜇) , 𝑥 ∈ R
𝑛

, 𝜇 ∈ R, (19)

where f is smooth with respect to 𝑥 and 𝜇. Let 𝑥 = 𝑥
0

be
an equilibrium point with a vanishing eigenvalue at 𝜇 = 𝜇

0

.
Assume that f(𝑥

0

, 𝜇
0

) = 0 and the matrix 𝐴 = 𝐷f(𝑥
0

, 𝜇
0

)

has an eigenvalue 𝜆 = 0 with eigenvector k and 𝐴𝑇 has
an eigenvector w corresponding to the eigenvalue 𝜆 = 0.
Furthermore, assume that𝐴 has 𝑘 eigenvalues with a negative
real part and that 𝑛−𝑘−1with a positive real part.The system
presents the following.

A saddle-node bifurcation if

(1) 𝑤𝑇f
𝜇

(𝑥0, 𝜇0) ̸= 0,
(2) 𝑤𝑇[𝐷2f(𝑥0, 𝜇0)(V, V)] ̸= 0.

A transcritical bifurcation if

(1) 𝑤𝑇f
𝜇

(𝑥0, 𝜇0) = 0,
(2) 𝑤𝑇[𝐷f

𝜇

(𝑥0, 𝜇0)V] ̸= 0,
(3) 𝑤𝑇[𝐷2f(𝑥0, 𝜇0)(V, V)] ̸= 0.

The nature of the expressions above is as follows:

(i) f
𝜇

(𝑥0, 𝜇0) = (𝜕f(𝑥, 𝜇)/𝜕𝜇)|(𝑥0 ,𝜇0)
(ii) 𝐷f

𝜇

(𝑥0, 𝜇0) → Jacobiano de f
𝜇

(𝑥0, 𝜇0)

(iii) 𝐷2f(𝑥0, 𝜇0)(V, V) = ∑
𝑛

𝑖,𝑗

(𝜕
2
𝑥/𝜕𝑥
𝑖

𝑥
𝑗

)V
𝑖

V
𝑗

donde 𝑥 =

(𝑥1, . . . , 𝑥𝑛), V = (V1, . . . , V𝑛).

The modeled system presents a transcritical bifurcation,
although the second condition of the Sotomayor theorem is
not satisfied. In fact

𝐷f (𝑥0, 𝜇0) =
[
[
[

[

−𝐷 − 𝛾
−1
𝑋
𝑢

𝜇


−𝛾
−1
𝜇 −𝛾

−1
𝜇

𝑋
𝑢

𝜇
 0 𝛽 +

𝜇

11
0 0 0

]
]
]

]

=
[
[

[

𝑎11 𝑎12 𝑎13

𝑎21 0 𝑎23

0 0 0

]
]

]

,

𝑤 =
[
[

[

0
0
1

]
]

]

,

V = [[

[

V1
V2
V3

]
]

]

= V3

[
[
[
[
[

[

−
𝑎23
𝑎21

𝑎11𝑎23 − 𝑎21𝑎13
𝑎21
1

]
]
]
]
]

]

(20)

with V3 free constant.

Condition 1. We have that

f
𝜇

(𝑥0, 𝜇0) =
[
[

[

𝑆0 − 𝑆

−𝑋
𝑢

0

]
]

]


(𝑥0 ,𝐷0)

,

𝑤
𝑇f
𝜇

(𝑥0, 𝜇0) = 0.

(21)

Condition 2.We have that

𝐷f
𝜇

(𝑥0, 𝜇0) =
[
[

[

−1 0 0
0 −1 0
0 0 0

]
]

]

𝑤
𝑇

[𝐷f
𝜇

(𝑥0, 𝜇0) V] = 𝑤
𝑇
[
[

[

−V1
−V2
0

]
]

]

= [0 0 1] [[

[

−V1
−V2
0

]
]

]

= 0.

(22)

2.2.4. Bifurcations Diagram. Bifurcations are structural
changes in the system. These types of changes can be
appreciated by means of their corresponding bifurcation
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diagrams as it determines if the system converges to an
𝑛-cycle or if its behavior is random.

Figure 3 shows that for values 𝐷 < 0.034 the trajectories
converge at the equilibrium point 𝐸3; that is, for a higher
dilution rate, the system stabilizes at a larger substrate and
suspended biomass concentrations. For this value, there is,
however, no formation of a biofilm. For 𝐷 > 0.034 the
trajectories converge at the equilibrium point 𝐸4, where there
is biofilm formation. This coincides with the stability curves
𝐸3 and 𝐸4 shown in Figures 1 and 2.

