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A large number of authors in the past have concluded that the flow theory of plasticity tends to overestimate significantly the
buckling load for many problems of plates and shells in the plastic range, while the deformation theory generally provides much
more accurate predictions and is consequently used in practical applications. Following previous numerical studies by the same
authors focused on axially compressed cylinders, the present work presents an analytical investigation which comprises the broader
and different case of nonproportional loading.The analytical results are discussed and compared with experimental and numerical
findings and the reason for the apparent discrepancy on the basis of the so-called “buckling paradox” appears once again to lay in
the overconstrained kinematics on the basis of the analytical and numerical approaches present in the literature.

1. Introduction

Plastic buckling generally takes place in the case of moder-
ately thick cylinders subjected to axial compression, external
pressure, or torsion, alone or in combination, and has been
largely investigated.

The plasticity models that have been proposed for metals
in the strain hardening range for the study of plastic buckling
can be divided into two groups: the “deformation theory” of
plasticity and the “flow theory” of plasticity. In both of these
theories the plastic deformation is a function of the second
invariant of the deviatoric part of the stress tensor, given that
volume changes in the plastic range are not permitted. The
difference lies in the fact that in the deformation theory of
plasticity it is assumed that the state of stress is uniquely deter-
mined by the state of strain as it would happen in any path-
independent nonlinear elastic constitutive law. Therefore,
after a strain reversal, instead of recovering the initial elastic
stiffness, the initial loading curve is followed. This behaviour
is in contrast with the usual findings from experimental tests.
The flow theory of plasticity, on the contrary, assumes that
the increment of strain/stress is uniquely determined by the
existing stress/strain and its increment.This assumption gives
origin to a path-dependent relationship and the current stress

depends not only on the value of the actual total strain but
also on how this value has been reached.

As a consequence, notwithstanding its mathematical
advantages, the deformation theory of plasticity is considered
to lack somehow physical rigour in comparison to the flow
theory [1, 2]. Surprisingly, the employment of the deforma-
tion theory has been reported to predict buckling loads that
are smaller than those obtained with the flow theory and in
better accordance with the experimental tests. This fact has
been often designated as the “plastic buckling paradox.”

Recently the present authors have started to investigate
the plastic buckling paradox by conducting accurate finite-
element modelling of buckling of cylindrical shells using
both the flow theory and the deformation theory of plasticity
[3, 4]. Contrary to the common belief, they showed that,
by using an accurate and carefully validated geometrically
nonlinear finite element modelling, a very good agreement
between numerical and experimental results can be obtained
also in the case of the physically sound flow theory of plas-
ticity. Consequently, according to the performed numerical
investigations in the case of axially loaded cylinders, it can
be affirmed that no plastic buckling paradox actually exists.
Additionally, the flow theory of plasticity, which provides
a physically sound description of the behaviour of metals,
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can even lead to predictions of the buckling stress which
are in better agreement with the corresponding test results
than those provided by use of the deformation theory, in
contrast with the widely accepted belief that the flow theory
leads to a significant overestimation of the buckling stress
while the deformation theory leads to much more accurate
predictions and, therefore, is the recommended choice for
use in practical applications. On the basis of these numerical
investigations, it was suggested that the roots of the discrep-
ancy lie in the simplifying assumptions which have been
regularly made with respect to the buckling modes and that
the adoption of the deformation theory of plasticity simply
results in counterbalancing the greater stiffness induced by
kinematically constraining the cylinders to follow predefined
buckling modes.

However, the case of axially loaded cylinders is relatively
limited in order to draw general conclusions since in this
case material points are generally subjected to proportional
loading in the elastic range, and this remains relatively true
also in the initial phase of plastic buckling. In fact, even
more significant discrepancies are reported in the literature
between the results of the flow and the deformation theories
in the case of nonproportional loading.

Therefore the present investigation extends the analysis to
the much more general case of nonproportional loading and,
at the same time, makes use of an analytical treatment of the
problem instead of the numerical one employed for the case
of proportional loading. This makes it possible to analyse in
detail the shape of the bucklingmodes both in the cases of the
flow and of the deformation theory of plasticity.

The obtained analytical results are compared with the
experimental and numerical results obtained in [5, 6] using
the code BOSOR5 [7] and, for the purpose of validation, also
with the numerical ones by the present authors [8].

