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This paper is concerned with the periodic switched control of a linear dual-rate sampled-data system. The state variables of the
continuous-time plant are sampled by two types of sensors. The ratio of two sampling rates is assumed to be a rational number.
Depending on whether the sampled-data of state variables at two sampling rates is available simultaneously or separately, a periodic
switched controller is constructed. Applying an input delay approach, the closed-loop system is modeled as a switched system with
subsystems having different input delays. Some delay-dependent criteria for the H

∞
performance of the switched system and the

existence of the switched controller are derived by employing a Lyapunov-Krasovskii functional that includes information about
two sampling periods. The dual-rate sampled-data control of a vehicle dynamic system is given to show that the proposed method
is effective and it can achieve a better H

∞
control performance than the single-rate design method.

1. Introduction

Sampled-data control of continuous-time practical systems,
especially complex industrial systems, offers several advan-
tages such as flexibility, low cost, and increased reliability
[1, 2]. In a sampled-data control system, where a continuous-
time plant is controlled with a digital controller, the sampling
rate is a critical design parameter. The choice of the sampling
rate mainly depends on some factors like bandwidth and
response time of closed-loop systems, physical limitations
of sensors and actuators, and the effect of the noise. The
sampling rate must be chosen as fast as possible to ensure
the high precision and the fast response time of the system
but as slow as possible to satisfy the hardware limits and to
eliminate the effect of the noise on the control input. Taking
these factors into account, the effective range of the sampling
rate is determined.

In many industrial applications, it is impractical to sam-
ple all physical signals uniformly at one single-rate, which
demands a multirate sampling scheme. For instance, for an
industrial vehicle, laser sensors are used to measure the
heave position and the heave velocity, and gyrometers are
chosen to measure the angular velocity and the heading
angle [3]. Due to the sensor restrictions and the control
performance requirement, it is often necessary to sample

the signals for different types of sensors at different sampling
rates. The multirate sampling technique has received much
attention since the early 1950s. Compared with the single-
rate sampling scheme, the use of the multirate sampling
technique is of two main benefits: (i) it may improve the
performance such as improving the transient systembehavior
and enhancing the disturbance rejection property and (ii) it
can provide a better tradeoff between the systemperformance
and the implementation cost, which can be achieved by using
analog-to-digital converters and digital-to-analog converters
at different rates. Motivated by these benefits, much work
has been done to deal with system modeling and identifica-
tion, stability analysis, and controller synthesis of multirate
sampled-data systems in the past few decades [3–12]. For
example, in [4], a general framework of a multirate sampled-
data control system is presented using nest operators and
nest algebras, and an 𝐻

∞
suboptimal controller satisfying

causality constraint is designed by the lifting technique, in
which the outputs 𝑦

𝑖
(𝑡) (𝑖 = 1, 2, . . . , 𝑝) and the control

inputs 𝑢
𝑖
(𝑡) (𝑖 = 1, 2, . . . , 𝑞) are paired with sampling periods

ℎ
𝑠
= 𝑚
𝑖
ℎ and holding periods ℎ

𝑢
= 𝑛
𝑖
ℎ, respectively, where

𝑚
𝑖
∈ N+ (𝑖 = 1, 2, . . . , 𝑝), 𝑛

𝑖
∈ N+ (𝑖 = 1, 2, . . . , 𝑞), N+

is the set of positive integers, and ℎ is the base sampling
period. Based on this framework, some particular cases of
the multirate sampled-data systems are considered in [5–15].
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More specifically, when the multirate sampled-data system
involves a fast sampling rate 1/ℎ

𝑠
and a slow control input

rate 1/ℎ
𝑢
(i.e., 𝑛/ℎ

𝑢
= 1/ℎ

𝑠
(𝑛 ∈ N+)), a new multirate

sampling method for acceleration control is proposed in [9];
on the other hand, when the multirate sampled-data system
involves a slow sampling rate 1/ℎ

𝑠
and a fast control input

rate 1/ℎ
𝑢
(i.e., 𝑛/ℎ

𝑠
= 1/ℎ

𝑢
), some estimation and/or control

problems for several practical systems such as polymer
reactors [10], visual servo control systems [11, 12], read-write
arm of the hard disk drive [13, 14], and a pilot plant [15]
are addressed. It should be mentioned that for the multirate
sampling scheme with ℎ

𝑢
> ℎ
𝑠
, in [9], the control signal

is calculated by output measurement at each sampling rate
1/ℎ
𝑠
, but only the one produced at the input rate 1/ℎ

𝑢
is

implemented. Although such a multirate scheme is effective
in the realization of acceleration control in wide bandwidth,
some of the output measurements may not be used to update
the control actuation in time; for the multirate sampling
scheme with ℎ

𝑢
< ℎ
𝑠
in [3, 5–8, 10–15], the control signal

is calculated recursively at each input rate 1/ℎ
𝑢
only using

the available data at each sampling rate 1/ℎ
𝑠
. Moreover, using

the lifting technique, the multirate sampled-data system is
converted into an equivalent discrete-time single-rate time-
invariant system in [3, 5–8, 10–15]. However, the equivalent
conversion is not readily applicable to the continuous-time
systems with polytopic uncertainties [16–18]. In [16], an input
delay approach is proposed to investigate the sampled-data
stabilization of linear systems, which can be extended to deal
with the sampled-data control for systems with polytopic
uncertainties and the networked control systems [19–24].
Most of the existing results developed by using the input
delay approach, such as [16–18], have been largely focused
on the sampled-data control of single-rate sampled-data
systems. However, there are few results available on the dual-
rate or multirate sampled-data control of a continuous-time
system using the input delay approach except [20, 25], which
provides the main motivation of the current study. In [20],
exponential stability and the induced 𝐿2-gain of networked
control systems are investigated, in which the sampled-data
via dual-rate samplings are transmitted one after another
by introducing a Round-Robin scheduling protocol. In [25],
multirate sampled-data systems are modeled as systems with
multiple input delays by reordering the updating instants,
and some stability and stabilization conditions are established
in terms of linear matrix inequalities. Without reordering
sensor instants [20] or updating instants [25], this paper
attempts to apply the input delay approach for a dual-rate
sampled-data control system.

In this paper, we apply the input delay approach to inves-
tigate the periodic switched control of a linear continuous-
time system system with two different sampling rates 1/ℎ1
and 1/ℎ2, where the sampling periods ℎ1 and ℎ2 satisfy
ℎ1 < ℎ2 and 𝑙1ℎ1 = 𝑙2ℎ2, with 𝑙𝑖 (𝑖 = 1, 2) being two
positive integers, 𝑙

𝑖
ℎ
𝑖
being the unique basic time period, and

{𝑙1, 𝑙2} having no common factors greater than unity. Once
the sampled-data of the state variable 𝑥1(𝑘ℎ1) or 𝑥2(𝑘ℎ2) is
available, the control input is computed to update the system.
Depending on whether the sampled-data of state variables at
two sampling rates are available simultaneously or separately,

a periodic switched controller with three switching modes is
constructed to implement the sampled-data control. Using
such a controller and the input delay approach, the resulting
closed-loop system is modeled as a switched system with
subsystems that have different input delays. A Lyapunov-
Krasovskii functional that involves information about two
sampling periods is constructed to derive some delay-
dependent criteria for the 𝐻

∞
performance of the switched

system and the existence of the periodic switched controller.
Comparing with the existing results for multirate sampled-
data systems based on lifting technique [3–15], the proposed
results can be trivially extended to handle the multirate
sampled-data systems or networked control systems with
polytopic uncertainties. The effectiveness of the proposed
method and its advantage over a single-rate sampled-data
control is shown by performing the dual-rate sampled-data
control of a vehicle system.

Notation.The superscript “𝑇” stands for the transposition of a
vector or amatrix.R𝑛 is the 𝑛 dimensional Euclidean space.N
is the set of nonnegative integers and N+ is the set of positive
integers. For symmetric matrices 𝑃 and 𝑄, 𝑃 ≤ 𝑄 (resp., 𝑃 <
𝑄) means that 𝑃 − 𝑄 is negative semidefinite matrix (resp.,
negative definitematrix).𝜆max(𝑃) is themaximumeigenvalue
of a symmetric matrix 𝑃. We use an asterisk “∗” to denote
a term induced by symmetry and diag{⋅ ⋅ ⋅ } to denote the
block-diagonal matrix. The space of square-integrable vector
functions over [𝑡0,∞) is denoted byL2[𝑡0,∞).

2. Modeling of a Dual-Rate Sampled-Data
System with a Switched Controller

Consider the linear system described by

�̇� (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) + 𝐸𝜔 (𝑡) ,

𝑧 (𝑡) = 𝐶𝑥 (𝑡) +𝐷𝜔 (𝑡) ,

(1)

where 𝑥(𝑡) ∈ R𝑛, 𝑢(𝑡) ∈ R𝑚, and 𝑧(𝑡) ∈ R𝑝 are the state,
the control input, and the controlled output, respectively;
𝜔(𝑡) ∈ R𝑞 is the external disturbance acting on system (1)
and 𝜔(𝑡) ∈ L2[𝑡0,∞); 𝑥(𝑡0) = 𝑥0 is the initial state; 𝐴, 𝐵, 𝐶,
𝐷, and 𝐸 are constant matrices of appropriate dimensions. It
is assumed that all state variables of system (1) are sampled
by two different types of sensors. Let 𝑥(𝑡) = [𝑥𝑇1 (𝑡) 𝑥

𝑇

2 (𝑡)]
𝑇,

where 𝑥1(𝑡) = [𝑥
𝑇

1,1(𝑡) 𝑥
𝑇

1,2(𝑡) ⋅ ⋅ ⋅ 𝑥
𝑇

1,𝑝1(𝑡)]
𝑇

∈ R𝑝1 , 𝑥2(𝑡) =
[𝑥
𝑇

2,1(𝑡) 𝑥
𝑇

2,2(𝑡) ⋅ ⋅ ⋅ 𝑥
𝑇

2,𝑝2(𝑡)]
𝑇

∈ R𝑝2 , and 𝑝1 + 𝑝2 = 𝑛.
Without loss of generality, we assume that 𝑥1(𝑡) and 𝑥2(𝑡) are
paired with two sampling periods ℎ1 and ℎ2, respectively, and
𝑙1ℎ1 = 𝑙2ℎ2 (ℎ1 ≤ ℎ2), where 𝑙𝑖 ∈ N+ (𝑖 = 1, 2) and 𝑙1 ≥ 𝑙2.
Then the sequences of sampled-data of the state variables
𝑥1(𝑡) and 𝑥2(𝑡) are {𝑥1(𝑘ℎ1) : 𝑘 ∈ N} and {𝑥2(𝑘ℎ2) : 𝑘 ∈ N}.

In the proposed dual-rate sampling scheme, once 𝑥1(𝑘ℎ1)
or 𝑥2(𝑘ℎ2) is available, the control signal is computed imme-
diately for input update. By taking full advantage of 𝑥1(𝑘ℎ1)
and 𝑥2(𝑘ℎ2) (𝑘 ∈ N) in a real-time way, we construct the
following switched controller, which is shown in Figure 1:

𝑢 (𝑡
+

) = 𝐹1,𝜎(𝑡)𝑥1 (𝑘ℎ1) + 𝐹2,𝜎(𝑡)𝑥2 (𝑘ℎ2) , ∀𝑘 ∈ N, (2)
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Figure 1: The multirate sampled-data system architecture using a
digital switched controller.

where 𝐹
𝜎(𝑡)

= [𝐹1𝜎(𝑡) 𝐹2𝜎(𝑡)] are the control gain matrices to
be determined and 𝜎(𝑡) : [0,∞) → S = {1, 2, 3} is the
switching signal. Notice that there are three cases of available
sampled-data of the state variables for control computation of
the controller (2): (i) both 𝑥1(𝑘ℎ1) and 𝑥2(𝑘ℎ2) are available,
(ii) only𝑥1(𝑘ℎ1) is available, and (iii) only𝑥2(𝑘ℎ2) is available.
Define the switching rules as follows. Set 𝜎(𝑡) = 1 when
𝑥1(𝑘ℎ1) and 𝑥2(𝑘ℎ2) are available simultaneously, 𝜎(𝑡) = 2
when only 𝑥1(𝑘ℎ1) is available, and 𝜎(𝑡) = 3 when only
𝑥2(𝑘ℎ2) is available, respectively.