Bifurcation Diagram Algorithm

Initial conditional = [40, 170, 20].
The parameter values used are the same data given at
the beginning except for 𝛼, whose value is 𝛼 = 0.
Integration time = [0, 6000].
Time step = 0.05.
Integrator = ODE45.
Relative tolerance = 1 × 10−5.
Absolute tolerance = 1 × 10−6.
Interval partition = 3000 points.

Algorithm. The initial condition is taken. For each parameter
we obtain the temporal evolution for the state variables using
the same initial condition. We consider as Poincaré applica-
tion the surface containing the local maxima in steady state
that are plotted for each parameter value. To approximate
the maximum is applied a simple linear interpolation scheme
whenever a sign change is detected in the derivative (see
equations (2.13) and (2.14) of [26]).

2.3. Haldane Kinetics. Haldane kinetics is used to describe
the relation between the microorganism growth rate and the
concentration in the inhibitory substrate. The model of the
present work was used to study the possible inhibition of the
substrate in the reactions taking place in the bioreactor. The
growth rate of the microorganisms is determined by 𝜇 =

𝜇
𝑚

𝑆/(𝐾
𝑆

+ 𝑆 + 𝑆
2

/𝐾
𝐼

), where 𝐾
𝐼

is defined in an analogous
way as𝐾

𝑆

; in this case, however, it represents the value of [𝑆]
when the inhibition is at its half maximum.

Figure 4 shows that each model of microbial growth
presents a different behavior according to the values of the
proposed parameters [27]. For theMonod curve, the speed of
the biological growth process will tend asymptotically to the
maximum value 𝜇

𝑚

[28]. For the Haldane curve, the micro-
bial growth rate is high for low concentrations of the substrate
and low for high concentrations, which demonstrates the
negative effect of a high substrate concentration. Bothmodels
exhibit a maximum value in the microbial growth rate [27,
29]. For the simulations𝐾

𝐼

= 1500.The value of the constant
is a characteristic typical of inhibitor. In this casewhen 𝑆 = 𝐾

𝐼

the degree of inhibition is about 50%.

2.3.1. Equilibrium Points. The system has an equilibrium
at the washing condition for any value of the parameters,
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Figure 3: Bifurcation diagram varying𝐷 with respect to 𝑆,𝑋
𝑢

, and
𝑋
𝑤

. The adherence rate 𝛼 is zero.

a physically feasible equilibrium when the microorganisms
adhere to the support surface, and three equilibria when the
suspended microorganisms do not adhere to the support
surface.

(i) First equilibriumpoint, corresponding to thewashing
condition, is as follows: 𝐸1 = (𝑆0, 0, 0).
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Figure 4: Growth rate for Monod and Haldane kinetics.

(ii) If 𝛼 ̸= 0 there is a nontrivial equilibrium point: 𝐸2 =
(𝑆
∗

, 𝑋
∗

𝑢

, 𝑋
∗

𝑤

) ̸= (0, 0, 0). This point cannot be found
analytically.

(iii) If 𝛼 = 0, there are three equilibrium points.

Let𝑋
𝑤

= 0 and 𝜇(𝑆)−𝐷−𝑘 = 0. From this, we obtain

𝑆
2
+ 𝑏𝑆 + 𝑐 = 0

where 𝑏 = 𝐾
𝐼

𝐷 + 𝑘
(𝐷 + 𝑘 − 𝜇

𝑚

) 𝑐 = 𝐾
𝑆

𝐾
𝐼

.

(23)

𝑆 exists if Δ = 𝑏2 − 4𝑐 > 0; that is, 𝑎1𝐷
2
+ 𝑏1𝐷+ 𝑐1 > 0

with

𝑎1 = 𝐾𝐼 − 4𝐾𝑆

𝑏1 = 2𝑘𝑎1 − 2𝜇𝑚𝐾𝐼

𝑐1 = 𝑘
2
𝑎1 − 2𝜇𝑚𝐾𝐼𝑘 +𝐾𝐼𝜇

2
𝑚

𝐷 =

−𝑏1 ± √𝑏
2
1 − 4𝑎1𝑐1

2𝑎1

⇒ 𝐷 =
𝐾
𝐼

(𝜇
𝑚

− 𝑘) + 2√𝐾
𝐼

𝐾
𝑆

𝐾
𝐼

− 2√𝐾
𝐼

𝐾
𝑆

= 0.213

𝐷 =
𝐾
𝐼

(𝜇
𝑚

− 𝑘) − 2√𝐾
𝐼

𝐾
𝑆

𝐾
𝐼

+ 2√𝐾
𝐼

𝐾
𝑆

= 0.0721.