Blachut et al. [5] conducted experimental and numerical
analyses for 30 mild-steel machined cylinders, of different
dimensions, subject to axial tension and increasing external
pressure. Using the code BOSOR5 [7] for their numerical
analyses they reported that the agreement between the two
plasticity theories appeared strongly dependent on the diam-
eter, 𝐷, and the length, 𝐿, of the cylindrical shell. For short
cylinders (𝐷/𝐿 = 1), the plastic-buckling pressure results
predicted by the flow and deformation theories coincided
only when the tensile axial load vanished [5]. By increasing
the axial tensile load, the plastic buckling pressures predicted
by the flow theory started to diverge quickly from those
predicted by the deformation theory. Additionally, the flow
theory failed to predict any buckling for high axial tensile
load while tests confirmed the buckling occurrence. For
specimens with length-to-diameter ratio 𝐿/𝐷 ranging from
1.5 to 2.0 the results predicted by both theories were identical
for a certain range of combined loading. However, for high
values of applied tensile load, the predictions of the flow
theory began to deviate from those of the deformation theory
and became unrealistic in correspondence with large plastic
strains.

Giezen et al. [6] conducted experiments and numerical
analyses on two sets of tubes made of aluminium alloy 6061-
T4 and subjected to combined axial tension and external

pressure in order to highlight the difference in buckling
predictions of both the flow theory and the deformation
theory again using the code BOSOR5. These tubes have
𝐿/𝐷 ratios equal to one. In their test two different loading
paths were considered. In the first one the axial tensile load
was held constant and the external pressure was increased;
in the second one, the external pressure was held constant
and the axial tensile load was increased. Their numerical
studies showed that the buckling pressure based on the flow
theory increaseswith increasing applied tensile loadwhile the
experimental test revealed a reduction in buckling resistance
with increasing axial tension. Thus as axial tension increased
the discrepancy between test results and numerical results
predicted by the flow theory also significantly increased. On
the other hand, results predicted by the deformation theory
displayed the same trend as in the test results. However,
the deformation theory significantly underpredicted the
buckling pressure observed experimentally for some loading
paths. Therefore, Giezen [9] concluded that, generally speak-
ing, both plasticity theories were unsuccessful in predicting
buckling load.

For the case of cylinders subjected to axial tensile load
and external pressure, Blachut et al. [5] and Giezen et al.
[6] concluded that the flow theory significantly overpredicts
the plastic strains and buckling loads for high tensile loads
while deformation theory leads to acceptable plastic strains
and buckling loads that are more in line with experimen-
tal observations in most cases. This moved researchers to
attempt a revised deformation theory by including unloading
[10] or propose a total deformation theory applicable for
nonproportional loading defined as a sequence of linear
loadings [11].

The analytical approach employed in this work moves
from the formulation presented by Chakrabarty [12] and en-
compasses, differently from the original formulation ofChak-
rabarty, both the flow and deformation theories.

It is found that the plastic buckling results calculated ana-
lytically using both the flow and deformation theories closely
match those, when available, obtained numerically by using
the code BOSOR5 [5, 7]. The analytical results thus confirm
that the flow theory seems to overpredict buckling pressures
for high values of applied tensile load while the deformation
theory predictions appear to be in better agreement with
experimental results.

However, going more in depth by means of the proposed
analytical approach, it is possible to focus the attention on
the buckling shapes and confirm, in such a way, that the root
of the discrepancy lays in the assumed harmonic buckling
modes along the circumference at the bifurcation.

In fact it is found that in the case of nonproportional
loading the analytical and numerical approaches based on
a certain class of harmonic buckling functions tend to
overestimate the buckling loads when using the flow theory
on account of a shift of the buckling modes.The deformation
theory, on the contrary, tends to point to buckling shapes of
lower order and thus counterbalances the excessive stiffness
of the cylinder caused by the kinematic overconstraining.

In conclusion, when the buckling modes are the same,
and in the case of nonproportional loading, the flow and
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Figure 1: Experimental setting by Blachut et al. [5].

Table 1: Ramberg-Osgood parameters.