Due to the fact that 𝑙1ℎ1 = 𝑙2ℎ2, the interval of the control
input is [𝑘𝑙1ℎ1, (𝑘 + 1)𝑙1ℎ1) or equally [𝑘𝑙2ℎ2, (𝑘 + 1)𝑙2ℎ2) (𝑘 ∈
N). Define 𝑚

𝑖
= max{𝑘 | 𝑘ℎ1 − 𝑖ℎ2 < 0, 0 < 𝑘 < 𝑙1, 𝑘 ∈

N} (𝑖 = 1, 2, . . . , 𝑙2) and𝑚0 = 0. Based on the switching rules
of controller (2), we propose the following interval partition:

[𝑘𝑙1ℎ1, (𝑘 + 1) 𝑙1ℎ1) = I1 ∪I2 ∪ ⋅ ⋅ ⋅ ∪I𝑚]−1+]

∪I
𝑚]−1+]+1 ∪ ⋅ ⋅ ⋅ ∪I𝑚]+] ∪ ⋅ ⋅ ⋅

∪I
𝑚
𝑙2−1+𝑙2

∪ ⋅ ⋅ ⋅ ∪I
𝑚
𝑙2+𝑙2
,

(3)

where

I
𝑚]−1+] = [𝑘𝑙1ℎ1 + (]− 1) ℎ2, (𝑘𝑙1 +𝑚]−1 + 1) ℎ1) ,

I
𝑚]−1+]+1

= [(𝑘𝑙1 +𝑚]−1 + 1) ℎ1, (𝑘𝑙1 +𝑚]−1 + 2) ℎ1) ,

.

.

. ,

I
𝑚]+] = [(𝑘𝑙1 +𝑚]) ℎ1, 𝑘𝑙1ℎ1 + ]ℎ2) ,

] = 1, 2, . . . , 𝑙2.

(4)

To clearly show the partition process, a special case for the
interval partition of [𝑘𝑙1ℎ1, (𝑘 + 1)𝑙1ℎ1) with 𝑙1 = 8 and 𝑙2 = 3
is depicted by Figure 2.

Considering interval partition (3) and the availability of
𝑥1(𝑘ℎ1) and 𝑥2(𝑘ℎ2), one can see that switching controller (2)
is periodically activated on the time instants {𝑘𝑙1ℎ1 + (𝑚𝑖−1 +
1)ℎ1, 𝑘𝑙1ℎ1+(𝑖−1)ℎ2, 𝑖 = 1, . . . , 𝑙2}

∞

𝑘=0.Then the control input
can be described by

𝑢 (𝑡) =

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

𝐹11𝑥1 (𝑘𝑙1ℎ1) + 𝐹21𝑥2 (𝑘𝑙1ℎ1) , 𝑡 ∈ I1, 𝜎 (𝑡) = 1

𝐹12𝑥1 ((𝑘𝑙1 + 1) ℎ1) + 𝐹22𝑥2 (𝑘𝑙1ℎ1) , 𝑡 ∈ I2, 𝜎 (𝑡) = 2

.

.

.

𝐹12𝑥1 ((𝑘𝑙1 + 𝑚1) ℎ1) + 𝐹22𝑥2 (𝑘𝑙1ℎ1) , 𝑡 ∈ I
𝑚1+1, 𝜎 (𝑡) = 2

𝐹13𝑥1 ((𝑘𝑙1 + 𝑚1) ℎ1) + 𝐹23𝑥2 (𝑘𝑙1ℎ1 + ℎ2) , 𝑡 ∈ I
𝑚1+2, 𝜎 (𝑡) = 3

𝐹12𝑥1 ((𝑘𝑙1 + 𝑚1 + 1) ℎ1) + 𝐹22𝑥2 (𝑘𝑙1ℎ1 + ℎ2) , 𝑡 ∈ I
𝑚1+3, 𝜎 (𝑡) = 2

.

.

.

𝐹12𝑥1 ((𝑘𝑙1 + 𝑚]) ℎ1) + 𝐹22𝑥2 (𝑘𝑙1ℎ1 + (] − 1) ℎ2) , 𝑡 ∈ I
𝑚]+], 𝜎 (𝑡) = 2

𝐹13𝑥1 ((𝑘𝑙1 + 𝑚]) ℎ1) + 𝐹23𝑥2 (𝑘𝑙1ℎ1 + ]ℎ2) , 𝑡 ∈ I
𝑚]+]+1, 𝜎 (𝑡) = 3

𝐹12𝑥1 ((𝑘𝑙1 + 𝑚] + 1) ℎ1) + 𝐹22𝑥2 (𝑘𝑙1ℎ1 + (] − 1) ℎ2) , 𝑡 ∈ I
𝑚]+]+2, 𝜎 (𝑡) = 2

.

.

.

𝐹12𝑥1 ((𝑘𝑙1 + 𝑚𝑙2) ℎ1) + 𝐹22𝑥2 (𝑘𝑙1ℎ1 + (𝑙2 − 1) ℎ2) , 𝑡 ∈ I
𝑚
𝑙2+𝑙2
, 𝜎 (𝑡) = 2.

(5)
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Figure 2: A special case for the interval partition of [𝑘𝑙1ℎ1, (𝑘 + 1)𝑙1ℎ1) with 𝑙1 = 8 and 𝑙2 = 3.

Define the following input delays on the subintervals in (3):

𝑡 ∈ I
𝑚]−1+]:

𝜏
(1)
𝑚]−1+] (𝑡) = 𝑡 − (𝑘𝑙1 +𝑚]−1) ℎ1,

𝜏
(2)
𝑚]−1+] (𝑡) = 𝑡 − 𝑘𝑙1ℎ1 − (]− 1) ℎ2

𝑡 ∈ I
𝑚]−1+]+1:

𝜏
(1)
𝑚]−1+]+1 (𝑡) = 𝑡 − (𝑘𝑙1 +𝑚]−1 + 1) ℎ1,

𝜏
(2)
𝑚]−1+]+1 (𝑡) = 𝑡 − 𝑘𝑙1ℎ1 − (]− 1) ℎ2

.

.

.

𝑡 ∈ I
𝑚]+]:

𝜏
(1)
𝑚]+] (𝑡) = 𝑡 − (𝑘𝑙1 +𝑚]) ℎ1,

𝜏
(2)
𝑚]+] (𝑡) = 𝑡 − 𝑘𝑙1ℎ1 − (]− 1) ℎ2,

(6)

where ] = 1, 2, . . . , 𝑙2. It follows that

𝜎 (𝑡) = 1: 0 ≤ 𝜏1 (𝑡) < ℎ1, 𝑡 ∈ I1

𝜎 (𝑡) = 2:

0 ≤ 𝜏(1)
𝑖
(𝑡) < ℎ1, 0 ≤ 𝜏

(1)
𝑖
(𝑡) < 𝜏

(2)
𝑖
(𝑡) < ℎ2, 𝑡 ∈ I𝑖, 𝑖 = 𝑚]−1 + ] + 1, . . . , 𝑚] + ], ] = 1, 2, . . . , 𝑙2

𝜎 (𝑡) = 3: 0 ≤ 𝜏(2)
𝑚]−1+] (𝑡) < 𝜏

(1)
𝑚]−1+] (𝑡) < ℎ1, 𝑡 ∈ I𝑚]−1+], ] = 2, . . . , 𝑙2.

(7)

Using (1), (5), and (6), the resulting closed-loop system
can be described by

Σ
(1)
1 : �̇� (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝐹

1
𝑥 (𝑡 − 𝜏1 (𝑡)) + 𝐸𝜔 (𝑡) , 𝑡 ∈ I1, 𝜎 (𝑡) = 1,

Σ
(2)
2] : �̇� (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝐹2𝐼𝑝1𝑥 (𝑡 − 𝜏

(1)
𝑖
(𝑡)) + 𝐵𝐹

2
𝐼
𝑝2
𝑥 (𝑡 − 𝜏

(2)
𝑖
(𝑡)) + 𝐸𝜔 (𝑡) ,

𝑡 ∈

𝑚]+]

⋃

𝑚]−1+]+1
I
𝑖
, 𝑖 = 𝑚]−1 + ] + 1, . . . , 𝑚] + ], ] = 1, 2, . . . , 𝑙2, 𝜎 (𝑡) = 2,

Σ
(3)
2]−1: �̇� (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝐹3𝐼𝑝1𝑥 (𝑡 − 𝜏

(1)
𝑚]−1+] (𝑡)) + 𝐵𝐹3𝐼𝑝2𝑥 (𝑡 − 𝜏

(2)
𝑚]−1+] (𝑡)) + 𝐸𝜔 (𝑡) ,

𝑡 ∈ I
𝑚]−1+], ] = 2, . . . , 𝑙2, 𝜎 (𝑡) = 3,

(8)
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where 𝐼
𝑝1
= diag{𝐼

𝑝1×𝑝1
, 0}, 𝐼

𝑝2
= diag{0, 𝐼

𝑝2×𝑝2
} and 𝐼

𝑝1×𝑝1
and 𝐼

𝑝2×𝑝2
denote 𝑝1 × 𝑝1 and 𝑝2 × 𝑝2 identity matrices,

respectively.
The purpose of this paper is to investigate the periodic

switched control such that system (8) is exponentially stable
with a prescribed𝐻

∞
performance, which means that

(i) system (8) with 𝜔(𝑡) = 0 is exponentially stable; that
is, there exist constants 𝛽 > 0 and 𝜆 > 0 such that
‖𝑥(𝑡)‖

2
≤ 𝛽‖𝑥0‖𝑐1𝑒

−𝜆𝑡 for 𝑡 ≥ 0, where ‖𝑥
𝑡
‖
𝑐1 =

sup
−ℎ2≤𝑠≤0{‖𝑥(𝑡 + 𝑠)‖, ‖�̇�(𝑡 + 𝑠)‖} [23, 26];

(ii) ∫∞0 𝑒
−𝛼𝑠

𝑧
𝑇

(𝑠)𝑧(𝑠)𝑑𝑠 ≤ 𝛾
2
∫
∞

0 𝜔
𝑇

(𝑠)𝜔(𝑠)𝑑𝑠 can be
ensured for all nonzero 𝜔(𝑡) ∈ L2[0,∞) under the
zero initial condition 𝑥(𝑡) = 𝜙(𝑡) = 0 (𝑡 ∈ [−ℎ2, 0]),
where 𝛼 and 𝛾 are positive constants.

To end this section, we introduce the following lemma.

Lemma 1. For any constant matrices 𝑅 ∈ R𝑛×𝑛, 𝑆
𝑖
∈ R𝑛×𝑛

(𝑖 = 1, 2), R1 = [
𝑅 𝑆
𝑇

1
𝑆1 𝑅

] ≥ 0, R2 = [
𝑅 𝑆
𝑇

2
𝑆2 𝑅

] ≥ 0, and scalars
𝜏
𝑖
, 𝜏
𝑖
(𝑡) (𝑖 = 1, 2) satisfying 0 ≤ 𝜏1 ≤ 𝜏1(𝑡) < 𝜏2(𝑡) ≤ 𝜏2 and a

vector function �̇� : [−𝜏2, −𝜏1] → R𝑛 such that the integration
concerned is well defined, the following inequality holds:

− (𝜏2 − 𝜏1) ∫
𝑡−𝜏1

𝑡−𝜏2

�̇�
𝑇

(𝑠) 𝑅�̇� (𝑠) 𝑑𝑠 ≤ −

7
∑

𝑖=1
E
𝑖
, (9)

where

E1 = 𝑒
𝑇

3 (𝑡) 𝑅𝑒3 (𝑡) ,

E2 = 𝑒
𝑇

2 (𝑡) 𝑅𝑒2 (𝑡) ,

E3 = 𝑒
𝑇

1 (𝑡) 𝑅𝑒1 (𝑡) ,

E4 = 𝑒
𝑇

1 (𝑡) 𝑆
𝑇

1 𝑒2 (𝑡) ,

E5 = 𝑒
𝑇

2 (𝑡) 𝑆1𝑒1 (𝑡) ,

E6 = 𝑒
𝑇

2 (𝑡) 𝑆
𝑇

2 𝑒3 (𝑡) ,

E7 = 𝑒
𝑇

3 (𝑡) 𝑆2𝑒2 (𝑡) ,

𝑒1 (𝑡) = 𝑥 (𝑡 − 𝜏1) − 𝑥 (𝑡 − 𝜏1 (𝑡)) ,

𝑒2 (𝑡) = 𝑥 (𝑡 − 𝜏1 (𝑡)) − 𝑥 (𝑡 − 𝜏2 (𝑡)) ,

𝑒3 (𝑡) = 𝑥 (𝑡 − 𝜏2 (𝑡)) − 𝑥 (𝑡 − 𝜏2) .