(24)

It can then be seen that 𝑆 exists if 𝐷 ∈ (0, 0.0721) ∪
(0.213, 1).

When 𝑆 exists, that is, when 𝑆 is physically possible
(the value of 𝑆 is positive), two equilibrium points are
obtained:

𝐸3 = (𝑆3, 𝑋𝑢, 𝑋𝑤)

= (
−𝑏 + √𝑏2 − 4𝑐

2
,
𝛾𝐷 (𝑆0 − 𝑆)

𝐷 + 𝑘
, 0)

𝐸4 = (𝑆4, 𝑋𝑢, 𝑋𝑤)

= (
−𝑏 − √𝑏2 − 4𝑐

2
,
𝛾𝐷 (𝑆0 − 𝑆)

𝐷 + 𝑘
, 0) .

(25)

If 𝑏 > 0, that is, 𝐷 > 𝜇
𝑚

− 𝑘 = 0.11, then 𝑆3, 𝑆4 < 0
given that 4𝑐 > 0. Therefore, for 𝐷 > 0.11, the
equilibria 𝐸3, 𝐸4 are not physically feasible.
If 𝑏 < 0, that is,𝐷 < 𝜇

𝑚

− 𝑘 = 0.11, then 𝑆3, 𝑆4 > 0.
𝑋
𝑢

> 0 at the equilibrium point 𝐸3 if

𝐷 >
𝐾
𝐼

(𝜇
𝑚

− 𝑘) + 𝛽𝑘

𝐾
𝐼

− 𝛽
= 0.0704

with 𝛽 = − 1
𝑆0
(𝑆

2
0 + 𝑐) .

(26)

From the above,

𝐸3 has physical meaning if 0.0704 < 𝐷 and 𝐷 <

0.0721,
𝐸4 has physical meaning if 0 < 𝐷 < 0.0721,
if 𝑋
𝑤

̸= 0 there is an equilibrium point, 𝐸5 =

(𝑆, 𝑋
𝑢

, 𝑋
𝑤

), where

𝑋
𝑢

=
𝛾 (𝑆
𝑜

− 𝑆) (𝜇 (𝑆) − 𝑘)

𝜇 (𝑆)

𝑋
𝑤

=
1.1 (𝛽 + 𝑘) − 𝜇 (𝑆)
𝛽 + 𝑘 − 𝜇 (𝑆)

𝑋
𝑤𝑚

.

(27)

Substituting𝑋
𝑢

and𝑋
𝑤

in the following equation, we
can solve 𝑆. Consider

𝐷(𝑆
𝑜

− 𝑆) − 𝛾
−1
𝜇 (𝑆) (𝑋

𝑢

+𝑋
𝑤

) = 0. (28)

2.3.2. Equilibrium Points Stability. For equilibrium point 𝐸1
the stability analysis is analogous to the case of Monod
kinetics, and thus, it can be immediately concluded that 𝐸1
is also a saddle point.

For equilibrium point 𝐸2 the numerical stability analysis
shows that it is always stable.

For equilibrium points 𝐸3 and 𝐸4, we analytically evalu-
ated the stability of the values of 𝐷 where the equilibria are
physically possible. Conducting a stability analysis analogous
to the case ofMonod kinetics, it is concluded that if𝐷 < 0.034
then the equilibrium point 𝐸4 is stable, whereas for 0.034 <
𝐷 < 0.0721 the equilibrium points 𝐸3 and 𝐸4 are unstable.
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For equilibriumpoint𝐸5 the process is analogous to point
𝐸4 of the previous section. It is observed that for values
𝐷 < 0.034 there is a sign change such that the equilibrium
is unstable, whereas for values 𝐷 > 0.034 there are no sign
changes, and the equilibrium is consequently stable.

In the same way as in the Monod kinetics these results
can be used at the moment to choose an efficient dilution
coefficient 𝐷; that is, if the reactor starts its functioning
without microorganisms adhered, the correct election for
𝐷 is a value less than 0.034, because in this interval for 𝐷
the reactor is stable. In the case that the reactor starts its
functioning with any microorganisms adhered, the correct
election for 𝐷 is a value between 0.034 and 1, for the same
reasons given before.