𝐸 [MPa] 𝜎
𝑦
[MPa] ] 𝑛 𝑎

Blachut et al. [5] 212000 328 or 290 0.31 300 0.428
Giezen et al.—Set A [6] 65129.73 177.75 0.3 16 0.733
Giezen et al.—Set B [6] 60986.34 165.37 0.3 11.76 0.738

deformation theory of plasticity provide the same buckling
loads. It is worth recalling that the numerical FE approach
[8], which is not kinematically overconstrained by a choice
of predefined harmonic buckling modes, provides results
which are in line with the experimental ones in the case of
proportional loading.

As such, the conclusion of the present investigation is that
also in the case of cylinders subjected to themore general and
technically relevant case of nonproportional loading actually
there seems to be no plastic buckling paradox.

2. Experimental Data

Blachut et al. [5] conducted tests on 30 machined cylinders
made of mild steel with outer diameter 34mm and length-
diameter ratio (𝐿/𝐷) of 1.0, 1.5, and 2.0. In the experimental
setting, one flange of the specimen was rigidly attached to the
end flange of the pressure chamber and the other flange was
bolted to a coupling device which in turn was bolted to the
load cell; see Figure 1.

In order to prevent any eccentricity of the axial load
exerted on the specimen, the load cell was centered with
respect to the test chamber. The authors pointed out that
the maximum initial radial imperfections measured at the
midlength of the specimens were about 1% of the thickness.

Giezen et al. [6] tested cylindrical specimens of alu-
minium alloy 6061-T4. Two sets of specimens were tested,
namely, Set A and Set B.The average wall-thickness values of
the first and second sets were 0.76 and 0.71mm, respectively,
and the length-diameter ratio (𝐿/𝐷) was equal to one.
The maximum initial imperfection was found to be about
0.076mm (10% of the thickness).

Both authors applied two types of loading, that is, axial
tensile load in the longitudinal direction and external lateral
pressure. In this manner the buckling was investigated in the
case of nonproportional loading.

Blachut et al. [5] and Giezen et al. [6] conducted longi-
tudinal tensile tests on a number of coupons to determine
the mechanical properties of the cylindrical specimens. For
both tests the uniaxial stress-strain relationship of the mate-
rial under monotonic loading can be characterised by the
Ramberg-Osgood law

𝜀 =
1

𝐸
[𝜎+𝛼(

𝜎

𝜎𝑦

)

𝑛−1

𝜎] , (1)

where 𝜎 and 𝜀 denote uniaxial stress and strain, 𝐸 and ]
are Young’s modulus and Poisson’s ratio, 𝜎𝑦 is the nominal
yield strength, 𝛼 is the yield offset, and 𝑛 is the hardening
parameter.

TheRamberg-Osgood parameters characterising the tests
are reported in Table 1.

As it can be seen, for example, in the case of experiments
by Giezen et al. [6] (Figure 2), the Ramberg-Osgood fit of the
experimental data is very accurate.

3. Analytical Treatment

In order to analyse the results from the tests mentioned in the
previous section, an analytical treatment of the buckling of a
circular cylindrical shell under combined axial load and lat-
eral pressure has been developed on the basis of the approach
presented by Chakrabarty [12]. The analytical treatment has
been extended to cover both the use of deformation and flow
theories of plasticity.

For the sake of completeness, in the following, a brief
review of the constitutive equations for both theories of plas-
ticity is given.

3.1. Constitutive Relationships Based on the Deformation
Theory of Plasticity. The deformation theory of plasticity is
based on the assumption that for continued loading the state
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Figure 2: Ramberg-Osgood fit (Set B) [6].

of stress is uniquely determined by the state of strain and,
therefore, it is a special class of path-independent nonlinear
elasticity constitutive laws.

The constitutive relationship for the deformation theory
of plasticity can be obtained by extending the Ramberg-
Osgood law to the case of a multiaxial stress state by means
of the 𝐽2 von Mises formulation and results in the following
path-independent expression [13, 14]:

𝜀 = (1+ ]) dev𝜎− (1− 2]) sph𝜎

+
3
2
𝛼(

√3/2dev𝜎
𝜎𝑦

)

𝑛−1

dev𝜎,
(2)

where 𝜀 and𝜎 denote the strain and stress tensors, while dev𝜎
and sph𝜎 denote the deviatoric and spherical parts of the
stress tensor, respectively.