(10)

Proof. If 𝜏1(𝑡) ≡ 𝜏1 (resp., 𝜏2(𝑡) ≡ 𝜏2), inequality (9) reduces
to be the one in Lemma 1 [27]. If 0 ≤ 𝜏1 ≤ 𝜏1(𝑡) < 𝜏2(𝑡) ≤ 𝜏2,
using Jensen inequality to obtain

− (𝜏2 − 𝜏1) ∫
𝑡−𝜏1

𝑡−𝜏2

�̇�
𝑇

(𝑠) 𝑅�̇� (𝑠) 𝑑𝑠

≤ −(1+ 𝛼1
𝛼2
)E1 −(1+

𝛼2
𝛼1
+
𝛼4
𝛼3
)E2

−(1+
𝛼3
𝛼4
)E3,

(11)

where

𝛼1 =
𝜏2 (𝑡) − 𝜏1
𝜏2 − 𝜏1

,

𝛼2 =
𝜏2 − 𝜏2 (𝑡)

𝜏2 − 𝜏1
,

𝛼3 =
𝜏2 − 𝜏1 (𝑡)

𝜏2 − 𝜏1
,

𝛼4 =
𝜏1 (𝑡) − 𝜏1
𝜏2 − 𝜏1

,

(12)

for anyR
𝑖
≥ 0 (𝑖 = 1, 2), the following inequalities hold:

[
[
[

[

√
𝛼3
𝛼4
𝑒1 (𝑡)

−√
𝛼4
𝛼3
𝑒2 (𝑡)

]
]
]

]

𝑇

R1
[
[
[

[

√
𝛼3
𝛼4
𝑒1 (𝑡)

−√
𝛼4
𝛼3
𝑒2 (𝑡)

]
]
]

]

≥ 0,

[
[
[

[

√
𝛼2
𝛼1
𝑒2 (𝑡)

−√
𝛼1
𝛼2
𝑒3 (𝑡)

]
]
]

]

𝑇

R2
[
[
[

[

√
𝛼2
𝛼1
𝑒2 (𝑡)

−√
𝛼1
𝛼2
𝑒3 (𝑡)

]
]
]

]

≥ 0.

(13)

It follows from (13) that

𝛼3
𝛼4

E3 +
𝛼4
𝛼3

E2 ≥ E4 +E5, (14)

𝛼2
𝛼1

E2 +
𝛼1
𝛼2

E1 ≥ E6 +E7. (15)

Combining (14) and (15), we obtain inequality (9). This
completes the proof.

3. 𝐻
∞

Performance Analysis and Periodic
Switched Controller Design

In this section, we first derive a delay-dependent criterion
such that system (8) is exponentially stable with prescribed
𝐻
∞

performance by using the Lyapunov-Krasovskii func-
tional method. Based on the derived performance criterion,
we establish the delay-dependent criterion on the existence of
a switched controller for system (8).

Proposition 2. Given 𝛾 > 0, ℎ2 > ℎ1 > 0, 𝑙1 > 𝑙2 > 0, 0 ≤
𝑎1 ≤ 𝑎2 ≤ 𝑎3 ≤ ((𝑙2 −2)𝑎1 +(𝑙2 +3)𝑎2)/(𝑙2 +1), 𝜇 ≥ 1 satisfying
ln(𝜇) < [(𝑎1(𝑙2 − 2) + 𝑎2(𝑙2 + 3) − 𝑎3(𝑙2 + 1))/𝑙2](ℎ2/2), and the
gain matrices 𝐹

𝑖
(𝑖 = 1, 2, 3), system (8) is exponentially stable

with a given 𝐻
∞

performance 𝛾 for any switching signal with
ln(𝜇) < [(𝑎1(𝑙2 − 2) + 𝑎2(𝑙2 + 3) − 𝑎3(𝑙2 + 1))/𝑙2](ℎ2/2), if there
exist matrices 𝑆1, 𝑆2, 𝑆𝑖,1, and 𝑆𝑖,2 (𝑖 = 2, 3) and symmetric
matrices 𝑃

𝑗
> 0,𝑄

𝑖𝑗
> 0, and 𝑅

𝑖𝑗
> 0 (𝑖 = 1, 2; 𝑗 = 1, 2, 3) such

that 𝑃2 ≤ 𝜇𝑃1, 𝑃1 ≤ 𝜇𝑃2, 𝑃2 ≤ 𝜇𝑃3, 𝑃3 ≤ 𝜇𝑃2, 𝑄𝑖2 ≤ 𝜇𝑄𝑖1,
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𝑄
𝑖1 ≤ 𝜇𝑄𝑖2, 𝑄𝑖2 ≤ 𝜇𝑄𝑖3, 𝑄𝑖3 ≤ 𝜇𝑄𝑖2, 𝑅𝑖2 ≤ 𝜇𝑅𝑖1, 𝑅𝑖1 ≤ 𝜇𝑅𝑖2,
𝑅
𝑖2 ≤ 𝜇𝑅𝑖3, 𝑅𝑖3 ≤ 𝜇𝑅𝑖2 (𝑖 = 1, 2), and

[
𝑅11 𝑆

𝑇

1

𝑆1 𝑅11
] ≥ 0, (16)

[
ℎ1𝑅12 − ℎ12𝑅22 𝑆

𝑇

2

𝑆2 ℎ1𝑅12 − ℎ12𝑅22
] ≥ 0, (17)

[
𝑅1𝑖 𝑆

𝑇

𝑖,1

𝑆
𝑖,1 𝑅1𝑖

] ≥ 0, (𝑖 = 2, 3) (18)

[
𝑅1𝑖 𝑆

𝑇

𝑖,2

𝑆
𝑖,2 𝑅1𝑖

] ≥ 0, (𝑖 = 2, 3) (19)

Ξ
(1)
< 0, 𝑡 ∈ I1, (20)

Ξ
(𝑖1)
< 0,

𝑡 ∈ I
𝑖
, 𝑖 = 𝑚]−1 + ] + 1, . . . , 𝑚] + ], ] = 1, 2, . . . , 𝑙2,

(21)

Ξ
(𝑖2)
< 0,

𝑡 ∈ I
𝑖
, 𝑖 = 𝑚]−1 + ], ] = 2, . . . , 𝑙2,

(22)

where

Ξ
(1)
=

[
[
[
[
[
[
[
[
[

[

Ξ
(1)
11 Ξ
(1)
12 Ξ
(1)
13 0 𝑃1𝐸 + 𝐶

𝑇

𝐷

∗ Ξ
(1)
22 Ξ
(1)
23 0 0

∗ ∗ Ξ
(1)
33 Ξ
(1)
34 0

∗ ∗ ∗ Ξ
(1)
44 0

∗ ∗ ∗ ∗ −𝛾
2
𝐼 + 𝐷
𝑇

𝐷

]
]
]
]
]
]
]
]
]

]

+Ψ
𝑇

1 (ℎ
2
1𝑅11 + ℎ

2
12𝑅21)Ψ1,

ℎ12 = ℎ2 − ℎ1,

Ξ
(1)
11 = 𝐴

𝑇

𝑃1 +𝑃1𝐴+𝑎1𝑃1 +𝑄11 −𝜎11𝑅11 +𝐶
𝑇

𝐶,

Ξ
(1)
12 = 𝑃1𝐵𝐹1 +𝜎11 (𝑅11 − 𝑆

𝑇

1 ) ,

Ξ
(1)
13 = 𝜎11𝑆

𝑇

1 ,

Ξ
(1)
22 = −𝜎11 (2𝑅11 − 𝑆

𝑇

1 − 𝑆1) ,

Ξ
(1)
23 = 𝜎11 (𝑅11 − 𝑆

𝑇

1 ) ,

Ξ
(1)
33 = −𝜎11𝑅11 −𝜎21𝑅21 +𝜎11 (𝑄21 −𝑄11) ,

Ξ
(1)
34 = 𝜎21𝑅21,

Ξ
(1)
44 = −𝜎21 (𝑅21 +𝑄21) ,

Ψ1 = [𝐴 𝐵𝐹
1
0 0 𝐸] ,

𝜎11 = 𝑒
−𝑎1ℎ1 ,

𝜎21 = 𝑒
−𝑎1ℎ2 ,

Ξ
(𝑖1)
=

[
[
[
[
[
[
[
[
[
[
[
[
[

[

Ξ
(𝑖1)
11 Ξ

(𝑖1)
12 Ξ

(𝑖1)
13 Ξ

(𝑖1)
14 0 Ξ

(𝑖1)
16

∗ Ξ
(𝑖1)
22 Ξ

(𝑖1)
23 Ξ

(𝑖1)
24 Ξ

(𝑖1)
25 0

∗ ∗ Ξ
(𝑖1)
33 0 Ξ

(𝑖1)
35 0

∗ ∗ ∗ Ξ
(𝑖1)
44 0 0

∗ ∗ ∗ ∗ Ξ
(𝑖1)
55 0

∗ ∗ ∗ ∗ ∗ Ξ
(𝑖1)
66

]
]
]
]
]
]
]
]
]
]
]
]
]

]

+Ψ
𝑇

2 (ℎ
2
1𝑅12 + ℎ

2
12𝑅22)Ψ2,

Ξ
(𝑖1)
11 = 𝐴

𝑇

𝑃2 +𝑃2𝐴+𝑎2𝑃2 +𝑄12 +𝐶
T
𝐶−𝜎22𝑅22

−𝜎12 (ℎ1𝑅12 − ℎ12𝑅22) ,

Ξ
(𝑖1)
12 = 𝑃2𝐵𝐹12 +𝜎12 (ℎ1𝑅12 − ℎ12𝑅22 − 𝑆

𝑇

2 )

+ 𝜎22 (𝑅22 − 𝑆
𝑇

2,1) ,

Ξ
(𝑖1)
13 = 𝑃2𝐵𝐹22 +𝜎22𝑆

𝑇

2,1,

Ξ
(𝑖1)
14 = 𝜎12𝑆

𝑇

2 ,

Ξ
(𝑖1)
22 = 𝜎12 (−2ℎ1𝑅12 + 2ℎ12𝑅22 + 𝑆

𝑇

2 + 𝑆2)

+ 𝜎22 (−2𝑅22 + 𝑆
𝑇

2,1 + 𝑆2,1) ,

Ξ
(𝑖1)
16 = 𝑃2𝐸+𝐶

𝑇

𝐷,

Ξ
(𝑖1)
23 = 𝜎22 (𝑅22 − 𝑆

𝑇

2,1 − 𝑆
𝑇

2,2) ,

Ξ
(𝑖1)
24 = 𝜎12 (ℎ1𝑅12 − ℎ12𝑅22 − 𝑆

𝑇

2 ) ,

Ξ
(𝑖1)
25 = 𝜎22𝑆

𝑇

2,2,

Ξ
(𝑖1)
33 = 𝜎22 (−2𝑅22 + 𝑆

𝑇

2,2 + 𝑆2,2) ,

Ξ
(𝑖1)
35 = 𝜎22 (𝑅22 − 𝑆

𝑇

2,2) ,

Ξ
(𝑖1)
44 = 𝜎12 (−ℎ1𝑅12 + ℎ12𝑅22) + 𝑒

−𝑎2ℎ1 (𝑄22 −𝑄12) ,

Ξ
(𝑖1)
55 = −𝜎22𝑅22 − 𝑒

−𝑎2ℎ2𝑄22,

Ξ
(𝑖1)
66 = − 𝛾

2
𝐼 +D𝑇𝐷,

Ψ2 = [𝐴 𝐵𝐹
12
𝐵𝐹
22

0 0 𝐸] ,

𝜎12 =
𝑒
−𝑎2ℎ1

ℎ1
,

𝜎22 =
𝑒
−𝑎2ℎ2ℎ12
ℎ2

,
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Ξ
(𝑖2)
=

[
[
[
[
[
[
[
[
[
[
[
[
[

[

Ξ
(𝑖2)
11 Ξ

(𝑖2)
12 Ξ

(𝑖2)
13 0 0 Ξ

(𝑖2)
16

∗ Ξ
(𝑖2)
22 Ξ

(𝑖2)
23 Ξ

(𝑖2)
24 0 0

∗ ∗ Ξ
(𝑖2)
33 Ξ

(𝑖2)
34 0 0

∗ ∗ ∗ Ξ
(𝑖2)
44 Ξ

(𝑖2)
45 0

∗ ∗ ∗ ∗ Ξ
(𝑖2)
55 0

∗ ∗ ∗ ∗ ∗ Ξ
(𝑖2)
66

]
]
]
]
]
]
]
]
]
]
]
]
]

]