2.3.3. One-Parameter Bifurcations

Transcritical Bifurcation. When 𝛼 = 0, for points 𝐸4 and 𝐸5
there is a transcritical bifurcation when

𝐷 =
𝛽 + 𝑘 (1 − 𝐺 (0))

𝐺 (0)
= 0.034. (29)

The analysis of the transcritical bifurcation using the
Sotomayor theorem is analogous to that in the previous
section. The second condition is not met.

Saddle-Node Bifurcation. In what follows, the saddle-node
bifurcation is described in [25] as it corresponds to that
studied in this section.

Let 𝑥 = 𝑥
0

be a nonhyperbolic equilibrium point, and let
𝑑 be the bifurcation parameter. An eigenvalue 𝜆 = 0 occurs at
𝑑 = 𝜇
0

.The structure of the system is characterized as follows.
For values 𝑑 < 𝜇

0

there are two equilibrium points.
For values 𝑑 = 𝜇

0

there is a unique nonhyperbolic
equilibrium point.

For values 𝑑 > 𝜇
0

there are no equilibrium points.
The system presents a saddle-node bifurcation in the

equilibrium curves of 𝐸3 and 𝐸4. Indeed, an eigenvalue 𝜆 = 0
exists if𝑋

𝑢

𝜇


(𝑆) = 0, from here 𝜇(𝑆) = 0.
There are two values for the parameter 𝐷 for which

𝜇


(𝑆) = 0:

𝐷1 =
𝐾
𝐼

(𝜇
𝑚

− 𝑘) − 2√𝐾
𝐼

𝐾
𝑆

𝐾
𝐼

+ 2√𝐾
𝐼

𝐾
𝑆

= 0.0721,

𝐷2 =
𝐾
𝐼

(𝜇
𝑚

− 𝑘) + 2√𝐾
𝐼

𝐾
𝑆

𝐾
𝐼

− 2√𝐾
𝐼

𝐾
𝑆

= 0.213.

(30)

The dynamics are as follows.

For 𝐷 < 0.0721 there are two physically sensible
equilibrium points, 𝐸3 and 𝐸4.
For𝐷 = 0.0721 𝐸3 = 𝐸4.
For 0.0721 < 𝐷 < 0.213 the equilibria 𝐸3 and 𝐸4
disappear.
For𝐷 = 0.213 𝐸3 = 𝐸4.
For 𝐷 > 0.213 the points 𝐸3 and 𝐸4 are restored,
although they do not possess physical meaning.

The system satisfied the Sotomayor theorem. Indeed,

𝐷f (𝑥0, 𝜇0)

=

[
[
[

[

−𝐷 − 𝛾
−1
𝑋
𝑢

𝜇


−𝛾
−1
𝜇 −𝛾

−1
𝜇

0 0 𝛽 + 𝜇 [1 − 𝐺 (0)]
0 0 𝜇𝐺 (0) − 𝛽 − 𝑘

]
]
]

]

=
[
[

[

𝑎11 𝑎12 𝑎13

0 0 𝑎23

0 0 𝑎33

]
]

]

𝑤 =
[
[

[

𝑤1

𝑤2

𝑤3

]
]

]

= 𝑤3

[
[
[
[

[

0
−𝑎33
𝑎23
1

]
]
]
]

]

𝑤1 = 0 and 𝑤3 free.

(31)

If 𝑤3 = 1 then 𝑤 = [
0
𝑤2
1
] and

V = [[

[

V1
V2
V3

]
]

]

= V2
[
[
[
[

[

−
𝑎12
𝑎11
1
0

]
]
]
]

]

V2 free. (32)

If V2 = 1 then V = [
V1
1
0
].

Condition 1. We have that

f
𝜇

(𝑥0, 𝜇0) =
[
[

[

𝑆0 − 𝑆

−𝑋
𝑢

0

]
]

]


(𝑥0 ,𝜇0)

𝑤
𝑇f
𝜇

(𝑥0, 𝜇0) = −𝑤2𝑋𝑢 ̸= 0.

(33)

Condition 2. 𝐹 = 𝐹(𝑆, 𝑋
𝑢

, 𝑋
𝑤

). 𝑥
𝑖

are state variables, 𝑥1 = 𝑆,
𝑥2 = 𝑋𝑢, and 𝑥3 = 𝑋𝑤. Consider

𝐷
2f (𝑥0, 𝜇0) (V, V)

=
𝜕
2
𝐹

𝜕𝑥1𝑥1
V1V1 +

𝜕
2
𝐹

𝜕𝑥1𝑥2
V1 +

𝜕
2
𝐹

𝜕𝑥2𝑥1
V1 +

𝜕
2
𝑥

𝜕𝑥2𝑥2

=

[
[
[

[

−𝛾
−1
𝑋
𝑢

𝜇


(𝑆)

𝑋
𝑢

𝜇


(𝑆)

0

]
]
]

]

,

𝑤
𝑇

[𝐷
2
𝑓 (𝑥0, 𝐷0) (V, V)] = 𝑤2𝑋𝑢𝜇



(𝑆) ̸= 0.