Since the deformation theory of plasticity requires the
same input values as the Ramberg-Osgood formula, the
material constants of Table 1 have been directly employed for
the present study.

3.2. Constitutive Relationships Based on the Flow Theory of
Plasticity. The 𝐽2 flow theory of plasticity in the small-strain
regime with nonlinear isotropic hardening [14] is based
on the additive decomposition of the spatial rate of the
deformation tensor �̇� into its elastic and plastic parts �̇�𝑒 and
�̇�𝑝: that is,

�̇� = �̇�𝑒 + �̇�𝑝, (3)

and the rate of increment of the Cauchy stress tensor, �̇�, is
given by the following isotropic linear elastic relationship:

�̇� = 2𝐺�̇�e +𝜆tr�̇�eI, (4)

x

r

𝜃

Figure 3: The cylindrical reference system.

where𝐺 and𝜆 are Lamé’s elastic constants and I is the identity
tensor.

The plastic behaviour is introduced by means of the von
Misses yield function, 𝑓,

𝑓 (𝜎, 𝜀
eq
𝑝
) = dev𝜎−√ 2

3
𝜎 (𝜀

eq
𝑝
) , (5)

where 𝜎 represents the uniaxial yield strength. In order to
describe the nonlinear isotropic hardening, 𝜎 is assumed to
be an increasing function of the equivalent plastic strain 𝜀eq𝑝 ,
defined at any time, 𝑡, as follows:

𝜀
eq
𝑝
(𝑡) = ∫

t

−∞


�̇�𝑝 (𝜏)


d𝜏. (6)

The rate of the plastic strain is given by the associate flow rule;
that is,

�̇�𝑝 = ̇𝜂 (
𝜕𝑓

𝜕𝑠
)

𝑠=dev𝜎
, (7)

where ̇𝜂 is the plastic multiplier, satisfying the conditions

̇𝜂 ≥ 0,

𝑓 (𝜎, 𝜀
eq
𝑝
) ≤ 0,

̇𝜂𝑓 (𝜎, 𝜀
eq
𝑝
) = 0.

(8)

3.3. Buckling Analysis. In order to determine the bifurcation
load for a circular cylindrical shell withmean radius𝑅, length
𝐿, and uniform thickness ℎ, subject to combined axial tension
and uniform external pressure, let 𝑥 be the axis of the shell
and 𝑟 the radial direction. Then, the angle 𝜃 ∈ [0, 2𝜋] defines
a set of cylindrical coordinates for the shell; see Figure 3.

At any point within the shell 𝑧 is the distance of the
point from the middle surface of the shell, which is taken
positive if the point is on the outer side of the middle
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surface. The components of the velocity with respect to the
above cylindrical coordinates at the considered point may be
written as follows:

V𝑥 = 𝑢+ 𝑧𝜔𝜃,

V𝜃 = V− 𝑧𝜔𝑥,

V𝑟 = 𝑤,

(9)

where 𝑢, V, and 𝑤 denote the velocities at the middle surface
in 𝑥, 𝜃, and radial directions, respectively, and 𝜔𝑥 and 𝜔𝜃

indicate the rotational velocities of the normal to the middle
surface about the positive 𝑥- and 𝜃-axes, respectively.

In the realm of the thin-shell theory,𝜔𝑥 and𝜔𝜃 are related
to the midsurface velocities components as follows:

𝜔𝑥 =
1
𝑅
(
𝜕𝑤

𝜕𝜃
− V) ,

𝜔𝜃 = −
𝜕𝑤

𝜕𝑥
.

(10)

At the onset of bifurcation different modes of deformation
can be found as a solution of the rate problem. A key
assumption is to characterise such modes of deformation
with the following harmonic expressions for 𝑢, V, and
𝑤:

𝑢 = 𝑈 cos (𝜇𝜉) sin (𝑚𝜃) ,

V = 𝑉 sin (𝜇𝜉) cos (𝑚𝜃) ,

𝑤 = 𝑊 sin (𝜇𝜉) sin (𝑚𝜃) ,

(11)

where 𝑈, 𝑉, and 𝑊 are arbitrary constants, 𝜇 = 𝑛𝜋𝑅/𝐿,
𝜉 = 𝑥/𝑅, and 𝑛 and 𝑚 are two positive integers. 𝑛 represents
the number of half-waves along the generator of the cylinder
and 𝑚 denotes the number of waves in the circumferential
direction.