+Ψ
𝑇

3 (ℎ
2
1𝑅13 + ℎ

2
12𝑅23)Ψ3,

Ξ
(𝑖2)
11 = 𝐴

𝑇

𝑃3 +𝑃3𝐴+𝑎3𝑃3 +𝑄13 +𝐶
𝑇

𝐶−𝜎13𝑅13,

Ξ
(𝑖2)
12 = 𝑃3𝐵𝐹13 +𝜎13𝑆

𝑇

3,1,

Ξ
(𝑖2)
13 = 𝑃3𝐵𝐹23 +𝜎13 (𝑅13 − 𝑆

𝑇

3,1) ,

Ξ
(𝑖2)
16 = 𝐸+𝑃3𝐶

𝑇

𝐷,

Ξ
(𝑖2)
22 = −𝜎13 (2𝑅13 − 𝑆

𝑇

3,2 − 𝑆3,2) ,

Ξ
(𝑖2)
23 = 𝜎13 (𝑅13 − 𝑆3,1 − 𝑆3,2) ,

Ξ
(𝑖2)
24 = 𝜎13 (𝑅13 − 𝑆

𝑇

3,2) ,

Ξ
(𝑖2)
33 = 𝜎13 (−2𝑅13 + 𝑆

𝑇

3,1 + 𝑆3,1) ,

Ξ
(𝑖2)
34 = 𝜎13𝑆

𝑇

3,2,

Ξ
(𝑖2)
44 = −𝜎13𝑅13 −𝜎23𝑅23 +𝜎13 (𝑄23 −𝑄13) ,

Ξ
(𝑖2)
45 = 𝜎23𝑅23,

Ξ
(𝑖2)
55 = −𝜎23 (𝑅23 +𝑄23) ,

Ξ
(𝑖2)
66 = − 𝛾

2
𝐼 +𝐷
𝑇

𝐷,

Ψ3 = [𝐴 𝐵𝐹
13
𝐵𝐹
23

0 0 𝐸] ,

𝜎13 = 𝑒
−𝑎3ℎ1 ,

𝜎23 = 𝑒
−𝑎3ℎ2 .

(23)

Moreover, the parameters in the exponential stability and𝐻
∞

performance are given by

𝛼 =
[𝑎1 (𝑙2 − 2) + 𝑎2 (𝑙2 + 3) − 𝑎3 (𝑙2 + 1)]

𝑙2
,

𝛽 = (
𝑏

𝑎
)

1/2
,

𝜆 =
[𝑎1 (𝑙2 − 2) + 𝑎2 (𝑙2 + 3) − 𝑎3 (𝑙2 + 1)]

(2𝑙2)
−
ln 𝜇
ℎ2

(24)

with

𝑎 = min {𝜆min (𝑃1) , 𝜆min (𝑃2) , 𝜆min (𝑃3)} ,

𝑏 = 𝜆max (𝑃1) +
(1 − 𝑒−𝑎1ℎ2)
𝑎1𝑏𝑞

+

ℎ1 (1 − 𝑒
−𝑎1ℎ1)

𝑎
2
1𝑏𝑟

+

ℎ12 (𝑒
−𝑎1ℎ1 − 𝑒

−𝑎1ℎ2)

𝑎
2
1𝑏𝑟

,

𝑏
𝑞
= max {𝜆max (𝑄11) , 𝜆max (𝑄21)} ,

𝑏
𝑟
= max {𝜆max (𝑅11) , 𝜆max (𝑅21)} .

(25)

Proof. See Appendix A.

We now state and establish the delay-dependent criterion
for the switched controller design.

Proposition 3. Given 𝛾 > 0, ℎ2 > ℎ1 > 0, 𝑙1 > 𝑙2 > 0, V > 0,
0 ≤ 𝑎1 ≤ 𝑎2 ≤ 𝑎3 ≤ ((𝑙2 − 2)𝑎1 + (𝑙2 + 3)𝑎2)/(𝑙2 + 1), and 𝜇 ≥ 1
satisfying ln(𝜇) < [(𝑎1(𝑙2−2)+𝑎2(𝑙2+3)−𝑎3(𝑙2+1))/𝑙2](ℎ2/2),
system (8) is exponentially stable with a given𝐻

∞
performance

𝛾 for any switching signal with ln(𝜇) < [(𝑎1(𝑙2−2)+𝑎2(𝑙2+3)−
𝑎3(𝑙2 + 1))/𝑙2](ℎ2/2), if there exist matrices 𝑆1, 𝑆2, 𝑆𝑖,1, 𝑆𝑖,2 (𝑖 =
2, 3),𝐹1,𝐹12,𝐹22,𝐹13, and𝐹23 and symmetricmatrices𝑃

𝑗
> 0,

𝑄
𝑖𝑗
> 0, and 𝑅

𝑖𝑗
> 0 (𝑖 = 1, 2; 𝑗 = 1, 2, 3) such that 𝑃2 ≤ 𝜇𝑃1,

𝑃1 ≤ 𝜇𝑃2, 𝑃2 ≤ 𝜇𝑃3, 𝑃3 ≤ 𝜇𝑃2, 𝑄𝑖2 ≤ 𝜇𝑄𝑖1, 𝑄𝑖1 ≤ 𝜇𝑄𝑖2,
𝑄
𝑖2 ≤ 𝜇𝑄𝑖3, 𝑄𝑖3 ≤ 𝜇𝑄𝑖2, 𝑅𝑖2 ≤ 𝜇𝑅𝑖1, 𝑅𝑖1 ≤ 𝜇𝑅𝑖2, 𝑅𝑖2 ≤ 𝜇𝑅𝑖3,
𝑅
𝑖3 ≤ 𝜇𝑅𝑖2 (𝑖 = 1, 2), and

[

[

𝑅11 𝑆
𝑇

1

𝑆1 𝑅11

]

]

≥ 0, (26)

[

[

ℎ1𝑅12 − ℎ12𝑅22 𝑆
𝑇

2

𝑆2 ℎ1𝑅12 − ℎ12𝑅22

]

]

≥ 0, (27)

[

[

𝑅1𝑖 𝑆
𝑇

𝑖,1

𝑆
𝑖,1 𝑅1𝑖

]

]

≥ 0, (𝑖 = 2, 3) , (28)

[

[

𝑅1𝑖 𝑆
𝑇

𝑖,2

𝑆
𝑖,2 𝑅1𝑖

]

]

≥ 0, (𝑖 = 2, 3) , (29)

Ξ
(1)
= [

[

Π
(1)
11 Π
(1)
12

∗ Π
(1)
22

]

]

< 0, 𝑡 ∈ I1, (30)

Ξ
(𝑖1)

= [

[

Π
(𝑖1)
11 Π

(𝑖1)
12

∗ Π
(𝑖1)
22

]

]

< 0,

𝑡 ∈ I
𝑖
, 𝑖 = 𝑚]−1 + ] + 1, . . . , 𝑚] + ], ] = 1, 2, . . . , 𝑙2,

(31)
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Ξ
(𝑖2)

= [

[

Π
(𝑖2)
11 Π

(𝑖2)
12

∗ Π
(𝑖2)
22

]

]

< 0,

𝑡 ∈ I
𝑖
, 𝑖 = 𝑚]−1 + ], ] = 2, . . . , 𝑙2,

(32)

where

Π
(1)
11 =

[
[
[
[
[
[
[
[
[
[
[

[

Ξ
(1)
11 Ξ
(1)
12 Ξ
(1)
13 0 𝐸 + 𝑃1𝐶

𝑇

𝐷

∗ Ξ
(1)
22 Ξ
(1)
23 0 0

∗ ∗ Ξ
(1)
33 Ξ
(1)
34 0

∗ ∗ ∗ Ξ
(1)
44 0

∗ ∗ ∗ ∗ −𝛾
2
𝐼 + 𝐷
𝑇

𝐷

]
]
]
]
]
]
]
]
]
]
]

]

,

Π
(1)
12 =

[
[
[
[
[
[
[
[
[

[

ℎ1𝑃1𝐴
𝑇

ℎ12𝑃1𝐴
𝑇

𝑃1𝐶
𝑇

ℎ1𝐹
𝑇

1𝐵
𝑇

ℎ12𝐹
𝑇

1𝐵
𝑇 0

0 0 0
0 0 0

ℎ1𝐸
𝑇

ℎ12𝐸
𝑇 0

]
]
]
]
]
]
]
]
]

]

,

Π
(1)
22 =

[
[
[

[

V2𝑅11 − 2V𝑃1 0 0

∗ V2𝑅21 − 2V𝑃1 0
∗ ∗ −𝐼

]
]
]

]

,

Ξ
(1)
11 = 𝑃1𝐴

𝑇

+𝐴𝑃1 + 𝑎1𝑃1 +𝑄11 −𝜎11𝑅11,

Ξ
(1)
12 = 𝐵𝐹1 +𝜎11 (𝑅11 − 𝑆

𝑇

1 ) ,

Ξ
(1)
13 = 𝜎11S

𝑇

1 ,

Ξ
(1)
22 = −𝜎11 (2𝑅11 − 𝑆

𝑇

1 − 𝑆1) ,

Ξ
(1)
23 = 𝜎11 (𝑅11 − 𝑆

𝑇

1 ) ,

Ξ
(1)
33 = −𝜎11𝑅11 −𝜎21𝑅21 +𝜎11 (𝑄21 −𝑄11) ,

Ξ
(1)
34 = 𝜎21𝑅21,

Ξ
(1)
44 = −𝜎21 (𝑅21 +𝑄21) ,

𝜎11 = 𝑒
−𝑎1ℎ1 ,

𝜎21 = 𝑒
−𝑎1ℎ2 ,

Π
(𝑖1)
11 =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Ξ
(𝑖1)
11 Ξ

(𝑖1)
12 Ξ

(𝑖1)
13 Ξ

(𝑖1)
14 0 Ξ

(𝑖1)
16

∗ Ξ
(𝑖1)
22 Ξ

(𝑖1)
23 Ξ

(𝑖1)
24 Ξ

(𝑖1)
25 0

∗ ∗ Ξ
(𝑖1)
33 0 Ξ

(𝑖1)
35 0

∗ ∗ ∗ Ξ
(𝑖1)
44 0 0

∗ ∗ ∗ ∗ Ξ
(𝑖1)
55 0

∗ ∗ ∗ ∗ ∗ Ξ
(𝑖1)
66

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

Π
(𝑖1)
12 =

[
[
[
[
[
[
[
[
[
[
[
[

[

ℎ1𝑃2𝐴
𝑇

ℎ12𝑃2𝐴
𝑇

𝑃2𝐶
𝑇

ℎ1𝐹
𝑇

12𝐵
𝑇

ℎ12𝐹
𝑇

12𝐵
𝑇 0

ℎ1𝐹
𝑇

22𝐵
𝑇

ℎ12𝐹
𝑇

22𝐵
𝑇 0

0 0 0
0 0 0

ℎ1𝐸
𝑇

ℎ12𝐸
𝑇 0

]
]
]
]
]
]
]
]
]
]
]
]

]

,

Π
(𝑖1)
22 =

[
[
[

[

V2𝑅12 − 2V𝑃2 0 0

∗ V2𝑅22 − 2V𝑃2 0
∗ ∗ −𝐼

]
]
]

]

,

Ξ
(𝑖1)
11 = 𝑃2𝐴

𝑇

+𝐴𝑃2 + 𝑎2𝑃2 +𝑄12 −𝜎22𝑅22

−𝜎12 (ℎ1𝑅12 − ℎ12𝑅22) , ℎ12 = ℎ2 − ℎ1,

Ξ
(𝑖1)
12 = 𝐵𝐹12 +𝜎12 (ℎ1𝑅12 − ℎ12𝑅22 − 𝑆

𝑇

2 )

+𝜎22 (𝑅22 − 𝑆
𝑇

2,1) ,

Ξ
(𝑖1)
13 = 𝐵𝐹22 +𝜎22𝑆

𝑇

2,1,

Ξ
(𝑖1)
14 = 𝜎12𝑆

𝑇

2 ,

Ξ
(𝑖1)
16 = 𝐸+𝑃2𝐶

𝑇

𝐷,

Ξ
(𝑖1)
22 = 𝜎12 (−2ℎ1𝑅12 + 2ℎ12𝑅22 + 𝑆

𝑇

2 + 𝑆2)