(34)

The system satisfied the Sotomayor theorem, meeting both
conditions, and thus, it presents a saddle-node bifurcation at
the two values of the parameters 𝐷, 𝐷1, and 𝐷2 as described
above.
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2.3.4. Bifurcations Diagram. The bifurcation diagram of the
system for varying 𝐷 when 𝛼 = 0 is analogous to the case
of Monod kinetics. This is because the equilibrium points
𝐸3 and 𝐸4 are stable for 𝐷 < 0.034, and given that the
initial condition [40, 170, 20] is closer to 𝐸4 the trajectories
will tend to this equilibrium; that is, the suspended biomass
concentration increases because there is no formation of
biofilms. For 𝐷 > 0.034 the trajectories of the system tend
to the stable equilibrium point 𝐸5.

3. Conclusions

The reactor is stable when it works well, that is, when the
organic and inorganic material is being removed from the
water. The system analyzed with both Monod and Haldane
kinetics is stable with the initial parameter values, that is,
when the adherence rate of the microorganisms is nonzero.

If the adherence rate (𝛼) is zero (this may occur when
the residence time of the wastewater inside the reactor is not
long enough so that the suspended microorganisms adhere
to biofilms) both systems (Monod and Haldane) present a
transcritical bifurcation for the same value of 𝐷 because the
value of the dilution rate at the bifurcation does not depend
on the type of kinetics being used to model the system, but
instead it depends on the mortality and detachment rates
of the adhered microorganisms. Also, the model studied in
this paper is an example that the conditions of Sotomayor
theorem are sufficient but not necessary, because this model
presents a transcritical bifurcation but does not satisfy the
Sotomayor theorem. On the other hand, these results can be
used at themoment to choose an efficient dilution coefficient;
in fact, for both systems we have the following: if the reactor
starts its functioning without microorganisms adhered, the
correct election for𝐷 is a value less than 0.034, because in this
interval for𝐷 the reactor is stable; in the case that the reactor
starts its functioning with any microorganisms adhered, the
correct election for 𝐷 is a value between 0.034 and 1, for the
same reasons given before. In addition, the system modeled
withHaldane kinetics presents a saddle-node bifurcation and
is satisfies the Sotomayor theorem.

The bifurcation diagrams show the same behavior for
both models as the parameter 𝐷 is varied. The saddle-node
bifurcation predicted by the Haldane kinetics is not reflected
in the bifurcation diagrams; this is because for values of the
dilution rate for which the transcritical bifurcation appears
the equilibria that generate the saddle-node bifurcation are
unstable, and thus, the system trajectories will not tend
toward them. For values of 𝐷 before the bifurcation, the
trajectories will tend toward one of the stable equilibrium
points, depending on the initial conditions.

It was also observed for bothmodels that a higher dilution
rate increases the formation of biofilms in the reactor. That
is, the system stabilizes for a larger concentration of adhered
microorganisms as the concentration of suspended microor-
ganisms is reduced. The behavior for the system modeled
by both Monod and Haldane kinetics is similar. After a
certain period, the system stabilizes for approximately the
same substrate concentrations and the same concentrations
of suspended and adhered biomass.The difference lies in that,

for the system modeled with Monod kinetics, the necessary
time for biofilm formation is shorter.

Nomenclature

Variables

𝑆: Substrate concentration mg/L
𝑋
𝑢

: Suspended microorganism biomass
concentration mg/L

𝑋
𝑤

: Adhered microorganism biomass
concentration mg/dm2.

Parameters (these parameters are taken from [12])

𝐷: Dilution factor h−1
𝑘: Microorganism mortality rate h−1
𝑆0: Feed substrate concentration mg/L
𝛾: Yield constant
𝛼: Suspended microorganism adhesion rate

h−1
𝛽: Detachment rate of the adhered

microorganisms h−1
𝑋
𝑤,𝑚

: Maximal surface biomass density of the
adhered microorganisms mg/L

𝑊 = 𝑋
𝑤

/𝑋
𝑤𝑚

: Surface occupied fraction.
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