The constitutive equations of the flow and deformation
theories are based on the Jaumann stress rate as follows [12]:

�̇�𝑥𝑥 =
𝐸

1 + ]
(𝛼 ̇𝜀𝑥𝑥 +𝛽 ̇𝜀𝜃𝜃) ,

�̇�𝜃𝜃 =
𝐸

1 + ]
(𝛽 ̇𝜀𝑥𝑥 + 𝛾 ̇𝜀𝜃𝜃) ,

̇𝜏𝑥𝜃 =
𝐸

1 + ]
(
2 + 2]
𝐸

𝐺 ̇𝜀𝑥𝜃) ,

(12)

where 𝐸 is the elastic modulus, 𝐺 is the effective shear
modulus, and ] is the Poisson ratio for the material.

In the present case, for the case of the flow theory based
on Prandtl-Reuss equations, it is

𝛼 =
1 + ]
𝜌

[4− 3(1−
𝐸𝑡

𝐸
)
𝜎𝑥𝑥

2

𝜎
2 ] ,

𝛽 =
1 + ]
𝜌

[2− 2 (1− 2])
𝐸𝑡

𝐸
− 3(1−

𝐸𝑡

𝐸
)
𝜎𝑥𝑥𝜎𝜃𝜃

𝜎
2 ] ,

𝛾 =
1 + ]
𝜌

[4− 3(1−
𝐸𝑡

𝐸
)
𝜎𝜃𝜃

2

𝜎
2 ] ,

𝜌 = (5− 4]) − (1− 2])2
𝐸𝑡

𝐸

− 3 (1− 2]) (1−
𝐸𝑡

𝐸
)
𝜎𝑥𝑥𝜎𝜃𝜃

𝜎
2 ,

𝐺 =
𝐸

2 (1 + ])
.

(13)

On the other hand, for the case of the deformation theory
based on Hencky equations, it is

𝛼 =
1 + ]
𝜌

[4− 3(1−
𝐸𝑡

𝐸𝑠

)
𝜎𝑥𝑥

2

𝜎
2 ] ,

𝛽 =
1 + ]
𝜌

[2− 2 (1− 2])
𝐸𝑡

𝐸
− 3(1−

𝐸𝑡

𝐸𝑠

)
𝜎𝑥𝑥𝜎𝜃𝜃

𝜎
2 ] ,

𝛾 =
1 + ]
𝜌

[4− 3(1−
𝐸𝑡

𝐸𝑠

)
𝜎𝜃𝜃

2

𝜎
2 ] ,

𝜌 = 3 𝐸
𝐸𝑠

+ (1− 2]) [2− (1− 2])
𝐸𝑡

𝐸

− 3(1−
𝐸𝑡

𝐸𝑠

)
𝜎𝑥𝑥𝜎𝜃𝜃

𝜎
2 ] ,

𝐺 =
𝐸

2 (1 + ]) + 3 (𝐸/𝐸𝑠 − 1)
.

(14)

Since the material obeys the von-Misses yield criterion, the
effective stress 𝜎 is written, under the assumption of plane
stress (i.e., 𝜎𝑟𝑟 = 𝜏𝑧𝑟 = 𝜏𝑧𝜃 = 0), as follows:

𝜎
2
= 𝜎𝑥𝑥

2
−𝜎𝑥𝑥𝜎𝜃𝜃 +𝜎𝜃𝜃

2
. (15)

Setting 𝜎𝑥𝑥 = 𝜎𝑡 and 𝜎𝜃𝜃 = −𝑃𝑅/ℎ at the point of bifurcation,
it is

𝜎
2
= 𝜎𝑡

2
+𝜎𝑡

𝑃𝑅

ℎ
+(

𝑃𝑅

ℎ
)

2
. (16)
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The ratios of the elasticmodulus𝐸 to the tangentmodulus,𝐸𝑡,
and to the secant modulus, 𝐸𝑠, are expressed by the Ramberg
and Osgood relationship as