+𝜎22 (−2𝑅22 + 𝑆
𝑇

2,1 + 𝑆2,1) ,

Ξ
(𝑖1)
23 = 𝜎22 (𝑅22 − 𝑆

𝑇

2,1 − 𝑆
𝑇

2,2) ,

Ξ
(𝑖1)
24 = 𝜎12 (ℎ1𝑅12 − ℎ12𝑅22 − 𝑆

𝑇

2 ) ,

Ξ
(𝑖1)
25 = 𝜎22𝑆

𝑇

2,2,

Ξ
(𝑖1)
33 = 𝜎22 (−2𝑅22 + 𝑆

𝑇

2,2 + 𝑆2,2) ,

Ξ
(𝑖1)
35 = 𝜎22 (𝑅22 − 𝑆

𝑇

2,2) ,

Ξ
(𝑖1)
44 = 𝜎12 (−ℎ1𝑅12 + ℎ12𝑅22) + 𝑒

−𝑎2ℎ1 (𝑄22 −𝑄12) ,

Ξ
(𝑖1)
55 = −𝜎22𝑅22 − 𝑒

−𝑎2ℎ2𝑄22,

Ξ
(𝑖1)
66 = − 𝛾

2
𝐼 +𝐷
𝑇

𝐷,

𝜎12 =
𝑒
−𝑎2ℎ1

ℎ1
,

𝜎22 =
𝑒
−𝑎2ℎ2ℎ12
ℎ2

,
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Π
(𝑖2)
11 =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Ξ
(𝑖2)
11 Ξ

(𝑖2)
12 Ξ

(𝑖2)
13 0 0 Ξ

(𝑖2)
16

∗ Ξ
(𝑖2)
22 Ξ

(𝑖2)
23 Ξ

(𝑖2)
24 0 0

∗ ∗ Ξ
(𝑖2)
33 Ξ

(𝑖2)
34 0 0

∗ ∗ ∗ Ξ
(𝑖2)
44 Ξ

(𝑖2)
45 0

∗ ∗ ∗ ∗ Ξ
(𝑖2)
55 0

∗ ∗ ∗ ∗ ∗ Ξ
(𝑖2)
66

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

Π
(𝑖2)
12 =

[
[
[
[
[
[
[
[
[
[
[
[

[

ℎ1𝑃3𝐴
𝑇

ℎ12𝑃3𝐴
𝑇

𝑃3𝐶
𝑇

ℎ1𝐹
𝑇

13𝐵
𝑇

ℎ12𝐹
𝑇

13𝐵
𝑇 0

ℎ1𝐹
𝑇

23𝐵
𝑇

ℎ12𝐹
𝑇

23𝐵
𝑇 0

0 0 0
0 0 0

ℎ1𝐸
𝑇

ℎ12𝐸
𝑇 0

]
]
]
]
]
]
]
]
]
]
]
]

]

,

Π
(𝑖2)
22 =

[
[
[

[

V2𝑅13 − 2V𝑃3 0 0

∗ V2𝑅23 − 2V𝑃3 0
∗ ∗ −𝐼

]
]
]

]

,

Ξ
(𝑖2)
11 = 𝑃3𝐴

𝑇

+𝐴𝑃3 + 𝑎3𝑃3 +𝑄13 −𝜎13𝑅13,

Ξ
(𝑖2)
12 = 𝐵𝐹13 +𝜎13𝑆

𝑇

3,1,

Ξ
(𝑖2)
13 = 𝐵𝐹23 +𝜎13 (𝑅13 − 𝑆

𝑇

3,1) ,

Ξ
(𝑖2)
16 = 𝐸+𝑃3𝐶

𝑇

𝐷,

Ξ
(𝑖2)
22 = −𝜎13 (2𝑅13 − 𝑆

𝑇

3,2 − 𝑆3,2) ,

Ξ
(𝑖2)
23 = 𝜎13 (𝑅13 − 𝑆3,1 − 𝑆3,2) ,

Ξ
(𝑖2)
24 = 𝜎13 (𝑅13 − 𝑆

𝑇

3,2) ,

Ξ
(𝑖2)
33 = 𝜎13 (−2𝑅13 + 𝑆

𝑇

3,1 + 𝑆3,1) ,

Ξ
(𝑖2)
34 = 𝜎13𝑆

𝑇

3,2,

Ξ
(𝑖2)
44 = −𝜎13𝑅13 −𝜎23𝑅23 +𝜎13 (𝑄23 −𝑄13) ,

Ξ
(𝑖2)
45 = 𝜎23𝑅23,

Ξ
(𝑖2)
55 = −𝜎23 (𝑅23 +𝑄23) ,

Ξ
(𝑖2)
66 = − 𝛾

2
𝐼 +𝐷
𝑇

𝐷,

𝜎13 = 𝑒
−𝑎3ℎ1 ,

𝜎23 = 𝑒
−𝑎3ℎ2 .

(33)

Moreover, the control gains of controller (2) are obtained by
𝐹1 = 𝐹1𝑃

−1
1 , 𝐹2 = 𝐹2𝑃

−1
2 , and 𝐹3 = 𝐹3𝑃

−1
3 , where 𝐹2 = 𝐹12+

𝐹22 and 𝐹3 = 𝐹13 + 𝐹23. The parameters in the exponential
stability and𝐻

∞
performance are given by

𝛼 =
[𝑎1 (𝑙2 − 2) + 𝑎2 (𝑙2 + 3) − 𝑎3 (𝑙2 + 1)]

𝑙2
,

𝛽 = (
𝑏

𝑎
)

1/2

,

𝜆 =
[𝑎1 (𝑙2 − 2) + 𝑎2 (𝑙2 + 3) − 𝑎3 (𝑙2 + 1)]

(2𝑙2)
−
ln 𝜇
ℎ2

(34)

with

𝑎 = min {𝜆min (𝑃
−1
1 ) , 𝜆min (𝑃

−1
2 ) , 𝜆min (𝑃

−1
3 )} ,

𝑏 = 𝜆max (𝑃
−1
1 ) +

(1 − 𝑒−𝑎1ℎ2)

𝑎1𝑏𝑞
+

ℎ1 (1 − 𝑒
−𝑎1ℎ1)

𝑎
2
1𝑏𝑟

+

ℎ12 (𝑒
−𝑎1ℎ1 − 𝑒

−𝑎1ℎ2)

𝑎
2
1𝑏𝑟

,

𝑏
𝑞
= max {𝜆max (𝑃

−1
1 𝑄11𝑃

−1
1 ) , 𝜆max (𝑃

−1
1 𝑄21𝑃

−1
1 )} ,

𝑏
𝑟
= max {𝜆max (𝑃

−1
1 𝑅11𝑃

−1
1 ) , 𝜆max (𝑃

−1
1 𝑅21𝑃

−1
1 )} .

(35)

Proof. See Appendix B.

Remark 4. Suppose that the system matrices Ω := [𝐴 𝐵] are
not exactly known and they reside in the uncertain polytope
[16, 17, 26]. Consider

Ω ∈ {

𝑀

∑

𝑖=1
𝜇
𝑖
Ω
𝑖
, 0≤𝜇

𝑖
≤ 1,
𝑀

∑

𝑖=1
𝜇
𝑖
= 1} , (36)

where the 𝑀 vertices of the polytope are described by
Ω
𝑖
:= [𝐴

𝑖
𝐵
𝑖
]. For the 𝐻

∞
performance analysis and the

periodic switched controller design of the dual-rate system
with polytopic uncertainties, one can solve the LMIs in
Propositions 2 and 3 for all the𝑀 verticesΩ

𝑖
by applying the

same decision matrices, respectively.

For comparison purpose, a criterion for the existence
of a sampled-data controller for system (1) via single-rate
sampling is developed and given by the following corollary.

Corollary 5. Given ℎ > 0, 𝑎 > 0, and V > 0, system (1) with a
single-rate sampled-data controller is exponentially stable with
a given 𝐻

∞
performance 𝛾, where the exponential decay rate
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𝛼 = 𝑎, if there exist a matrix 𝑆 and symmetric matrices 𝑃 >
0, 𝑄 > 0, and 𝑅 > 0 such that

Ξ =

[
[
[
[
[
[
[
[
[
[
[
[
[

[

Ξ11 Ξ12 𝜎𝑆
𝑇

Ξ14 ℎ𝑃𝐴
𝑇

𝑃𝐶
𝑇

∗ Ξ22 Ξ23 0 ℎ𝐹
𝑇

𝐵
𝑇 0

∗ ∗ Ξ33 0 0 0

∗ ∗ ∗ Ξ44 ℎ𝐸
𝑇 0

∗ ∗ ∗ ∗ Ξ55 0
∗ ∗ ∗ ∗ ∗ −𝐼

]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0, (37)

where

Ξ11 = 𝑃𝐴
𝑇

+𝐴𝑃+𝑎𝑃+𝑄−𝜎𝑅,

Ξ12 = 𝐵𝐹+𝜎 (𝑅− 𝑆
𝑇

) ,

Ξ14 = 𝐸+𝑃𝐶
𝑇

𝐷,

Ξ22 = 𝜎 (−2𝑅+ 𝑆
𝑇

+ 𝑆) ,

Ξ23 = 𝜎 (𝑅− 𝑆
𝑇

) ,

Ξ33 = −𝜎 (𝑅+𝑄) ,

Ξ44 = − 𝛾
2
𝐼 +𝐷
𝑇

𝐷,

Ξ55 = V2𝑅− 2V𝑃,

𝜎 = 𝑒
−𝑎ℎ

.

(38)

Moreover, the control gain is obtained as 𝐹 = 𝐹𝑃−1.

Remark 6. For the case 𝑙1 = 𝑁𝑙2 (𝑁 > 1 and𝑁 ∈ N), periodic
switched controller (2) reduces to a switched controller with
switching modes 𝜎(𝑡) = 1 and 𝜎(𝑡) = 2. Correspondingly,
Proposition 3 with 𝑃3 = 0, 𝑄

𝑖3 = 0, 𝑆3,𝑖 = 0, and 𝑅
𝑖3 = 0

(𝑖 = 1, 2) reduces to a sampled-data 𝐻
∞

control design
result for system (1) via two sampling rates 1/ℎ1 and 1/𝑁ℎ1.
Particularly, when𝑁 = 2, the design result can be reduced to
the one in [28].

Remark 7. In this paper, we obtain some results on periodic
switched control of dual-rate sampled-data systems. It should
be pointed out that these results can be extended to multirate
sampled-data systems although the process is very tedious.
The corresponding results are omitted.

Remark 8. As shown in [20, 29], analysis and synthesis
of research on networked control systems with multiple
samplings are promising and significant issues. Compared
with [20], this paper is distinguished based on the follow-
ing evidences: (i) The dual-rate sampling schemes in this
paper and [20] are different, resulting in two essentially
different switched system models. In [20], by introducing
a Round-Robin scheduling protocol, the sampled-data via
two different sampling rates is available one after another. In

this paper, however, the sampled-data is available in three
cases (both 𝑥1(𝑘ℎ1) and 𝑥2(𝑘ℎ2), only 𝑥1(𝑘ℎ1), and/or only
𝑥2(𝑘ℎ2)). In other words, under the sampling relationship
𝑙1ℎ1 = 𝑙2ℎ2 in this paper, the case that 𝑥1(𝑘ℎ1) and
𝑥2(𝑘ℎ2) are available simultaneously must occur, but this
surely does not occur in [20]. (ii) The problems addressed
in this paper and [20] are different. Stability and 𝐿2-gain
analysis carried out for dual-rate networked control systems
is considered in [20], while this paper focuses on con-
troller design for a dual-rate sampled-data system without
considering the effect of network-induced delays. It should
be mentioned that the constant constraint on network-
induced delays in [20] does not significantly change the
nature of the proposed results. (iii) The methodologies of
performance analysis in this paper and [20] are different. In
[20], a common discontinuous Lyapunov-Krasovskii func-
tional is constructed to derive some delay-dependent stability
and 𝐿2-gain criteria. However, in this paper, a switched
continuous Lyapunov-Krasovskii functional is proposed to
establish delay-dependent criteria for the 𝐻

∞
performance

and switched controller design by fully utilizing the relation
of multiple input delays and the information about two
sampling periods.

4. The Dual-Rate Sampled-Data Control of
a Vehicle Dynamic System

In this section, we consider the dual-rate sampled-data con-
trol of a vehicle dynamic system described by the following
state-space representation [30]:

�̇� (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) + 𝐸𝜔 (𝑡) ,

𝑧 (𝑡) = 𝐶𝑥 (𝑡) +𝐷𝜔 (𝑡) ,

(39)

where

𝐴 =

[
[
[
[
[

[

0 1 0 22.3
0 −4.2796 −19.4355 0
0 1.4391 −4.2743 0
0 0 1 0

]
]
]
]
]

]

,

𝐵 =

[
[
[
[
[

[

0
25.0655
17.7548

0

]
]
]
]
]

]

,

𝐶 = [0 1 0 0] ,

𝐷 = 0.1,

𝐸 = [0 0.1 0.1 0]𝑇 ,

(40)

𝑥(𝑡) = [𝑦 𝜙 𝑟 𝜓]
𝑇, 𝑦 is the inertial lateral displacement

of the vehicle mass center, 𝜙 is lateral velocity in the vehicle
body axis system, 𝑟 is the angular velocity, and𝜓 is the vehicle
heading angle.
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Table 1: Solvability comparison between Proposition 3 with 3ℎ1 =
2ℎ2 and Corollary 5 with ℎ = ℎ2.