𝐸

𝐸𝑡

= 1+ 𝛼𝑛𝜎
𝑛−1

𝜎𝑦
𝑛−1 , (17)

𝐸

𝐸𝑠

= 1+ 𝛼

𝜎𝑦
𝑛−1𝜎
𝑛−1

. (18)

Under the assumption that the cylinders are simply supported
at both ends and following the same line of reasoning as in
[12], the equilibrium equations at the bifurcation point lead
to the following set of buckling equations in the unknown
constants 𝑈, 𝑉, and𝑊:

[𝛼𝜇
2
+(

1 + ]
𝐸

𝐺− 𝑞)𝑚
2
]𝑈−(

1 + ]
𝐸

𝐺+𝛽)𝜇𝑚𝑉

− (𝛽+ 𝑞) 𝜇𝑊 = 0,

− (
1 + ]
𝐸

𝐺+𝛽)𝜇𝑚𝑈+[(
1 + ]
𝐸

𝐺𝜇
2
+ 𝛾𝑚

2
+𝜇

2
𝑠)

+ 𝑘 (
4 + 4]
𝐸

𝐺𝜇
2
+ 𝛾𝑚

2
)]𝑉+ [𝛾𝑚

+𝑘𝑚{(
4 + 4]
𝐸

𝐺+𝛽)𝜇
2
+ 𝛾𝑚

2
}]𝑊 = 0,

− (𝛽 + 𝑞) 𝜇𝑈+{𝛾𝑚

+𝑘𝑚[(
4 + 4]
𝐸

𝐺+𝛽)𝜇
2
+ 𝛾𝑚

2
]}𝑉+{𝛾+𝜇

2
𝑠

− (𝑚
2
− 1) 𝑞

+ 𝑘 [𝛼𝜇
4
+(

4 + 4]
𝐸

𝐺+ 2𝛽)𝜇2𝑚2
+ 𝛾𝑚

4
]}𝑊

= 0,

(19)

and a sufficient condition for bifurcation to take place is that
the following characteristic equation is satisfied:

𝐴+𝐵𝑘 = 𝐶𝑠 +𝐷𝑞, (20)

where 𝑠 and 𝑞 are related to the applied average axial stress
and external pressure, respectively, and 𝑘 is a geometry-
dependent parameter as follows:

𝑠 = (1+ ])
𝜎𝑡

𝐸
,

𝑞 = (1+ ]) 𝑃𝑅
𝐸ℎ

,

𝑘 =
ℎ
2

12𝑅2 .

(21)

It is worth noticing that (20) is obtained by neglecting the
higher-order terms which involve the square and products of
𝑠, 𝑞, and 𝑘. 𝐴, 𝐵, 𝐶, and 𝐷 are obtained in such a way that

(20) is valid for the case of combined axial tensile stress and
external pressure and the use of both flow and deformation
theories of plasticity.

It is

𝐴 =
𝐺𝜇

4

𝐸
(−𝛽

2
+𝛼𝛾−𝛽

2]+𝛼𝛾]) ,

𝐵 =
1
𝐸2 {−𝐸

2
𝑚

2
(𝛽

2
−𝛼𝛾) 𝜇

2
[(−1+𝑚2

)
2
𝛾

+ 2 (−1+𝑚2
) 𝛽𝜇

2
+𝛼𝜇

4
] +𝐸𝐺 (1+ ]) [𝑚4

(−1

+𝑚
2
)
2
𝛾
2
+ 2 ((−2+ 5𝑚2

− 4𝑚4
) 𝛽

2
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𝜇
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−𝑚
4
(𝛾 + 2𝛽𝜇2)]} .

(22)

From (20) it follows that

𝑞 =
(𝐴 + 𝐵𝑘 − 𝐶𝑠)

𝐷
. (23)

Consequently, for sequential values of 𝑚 and 𝑛, a series
of corresponding values of the external pressure, 𝑃, can be
obtained. The smallest value of 𝑃 and the corresponding
determinations of𝑚 and 𝑛 provide the buckling pressure and
the corresponding buckling mode.