ℎ2 0.24 s 0.27 s 0.30 s 0.36 s
Proposition 3
(dual-rate) Feasible Feasible Feasible Feasible

Corollary 5
(single-rate) Feasible Feasible Infeasible Infeasible

The state variables 𝑦 and 𝜙 are measured by using laser
sensors at a sampling rate 1/ℎ1, and the state variables 𝑟 and
𝜓 are measured by using gyrometers at a sampling rate 1/ℎ2,
where ℎ

𝑖
(𝑖 = 1, 2) are two sampling periods.

We now show the effectiveness of the proposed dual-rate
sampling design result. Set 𝑎1 = 0.75, 𝑎2 = 0.85, 𝑎3 =

0.9, V = 0.25, 𝑙1 = 3, 𝑙2 = 2, 𝜇 = 1.01, ℎ1 = 0.16 s,
and ℎ2 = 0.24 s. Using Proposition 3, we can obtain the
minimum 𝐻

∞
performance 𝛾𝑑min = 0.1539, an exponential

decay rate 𝛼 = 0.775, and corresponding control gain
matrices 𝐹1 = [−0.0141 − 0.0487 − 0.0532 − 0.7625],
𝐹2 = [−0.0142 − 0.0492 − 0.0539 − 0.7672], and 𝐹3 =
[−0.0142 − 0.0490 − 0.0546 − 0.7686], which means
that switched controller (2) with the above 𝐹

𝑖
(𝑖 = 1, 2, 3)

can stabilize system (39) and achieve an 𝐻
∞

performance
𝛾
𝑑

min = 0.1539 and 𝛼 = 0.775 for system (39) with an
external disturbance. Using Corollary 5, the minimum 𝐻

∞

performance 𝛾𝑠min = 0.2317, the exponential decay rate
𝑎 = 𝛼 = 0.775, and the control gain is 𝐹 = [−0.0092 −

0.0252 − 0.0386 − 0.6028]. Clearly, Proposition 3 can be
used to search for a better 𝐻

∞
control performance than

Corollary 5. For comparison purpose, we choose different
delay bounds of ℎ2 for both dual-rate sampling case and
single-rate sampling case. The solvability of Proposition 3
and Corollary 5 is shown in Table 1, from which one can see
that the dual-rate sampling design result can provide a larger
sampling period than the single-rate design result.

Thenwe compare the proposed dual-rate sampling design
result and the single-rate design result in simulation. Choose
the initial state 𝑥0 = [−2 0 1 0]𝑇 and the external
disturbance𝜔(𝑡) = 2𝑒−0.3𝑡 sin(2.7𝑡+0.05). Using the switched
controller with 𝐹

𝑖
(𝑖 = 1, 2, 3), we can depict the state

responses of system (39) by Figure 3 and the corresponding
control input by Figure 4, respectively. Under the zero initial
condition, L2-norm ‖𝑧

𝑑
(𝑡)‖2 using the switched controller

and ‖𝑧
𝑠
(𝑡)‖2 using the single-rate sampled-data controller

are shown in Figure 5. From Figures 3–5, one can conclude
that the dual-rate sampled-data can stabilize the system (39)
and achieve a better 𝐻

∞
performance than the single-rate

sampled-data controller.

5. Conclusion

This paper has dealt with the𝐻
∞

sampled-data control for a
multirate system with two sampling rates by using an input
delay approach. A periodic switched controller has been pro-
posed to implement the sampled-data control such that the
sampled-data of state variables with different sampling rates

0 2 4 6 8 10 12 14 16
Time (s)

−2

−1.5

−1

−0.5

0

0.5

1

x1
x2

x3
x4

Figure 3: The state responses of system (39) using the switched
controller.
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0.04

0.06

−0.08

−0.06

−0.04

−0.02

u(t)

0 2 4 6 8 10 12 14 16
Time (s)

Figure 4: The control input of system (39) using the switched
controller.

can be used real-timely.The resulting closed-loop system has
been modeled as a switched system, where the subsystems
have different input delays. Some delay-dependent criteria for
the𝐻
∞
performance of the switched system and the existence

of the switched controller have been established by using the
Lyapunov-Krasovskii functional method. By comparing with
single-rate design methods, the effectiveness of the proposed
design method has been illustrated by an example.
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Figure 5:The comparison of ‖𝑒−𝛼𝑡/2𝑧(𝑡)‖2 ≤ 𝛾‖𝜔(𝑡)‖2 under the zero
initial condition by two different methods.

Appendices

A. Proof of Proposition 2

Proof. Construct the following Lyapunov-Krasovskii func-
tional:

𝑉
𝜎(𝑡)
(𝑡)

= 𝑥
𝑇

(𝑡) 𝑃
𝜎(𝑡)
𝑥 (𝑡)

+∫

𝑡

𝑡−ℎ1

𝑥
𝑇

(𝑠) 𝑒
𝑎
𝜎(𝑡)

(𝑠−𝑡)

𝑄1𝜎(𝑡)𝑥 (𝑠) 𝑑𝑠

+∫

𝑡−ℎ1

𝑡−ℎ2

𝑥
𝑇

(𝑠) 𝑒
𝑎
𝜎(𝑡)

(𝑠−𝑡)

𝑄2𝜎(𝑡)𝑥 (𝑠) 𝑑𝑠

+ ℎ1 ∫
0

−ℎ1

∫

𝑡

𝑡+𝜃

�̇�
𝑇

(𝑠) 𝑒
𝑎
𝜎(𝑡)

(𝑠−𝑡)

𝑅1𝜎(𝑡)�̇� (𝑠) 𝑑𝑠 𝑑𝜃

+ ℎ12 ∫
−ℎ1

−ℎ2

∫

𝑡

𝑡+𝜃

�̇�
𝑇

(𝑠) 𝑒
𝑎
𝜎(𝑡)

(𝑠−𝑡)

𝑅2𝜎(𝑡)�̇� (𝑠) 𝑑𝑠 𝑑𝜃,

(A.1)

where 𝑃
𝜎(𝑡)

> 0, 𝑄
𝑖𝜎(𝑡)

> 0, and 𝑅
𝑖𝜎(𝑡)

> 0 (𝑖 = 1, 2, 𝜎(𝑡) =
1, 2, 3).

When 𝜎(𝑡) = 1, taking the time derivative of 𝑉1(𝑡), we
have

�̇�1 (𝑡) = 2𝑥𝑇 (𝑡) 𝑃1�̇� (𝑡) + 𝑎1𝑥
𝑇

(𝑡) 𝑃1𝑥 (𝑡)

+ 𝑥
𝑇

(𝑡) 𝑄11𝑥 (𝑡)

+ 𝑒
−𝑎1ℎ1𝑥

𝑇

(𝑡 − ℎ1) (𝑄21 −𝑄11) 𝑥 (𝑡 − ℎ1)

− 𝑒
−𝑎1ℎ2𝑥

𝑇

(𝑡 − ℎ2) 𝑄21𝑥 (𝑡 − ℎ2)

+ �̇�
𝑇

(𝑡) (ℎ
2
1𝑅11 + ℎ

2
12𝑅21) �̇� (𝑡) − 𝑎1𝑉1 (𝑡)

− ℎ1 ∫
𝑡

𝑡−ℎ1

�̇�
𝑇

(𝑠) 𝑒
𝑎1(𝑠−𝑡)𝑅11�̇� (𝑠) 𝑑𝑠

− ℎ12 ∫
𝑡−ℎ1

𝑡−ℎ2

�̇�
𝑇

(𝑠) 𝑒
𝑎1(𝑠−𝑡)𝑅21�̇� (𝑠) 𝑑𝑠

≤ − 𝑎1𝑉1 (𝑡) + 2𝑥
𝑇

(𝑡) 𝑃1�̇� (𝑡)

+ 𝑥
𝑇

(𝑡) (𝑎1𝑃1 +𝑄11) 𝑥 (𝑡)

+ �̇�
𝑇

(𝑡) (ℎ
2
1𝑅11 + ℎ

2
12𝑅21) �̇� (𝑡)

+ 𝑒
−𝑎1ℎ1𝑥

𝑇

(𝑡 − ℎ1) (𝑄21 −𝑄11) 𝑥 (𝑡 − ℎ1)

− 𝑒
−𝑎1ℎ2𝑥

𝑇

(𝑡 − ℎ2) 𝑄21𝑥 (𝑡 − ℎ2)

− ℎ1𝑒
−𝑎1ℎ1 ∫

𝑡

𝑡−ℎ1

�̇�
𝑇

(𝑠) 𝑅11�̇� (𝑠) 𝑑𝑠

− ℎ12𝑒
−𝑎1ℎ2 ∫

𝑡−ℎ1

𝑡−ℎ2

�̇�
𝑇

(𝑠) 𝑅21�̇� (𝑠) 𝑑𝑠.

(A.2)

For system (8) with 𝜔(𝑡) ≡ 0, by using Lemma 1 and
Jensen’s inequality to (A.2), it can be derived that �̇�1(𝑡) ≤
−𝑎1𝑉1(𝑡) + 𝜉

𝑇

1 (𝑡)Ξ̃
(1)
𝜉1(𝑡), where

𝜉
𝑇

1 (𝑡)

= [𝑥
𝑇

(𝑡) 𝑥
𝑇

(𝑡 − 𝜏1 (𝑡)) 𝑥
𝑇

(𝑡 − ℎ1) 𝑥
𝑇

(𝑡 − ℎ2)] ,

Ξ̃
(1)
=

[
[
[
[
[
[

[

Ξ
(1)
11 Ξ
(1)
12 Ξ
(1)
13 0

∗ Ξ
(1)
22 Ξ
(1)
23 0

∗ ∗ Ξ
(1)
33 Ξ
(1)
34

∗ ∗ ∗ Ξ
(1)
44

]
]
]
]
]
]

]

+ [𝐴 𝐵𝐹1 0 0]𝑇

⋅ (ℎ
2
1𝑅11 + ℎ

2
12𝑅21) [𝐴 𝐵𝐹1 0 0] .

(A.3)

If the inequality Ξ̃(1) < 0 holds, then we obtain �̇�1(𝑡) ≤
−𝑎1𝑉1(𝑡). On the other hand, Ξ̃(1) < 0 is implied by (20).

For the cases 𝜎(𝑡) = 2 and 𝜎(𝑡) = 3, similar to the
above process, one can obtain from (21) and (22) that �̇�2(𝑡) ≤
−𝑎2𝑉2(𝑡) and �̇�3(𝑡) ≤ −𝑎3𝑉3(𝑡), respectively.



Mathematical Problems in Engineering 13

On different subintervalsI
𝑖
(𝑖 = 1, 2, . . . , 𝑚

𝑙2
+ 𝑙2), it can

be obtained that

𝑉1 (𝑡) ≤ 𝑒
−𝑎1(𝑡−𝑘𝑙1ℎ1)𝑉1 (𝑘𝑙1ℎ1) , 𝑡 ∈ I1,

𝑉2 (𝑡) ≤ 𝑒
−𝑎2(𝑡−(𝑘𝑙1+𝑚]−1+1)ℎ1)𝑉2 ((𝑘𝑙1 +𝑚]−1 + 1) ℎ1) ,

𝑡 ∈

𝑚]+]

⋃

𝑚]−1+]+1
I
𝑖
, ] = 1, 2, . . . , 𝑙2,

𝑉3 (𝑡) ≤ 𝑒
−𝑎3(𝑡−𝑘𝑙1ℎ1−(]−1)ℎ2)𝑉3 (𝑘𝑙1ℎ1 + (]− 1) ℎ2) ,

𝑡 ∈ I
𝑚]−1+], ] = 2, 3, . . . , 𝑙2.