4. Results and Discussion

Using the Ramberg-Osgood input parameters reported in
Table 1, the buckling pressures and corresponding buckling
modes have been analytically calculated using (23) and
reported in Table 3, using both the flow and deformation
theories. The smallest eigenvalue in all the examined cases
corresponds to 𝑛 = 1, which means that only one half-wave
is formed in the longitudinal direction of the cylinder axis.

Table 2 collects the results from a subset of experimental
tests and BOSOR5 numerical analyses [5, 6].The results have
been chosen to represent cases in which the flow theory of
plasticity, according to BOSOR5, does not provide a buckling
load or strongly overestimates the ones from tests and cases in
which there is agreement between the flow and deformation
theory of plasticity.



Mathematical Problems in Engineering 7

Table 2: Experimental versus BOSOR5 results (NA = not available).

Sp.

Experimental results BOSOR5 results: deformation theory BOSOR5 results: flow theory

Number of
waves

Axial tension
(N)

External
pressure
(MPa)

Number of
waves

Buckling
pressure
(MPa)

Number of
waves

Buckling
pressure
(MPa)

S1 NA 17960 4.07 NA 5.65 NA NA
S2 NA 0 12.76 NA 13.29 NA 13.15
S5 NA 12010 8.28 NA 8.63 NA NA
M2 NA 10670 8.14 NA 7.75 NA NA
SP.1-Set B 4 0 5.26 5 5.98 5 6.22
SP.6-Set B 4 11771 3.00 5 3.32 4 6.20
SP.3-Set A 5 2341 6.27 5 6.25 4 6.49

Table 3: Numerical versus analytical results.

Sp.

Numerical results
(ABAQUS): deformation

theory

Numerical results
(ABAQUS): flow theory

Analytical results:
deformation theory

Analytical results: flow
theory

Number of
waves

Buckling
pressure
(MPa)

Number of
waves

Buckling
pressure
(MPa)

Number of
waves

Buckling
pressure
(MPa)

Number of
waves

Buckling
pressure
(MPa)

S1 4 5.53 4 5.64 4 5.29 2 16.24
S2 6 13.14 6 13.15 4 13.24 4 13.28
S5 4 8.73 4 8.83 4 8.56 2 11.02
M2 3 7.84 3 7.87 4 7.75 4 7.91
SP.1-Set B 4 5.09 4 5.15 5 5.32 5 5.44
SP.6-Set B 4 2.91 4 3.22 4 2.75 3 5.36
SP.3-Set A 5 5.25 5 5.28 4 6.00 4 6.27

Table 3, along with the analytical results from the pre-
sented treatment, shows the results from nonlinear FE analy-
ses obtained by means of the commercial package ABAQUS
[8, 13].

It is immediate to notice that the analytical treatment,
differently from BOSOR5, always provides a value of the
buckling pressure, albeit sometimes very different from the
experimental results.

This is not surprising, given that the difference between
the two theories lies, in the proposed procedure, only in the
adoption of different values for the expressions of 𝛼, 𝛽, and 𝛾,
(13) and (14), respectively.

On the contrary, the bifurcation load and the correspond-
ing buckling mode are determined in BOSOR5 through
a sequence of two subsequent analyses [7]. The first is
a nonlinear prebuckling analysis which is valid for small
strains and moderately large rotations and accounts for
material nonlinearity.This nonlinear problem is solved using
a strategy in which nested iteration loops are applied at each
load level. The inner loop is used to resolve the nonlinear
behaviour caused by the moderate large displacements using
the Newton-Raphson method, and the outer loop is used
to calculate the constitutive matrix and the plastic strain
components. Loading and unloading status are checked itera-
tively bymeans of a subincremental strategy.The results from
this first step are then used for the eigenvalue analysis. It is

important to point out that BOSOR5 applies a discretization
only to the longitudinal direction because the displacements
are axisymmetric in the prebuckling phase and the buckling
mode is assumed to vary harmonically in the circumferential
direction.

As a result, BOSOR5 routines do not point to a buckling
load in the cases of specimens S1, S2, S5, and M2 tested by
Blachut et al. [5].

The numerical analyses conducted by means of the
nonlinear FE code ABAQUS [8, 13], instead, lead to the
correct determination of the buckling loads, in accordance
with the experimental results, both for the deformation and
the flow theory of plasticity.