(A.4)

For 𝑃2 ≤ 𝜇𝑃1, 𝑃1 ≤ 𝜇𝑃2, 𝑃2 ≤ 𝜇𝑃3, 𝑃3 ≤ 𝜇𝑃2, 𝑄𝑖2 ≤ 𝜇𝑄𝑖1,
𝑄
𝑖1 ≤ 𝜇𝑄𝑖2, 𝑄𝑖2 ≤ 𝜇𝑄𝑖3, 𝑄𝑖3 ≤ 𝜇𝑄𝑖2, 𝑅𝑖2 ≤ 𝜇𝑅𝑖1, 𝑅𝑖1 ≤ 𝜇𝑅𝑖2,
𝑅
𝑖2 ≤ 𝜇𝑅𝑖3, and 𝑅𝑖3 ≤ 𝜇𝑅𝑖2 (𝑖 = 1, 2), one has

𝑉1 (𝑡) ≤ 𝜇𝑒
(𝑎2−𝑎1)ℎ2𝑉2 (𝑡) ,

𝑉2 (𝑡) ≤ 𝜇𝑒
(𝑎3−𝑎2)ℎ2𝑉3 (𝑡) ,

𝑉2 (𝑡) ≤ 𝜇𝑉1 (𝑡) ,

𝑉3 (𝑡) ≤ 𝜇𝑉2 (𝑡) .

(A.5)

Defining 𝜐1 = 𝜇𝑒
(𝑎2−𝑎1)ℎ2 and 𝜐2 = 𝜇𝑒

(𝑎3−𝑎2)ℎ2 , we obtain

𝑉
𝜎(𝑡
+

)
≤ 𝜐1𝑉𝜎(𝑡−), 𝑡 = 𝑘𝑙1ℎ1,

𝑉
𝜎(𝑡
+

)
≤ 𝜇𝑉
𝜎(𝑡
−

)
, 𝑡 = 𝑘𝑙1ℎ1 + ℎ1, 𝑘𝑙1ℎ1 + 𝑖ℎ2,

𝑉
𝜎(𝑡
+

)
≤ 𝜐2𝑉𝜎(𝑡−), 𝑡 = 𝑘𝑙1ℎ1 + (𝑚𝑖 + 1) ℎ1,

(A.6)

where 𝑖 = 1, 2, . . . , 𝑙2 − 1, 𝑘 = 0, 1, 2, . . ..
For 𝑡 ∈ [𝑘𝑙1ℎ1, 𝑘𝑙1ℎ1 + ℎ1), using (A.4) and (A.6), we have

𝑉1 (𝑡) ≤ 𝜐1𝑒
−𝑎1(𝑡−𝑘𝑙1ℎ1)𝑉2 (𝑘𝑙1ℎ1 − 0)

≤ 𝜐1𝜐2𝑒
−𝑎1(𝑡−𝑘𝑙1ℎ1)𝑒

−𝑎2(𝑙1ℎ1−(𝑚𝑙2−1+1)ℎ1)𝑉3 ((𝑘 − 1)

⋅ 𝑙1ℎ1 + (𝑚𝑙2−1 + 1) ℎ1 − 0)

≤ 𝜐1𝜐2𝜇𝑒
−𝑎1(𝑡−𝑘𝑙1ℎ1)𝑉2 ((𝑘 − 1) 𝑙1ℎ1 + (𝑙2 − 1) ℎ1

− 0) 𝑒−𝑎2(𝑙1ℎ1−(𝑚𝑙2−1+1)ℎ1)−𝑎3((𝑚𝑙2−1+1)ℎ1−(𝑙2−1)ℎ2) ≤ ⋅ ⋅ ⋅

≤ 𝜐1𝜐
𝑙2−1
2 𝜇
𝑙2𝑒
−𝑎1(𝑡−𝑘𝑙1ℎ1)𝑒

𝑎

𝑉1 ((𝑘 − 1) 𝑙1ℎ1) ≤ ⋅ ⋅ ⋅

≤ (𝜐1𝜐
𝑙2−1
2 𝜇
𝑙2)
𝑘

𝑒
−𝑎1(𝑡−𝑘𝑙1ℎ1)𝑒

𝑘𝑎

𝑉1 (0) ,

(A.7)

where

𝑎 = − 𝑎2 ((𝑙1 −𝑚𝑙2−1 − 1) ℎ1)

− 𝑎3 ((𝑚𝑙2−1 + 1) ℎ1 − (𝑙2 − 1) ℎ2)

− 𝑎2 ((𝑙2 − 1) ℎ2 − (𝑚𝑙2−2 + 1) ℎ1)

− 𝑎3 ((𝑚𝑙2−2 + 1) ℎ1 − (𝑙2 − 2) ℎ2) − ⋅ ⋅ ⋅

− 𝑎2 (ℎ2 − ℎ1) − 𝑎1ℎ1.

(A.8)

Using 𝑘𝑙1ℎ1 ≤ 𝑡 to (A.7), one can see that

𝑉1 (𝑡)

≤ [𝜇
2𝑙2𝑒(𝑎2−𝑎1)ℎ2+(𝑙2−1)(𝑎3−𝑎2)ℎ2]

𝑘

𝑒
−𝑎1(𝑡−𝑘𝑙1ℎ1)𝑒

𝑘𝑎

𝑉1 (0)

≤ [𝜇
2𝑙2𝑒(𝑎2−𝑎1)ℎ2+(𝑙2−1)(𝑎3−𝑎2)ℎ2+𝑎]

𝑘

𝑒
−𝑎1(𝑡−𝑘𝑙1ℎ1)𝑉1 (0)

≤ [𝜇
2/ℎ2𝑒
[𝑎3(𝑙2+1)−𝑎2(𝑙2+3)−𝑎1(𝑙2−2)]/𝑙2]

𝑡

𝑉1 (0) .

(A.9)

For 𝑡 ∈ [𝑘𝑙1ℎ1 + ℎ1, 𝑘𝑙1ℎ1 + ℎ2), it is clear that

𝑉2 (𝑡) ≤ (𝜐1𝜐
𝑙2−1
2 𝜇
𝑙2)
𝑘

𝑒
−𝑎2(𝑡−𝑘𝑙1ℎ1−ℎ1)𝑒

𝑘𝑎

𝜇𝑒
−𝑎1ℎ1𝑉1 (0)

≤ [𝜇
2𝑙2𝑒(𝑎2−𝑎1)ℎ2+(𝑙2−1)(𝑎3−𝑎2)ℎ2]

𝑘

⋅ 𝑒
−𝑎2(𝑡−𝑘𝑙1ℎ1−ℎ1)𝑒

𝑘𝑎

𝜇𝑒
−𝑎1ℎ1𝑉1 (0)

≤ [𝜇
2/ℎ2𝑒[𝑎3(𝑙2+1)−𝑎2(𝑙2+3)−𝑎1(𝑙2−2)]/𝑙2]

𝑘𝑙1ℎ1+ℎ1

⋅ 𝑒
−𝑎2(𝑡−𝑘𝑙1ℎ1−ℎ1)𝑉1 (0)

≤ [𝜇
2/ℎ2𝑒[𝑎3(𝑙2+1)−𝑎2(𝑙2+3)−𝑎1(𝑙2−2)]/𝑙2]

𝑡

𝑉1 (0) .

(A.10)

For 𝑡 ∈ [𝑘𝑙1ℎ1 + ℎ2, (𝑘𝑙1 + 𝑚1 + 1)ℎ1), it can be seen that

𝑉3 (𝑡) ≤ (𝜐1𝜐
𝑙2−1
2 𝜇
𝑙2)
𝑘

⋅ 𝑒
−𝑎3(𝑡−𝑘𝑙1ℎ1−ℎ2)𝑒

𝑘𝑎

𝑒
−𝑎2(ℎ2−ℎ1)−𝑎1ℎ1𝜇

2
𝑉1 (0)

≤ (𝜇
2𝑙2𝑒(𝑎2−𝑎1)ℎ2+(𝑙2−1)(𝑎3−𝑎2)ℎ2)

𝑘

⋅ 𝑒
−𝑎3(𝑡−𝑘𝑙1ℎ1−ℎ2)𝑒

𝑘𝑎

𝑒
−𝑎2(ℎ2−ℎ1)−𝑎1ℎ1𝜇

2
𝑉1 (0)

≤ (𝜇
2/ℎ2𝑒[𝑎3(𝑙2+1)−𝑎2(𝑙2+3)−𝑎1(𝑙2−2)]/𝑙2)

𝑘𝑙1ℎ1+ℎ2

⋅ 𝑒
−𝑎3(𝑡−𝑘𝑙1ℎ1−ℎ2)𝑉1 (0)

≤ (𝜇
2/ℎ2𝑒[𝑎3(𝑙2+1)−𝑎2(𝑙2+3)−𝑎1(𝑙2−2)]/𝑙2)

𝑡

𝑉1 (0) .

(A.11)
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For 𝑡 ∈ [𝑘𝑙1ℎ1 + (𝑙2 − 1)ℎ2, (𝑘𝑙1 + 𝑚𝑙2−1 + 1)ℎ1), one has

𝑉3 (𝑡) ≤ (𝜐1𝜐
𝑙2−1
2 𝜇
𝑙2)
𝑘

𝑒
−𝑎3(𝑡−𝑘𝑙1ℎ1−(𝑙2−1)ℎ2)𝑒𝑘𝑎𝜐

𝑙2−2
2 𝜇
𝑙2𝑒
−𝑎2((𝑙2−1)ℎ2−(𝑚𝑙2−2+1)ℎ1)−⋅⋅⋅−𝑎2(ℎ2−ℎ1)−𝑎1ℎ1𝑉1 (0)

≤ (𝜇
2/ℎ2𝑒
(𝑎3(𝑙2+1)−𝑎2(𝑙2+3)−𝑎1(𝑙2−2)]/𝑙2)

𝑘𝑙1ℎ1+(𝑙2−1)ℎ2
𝑒
−𝑎3(𝑡−𝑘𝑙1ℎ1−(𝑙2−1)ℎ2)𝑉1 (0)

≤ (𝜇
2/ℎ2𝑒
(𝑎3(𝑙2+1)−𝑎2(𝑙2+3)−𝑎1(𝑙2−2))/𝑙2)

𝑡

𝑉1 (0) .

(A.12)

For 𝑡 ∈ [(𝑘𝑙1 + 𝑚𝑙2−1 + 1)ℎ1, 𝑘𝑙1ℎ1 + 𝑙2ℎ2), one has

𝑉2 (𝑡) ≤ (𝜐1𝜐
𝑙2−1
2 𝜇
𝑙2)
𝑘

𝑒
−𝑎2(𝑡−𝑘𝑙1ℎ1−(𝑚𝑙2−1+1)ℎ1)𝑒𝑘𝑎𝜐

𝑙2−1
2 𝜇
𝑙2𝑒
−𝑎3((𝑚𝑙2−1+1)ℎ1−(𝑙2−1)ℎ2)−⋅⋅⋅−𝑎2(ℎ2−ℎ1)−𝑎1ℎ1𝑉1 (0)

≤ (𝜇
2/ℎ
2𝑒
(𝑎
3

(𝑙
2

+1)−𝑎
2

(𝑙
2

+3)−𝑎
1

(𝑙
2

−2))/𝑙
2)
𝑘𝑙1ℎ1+(𝑚𝑙2−1+1)ℎ1

𝑒
−𝑎2(𝑡−𝑘𝑙1ℎ1−(𝑚𝑙2−1+1)ℎ1)𝑉1 (0)

≤ (𝜇
2/ℎ2𝑒(𝑎3(𝑙2+1)−𝑎2(𝑙2+3)−𝑎1(𝑙2−2))/𝑙2)

𝑡

𝑉1 (0) .

(A.13)

Denote 𝜀 = 𝜇2/ℎ2𝑒(𝑎3(𝑙2+1)−𝑎2(𝑙2+3)−𝑎1(𝑙2−2))/𝑙2 . If 0 < 𝜀 < 1
is satisfied, then one obtains 𝜆 = −(1/2)ln(𝜀). Integrating
all cases (A.9)–(A.13), we have 𝑉

𝜎(𝑡)
(𝑡) < 𝑒

−2𝜆𝑡
𝑉1(0), which

means that system (8) is exponentially stable for system (8)
with 𝜔(𝑡) ≡ 0, where 𝜆 and 𝛽 are given in Proposition 2.

Now, we are in a position to show the 𝐻
∞

performance
for system (8) with nonzero 𝜔(𝑡) ∈ L2[0,∞) under the zero
initial condition.

Using Lemma 1 and Jensen’s inequality to (A.2), we have

�̇�1 (𝑡) + 𝑧
𝑇

(𝑡) 𝑧 (𝑡) − 𝛾
2
𝜔
𝑇

(𝑡) 𝜔 (𝑡)

≤ − 𝑎1𝑉1 (𝑡) + 𝜉
𝑇

1 (𝑡) Ξ
(1)
𝜉1 (𝑡) ,

(A.14)

where 𝜉𝑇1 (𝑡) = [𝑥
𝑇

(𝑡) 𝑥
𝑇

(𝑡 − 𝜏1(𝑡)) 𝑥
𝑇

(𝑡 − ℎ1) 𝑥
𝑇

(𝑡 −

ℎ2) 𝜔
𝑇

(𝑡)].
Similarly, we obtain

�̇�2 (𝑡) + 𝑧
𝑇

(𝑡) 𝑧 (𝑡) − 𝛾
2
𝜔
𝑇

(𝑡) 𝜔 (𝑡)

≤ − 𝑎2𝑉2 (𝑡) + 𝜉
𝑇

𝑖1 (𝑡) Ξ
(𝑖1)
𝜉
𝑖1 (𝑡) ,

�̇�3 (𝑡) + 𝑧
𝑇

(𝑡) 𝑧 (𝑡) − 𝛾
2
𝜔
𝑇

(𝑡) 𝜔 (𝑡)

≤ − 𝑎3𝑉3 (𝑡) + 𝜉
𝑇

𝑖2 (𝑡) Ξ
(𝑖2)
𝜉
𝑖2 (𝑡) ,

(A.15)

where 𝜉𝑇
𝑖𝑗
(𝑡) = [𝑥

𝑇

(𝑡) 𝑥
𝑇

(𝑡 − 𝜏
(1)
𝑖
(𝑡)) 𝑥

𝑇

(𝑡 − 𝜏
(2)
𝑖
(𝑡)) 𝑥

𝑇

(𝑡 −

ℎ1) 𝑥
𝑇

(𝑡 − ℎ2) 𝜔
𝑇

(𝑡)] (𝑗 = 1, 2).
It follows from (20)–(22) and (A.14)-(A.15) that

�̇�
𝜎(𝑡)
(𝑡) + 𝑧

𝑇

(𝑡) 𝑧 (𝑡) − 𝛾
2
𝜔
𝑇

(𝑡) 𝜔 (𝑡)

≤ − 𝑎
𝜎(𝑡)
𝑉
𝜎(𝑡)
(𝑡) .

(A.16)

LetI
𝑖
= [𝑡
𝑖
, 𝑡
𝑖+1). When 𝑡 ∈ I

𝑖
, integrating both sides of

(A.16) from 𝑡
𝑖
to 𝑡, we have

𝑉
𝜎(𝑡
+

𝑖

)
(𝑡) ≤ 𝑒

−𝑎
𝜎(𝑡

+

𝑖

)

(𝑡−𝑡
𝑖

)

𝑉
𝜎(𝑡
+

𝑖

)
(𝑡
+

𝑖
)

−∫

𝑡

𝑡
𝑖

𝑒
−𝑎
𝜎(𝑡

+

𝑖

)

(𝑡−𝑠)

Δ (𝑠) 𝑑𝑠,

(A.17)

where Δ(𝑠) = 𝑧𝑇(𝑠)𝑧(𝑠) − 𝛾2𝜔𝑇(𝑠)𝜔(𝑠).
Combining (A.6) and (A.17), we obtain

𝑉
𝜎(𝑡
+

𝑖

)
(𝑡) ≤ 𝑒

−𝑎
𝜎(𝑡

+

𝑖

)

(𝑡−𝑡
𝑖

)

𝑉
𝜎(𝑡
+

𝑖

)
(𝑡
+

𝑖
)

−∫

𝑡

𝑡
𝑖

𝑒
−𝑎
𝜎(𝑡

+

𝑖

)

(𝑡−𝑠)

Δ (𝑠) 𝑑𝑠

≤ 𝜐𝑒
−𝑎
𝜎(𝑡

+

𝑖

)

(𝑡−𝑡
𝑖

)

𝑉
𝜎(𝑡
−

𝑖

)
(𝑡
−

𝑖
)

−∫

𝑡

𝑡
𝑖

𝑒
−𝑎
𝜎(𝑡

+

𝑖

)

(𝑡−𝑠)

Δ (𝑠) 𝑑𝑠 ≤ ⋅ ⋅ ⋅

≤ 𝑒
−2𝜆𝑡
𝑉1 (0) −∫

𝑡

0
𝑒
−2𝜆(𝑡−𝑠)

Δ (𝑠) 𝑑𝑠,

(A.18)

where

𝜐

=

{{{{

{{{{

{

𝜐1, 𝑡
𝑖
= 𝑘𝑙1ℎ1,

𝜇, 𝑡
𝑖
= 𝑘𝑙1ℎ1 + ℎ1, 𝑘𝑙1ℎ1 + 𝑗ℎ2, 𝑗 = 1, 2, . . . , 𝑙2 − 1,

𝜐2, 𝑡
𝑖
= 𝑘𝑙1ℎ1 + (𝑚𝑗 + 1) ℎ1.

(A.19)

For 𝑡 ∈ [0,∞), it can be seen that

𝑉
𝜎(𝑡)
(𝑡) ≤ 𝑒

−2𝜆𝑡
𝑉1 (0) −∫

𝑡

0
𝑒
−2𝜆(𝑡−𝑠)

Δ (𝑠) 𝑑𝑠. (A.20)
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Multiplying both sides of (A.20) by 𝜇−2𝑡/ℎ2 yields

𝜇
−2𝑡/ℎ2𝑉

𝜎(𝑡)
(𝑡) +∫

𝑡

0
𝑒
−2𝜆(𝑡−𝑠)−(2𝑡/ℎ2) ln 𝜇𝑧

𝑇

(𝑠) 𝑧 (𝑠) 𝑑𝑠

≤ 𝑒
−2𝜆𝑡−(2𝑡/ℎ2) ln 𝜇𝑉1 (0)

+∫

𝑡

0
𝑒
−2𝜆(𝑡−𝑠)−(2𝑡/ℎ2) ln 𝜇𝛾

2
𝜔
𝑇

(𝑠) 𝜔 (𝑠) 𝑑𝑠

≤ 𝑒
−2𝜆𝑡−(2𝑡/ℎ2) ln 𝜇𝑉1 (0) +∫

𝑡

0
𝛾
2
𝜔
𝑇

(𝑠) 𝜔 (𝑠) 𝑑𝑠.

(A.21)

Taking zero initial condition and 𝑉
𝜎(𝑡)
(𝑡) > 0 into considera-

tion, we have

∫

𝑡

0
𝑒
−2𝜆(𝑡−𝑠)−(2𝑡/ℎ2) ln 𝜇𝑧𝑇 (𝑠) 𝑧 (𝑠) 𝑑𝑠

< ∫

𝑡

0
𝛾
2
𝜔
𝑇

(𝑠) 𝜔 (𝑠) 𝑑𝑠.

(A.22)

Notice that −2𝜆(𝑡 − 𝑠) − (2𝑡/ℎ2)ln𝜇 = −𝛼𝑡+ 2𝜆𝑠 > −𝛼𝑡, where
𝛼 = (𝑎1(𝑙2−2)+𝑎2(𝑙2+3)−𝑎3(𝑙2+1))/𝑙2. So it is easy to obtain

∫

𝑡

0
𝑒
−𝛼𝑡

𝑧
𝑇

(𝑠) 𝑧 (𝑠) 𝑑𝑠 ≤ 𝛾
2
∫

𝑡

0
𝜔
𝑇

(𝑠) 𝜔 (𝑠) 𝑑𝑠. (A.23)

Integrating both sides of (A.23) from 𝑡 = 0 to 𝑡 = ∞ leads to

∫

∞

0
𝑒
−𝛼𝑠

𝑧
𝑇

(𝑠) 𝑧 (𝑠) 𝑑𝑠 ≤ 𝛾
2
∫

∞

0
𝜔
𝑇

(𝑠) 𝜔 (𝑠) 𝑑𝑠. (A.24)

This completes the proof.

B. Proof of Proposition 3

Proof. By Schur complement, (20) is equivalent to

Ξ̂
(1)
= [

Π̂
(1)
11 Π̂
(1)
12

∗ Π̂
(1)
22

] < 0, (B.1)

where

Π̂
(1)
11 =

[
[
[
[
[
[
[
[
[

[

Ξ̂
(1)
11 Ξ
(1)
12 0 0 𝑃1𝐸 + 𝐶

𝑇

𝐷

∗ Ξ
(1)
22 Ξ
(1)
23 0 0

∗ ∗ Ξ
(1)
33 Ξ
(1)
34 0

∗ ∗ ∗ Ξ
(1)
44 0

∗ ∗ ∗ ∗ −𝛾
2
𝐼 + 𝐷
𝑇

𝐷

]
]
]
]
]
]
]
]
]

]

,

Π̂
(1)
12 =

[
[
[
[
[
[
[
[
[

[

ℎ1𝐴
𝑇

ℎ12𝐴
𝑇

𝐶
𝑇

ℎ1𝐹
𝑇

1 𝐵
𝑇

ℎ12𝐹
𝑇

1 𝐵
𝑇 0

0 0 0
0 0 0

ℎ1𝐸
𝑇

ℎ12𝐸
𝑇 0

]
]
]
]
]
]
]
]
]

]

,

Π̂
(1)
22 =

[
[
[

[

𝑅
−1
11 0 0

∗ 𝑅
−1
21 0

∗ ∗ −𝐼

]
]
]

]

,

Ξ̂
(1)
11 = 𝐴

𝑇

𝑃1 +𝑃1𝐴+𝑎1𝑃1 +𝑄11 −𝜎11𝑅11.

(B.2)

Define Δ 1 = diag{𝑃−11 , 𝑃
−1
1 , 𝑃
−1
1 , 𝑃
−1
1 , 𝐼, 𝐼, 𝐼, 𝐼}. Performing a

congruence transformation to (B.1) by Δ 1, together with the
changes of matrix variables defined by 𝑃1 = 𝑃

−1
1 , 𝑄

𝑖1 =

𝑃1𝑄𝑖1𝑃1 (𝑖 = 1, 2), 𝑅
𝑖1 = 𝑃1𝑅𝑖1𝑃1 (𝑖 = 1, 2), 𝑆1 = 𝑃1𝑆1𝑃1,

𝐹1 = 𝐹1𝑃1, and using −𝑃1𝑅
−1
𝑖1 𝑃1 ≤ V2𝑅

𝑖1 − 2V𝑃1 (𝑖 = 1, 2), we
can obtain (30).

Using a similar method to (21) and (22), we can obtain
(31) and (32), respectively, where 𝑃

𝑗
= 𝑃
−1
𝑗
, 𝑆2 = 𝑃2𝑆2𝑃2,

𝑄
𝑖𝑗
= 𝑃
𝑗
𝑄
𝑖𝑗
𝑃
𝑗
, 𝑅
𝑖𝑗
= 𝑃
𝑗
𝑅
𝑖𝑗
𝑃
𝑗
, 𝑆2,1 = 𝑃2𝑆2,1𝑃2, 𝑆2,2 = 𝑃2𝑆2,2𝑃2,

𝑆3,1 = 𝑃3𝑆3,1𝑃3, 𝑆3,2 = 𝑃3𝑆3,2𝑃3, 𝐹1𝑗 = 𝐹𝑗𝐼𝑝1𝑃𝑗, and 𝐹2𝑗 =
𝐹
𝑗
𝐼
𝑝2
𝑃
𝑗
(𝑖 = 1, 2; 𝑗 = 1, 2, 3). Before and after multiplying the

inequalities 𝑃1 ≤ 𝜇𝑃2, 𝑃2 ≤ 𝜇𝑃1, 𝑃3 ≤ 𝜇𝑃2, and 𝑃2 ≤ 𝜇𝑃3
by 𝑃−12 , 𝑃−11 , 𝑃−12 , and 𝑃−13 , respectively, we have 𝑃2 ≤ 𝜇𝑃1,
𝑃1 ≤ 𝜇𝑃2, 𝑃2 ≤ 𝜇𝑃3, and 𝑃3 ≤ 𝜇𝑃2. Similarly, we obtain
𝑄
𝑖2 ≤ 𝜇𝑄𝑖1, 𝑄𝑖1 ≤ 𝜇𝑄𝑖2, 𝑄𝑖2 ≤ 𝜇𝑄𝑖3, 𝑄𝑖3 ≤ 𝜇𝑄𝑖2, 𝑅𝑖2 ≤
𝜇𝑅
𝑖1, 𝑅𝑖1 ≤ 𝜇𝑅𝑖2, 𝑅𝑖2 ≤ 𝜇𝑅𝑖3, 𝑅𝑖3 ≤ 𝜇𝑅𝑖2 (𝑖 = 1, 2), and the

equalities (26)–(29). The proof is completed.
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