Themain finding from the presented analytical treatment
is that when the buckling modes coincide using either the
deformation or the flow theory, that is, in the case of
specimens S2, M2, SP.1-Set B, and SP.3-Set A, the buckling
loads are the same and in line with the experimental and FE
results. When the buckling modes do not coincide in the case
of the deformation or of the flow theory of plasticity, then the
buckling loads provided by the flow theory of plasticity are
much higher than those provided by the deformation theory;
see specimens S1, S5, and SP.6-Set B.

It is worth pointing out that the buckling modes yielded
by the presented analytical analysis do not need to coincide
with those by the FE analyses or by the experimental results
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Figure 4: 3D isometric views of the deformed shapes and von Mises stress contour plots at the ultimate pressure for specimen S2 (a) and
specimen SP.3-Set A (b).

(a) Buckling shape by FE (ABAQUS)
using either the flow or deformation
theory

(b) Buckling shape by the analytical treat-
ment using flow theory

(c) Buckling shape by the analytical treat-
ment using deformation theory

Figure 5: Specimen S2 [5]: comparison between buckling shapes from different methods.

in order to lead to the same value of the buckling pressure.
This is the case, for example, of specimens S2 [5] and SP.3-Set
A [6], as shown in Figures 4, 5, and 6.

Also this is not surprising, given that the kinematics in the
FE approach is far less constrained than that in the analytical
one [3].

Overall the presented investigation suggests that, also
in the case of nonproportional loading, there is actually no
plastic buckling paradox. In fact, when the buckling shapes
coincide, the analytical treatment of the problembased on the
flow theory of plasticity leads to predictions of the buckling
load which are very close to the corresponding test results.
This is again in contrast with the conclusions by other authors
and with the widely accepted belief that the flow theory leads

to a significant overestimation of the buckling stress while the
deformation theory leads tomuchmore accurate predictions.

The discrepancy between the results from the analytical
use of the deformation or of the flow theory of plasticity
arises instead when the buckling modes do not coincide.
This can be related to the phenomenon of change in buckle
patterns in elastic structures studied by Chilver [15], Supple
[16], and Guarracino et al. [17–19], among others. The
phenomenon can be attributed to an interference between
the geometrical and material properties, which can induce
a change of the collapsing modes. In such a case, it might
happen that adopting the deformation theory of plastic-
ity contributes to counterbalancing the enhanced stiffness
induced by kinematically constraining the cylinders to follow
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(a) Buckling shape by FE (ABAQUS)
using either the flow or deformation
theory

(b) Buckling shape by the analytical
treatment using flow theory

(c) Buckling shape by the analytical
treatment using deformation theory

Figure 6: Specimen SP.3-Set A [6]: comparison between buckling shapes from different methods.

predefined buckling modes, thus providing results that are
only apparently more in line with the experimental findings.

Once again, this does not happen in the case of carefully
constructed and validated nonlinear FE analyses [8].

5. Conclusions

An analytical analysis of the plastic buckling of cylinders
subjected to nonproportional loading, that is, axial tensile
load and external pressure, has been presentedwith the aimof
providing further understanding of the apparent discrepancy
between the predictions of the flow and deformation theories
of plasticity. By comparing the analytical results with experi-
mental and numerical results, the following conclusions may
be drawn:

(i) The numerical FE predictions based on the flow
theory of plasticity [8] are in good agreement with
the experimental results. This is in contrast to the
conclusions by other authors that the flow theory, as
in the case of BOSOR5 code results, leads to incorrect
predictions of plastic strains and buckling pressures
while the deformation theory leads to much more
accurate predictions.

(ii) The buckling loads calculated analytically using both
the flow and deformation theories of plasticity often
match those obtained numerically by using the code
BOSOR5.

(iii) The root of the apparent discrepancy seems to be a
change in the buckling modes induced in some cases
by the different material stiffness provided by the
deformation and flow theories of plasticity. In such
cases there is an apparent overestimation of the buck-
ling loads by the flow theory while the deformation
theory counterbalances the excessive kinematic stiff-
ness of the cylinder due to a constrained kinematics.

The conclusion of the present investigation is that also in
the case of cylinders subjected to nonproportional actually
there seems to be no plastic buckling paradox.
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