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An adaptive neural output feedback control scheme is investigated for a class of stochastic nonlinear systems with unmodeled
dynamics and unmeasured states. The unmeasured states are estimated by K-filters, and unmodeled dynamics is dealt with by
introducing a novel description based on Lyapunov function. The neural networks weight vector used to approximate the black
box function is adjusted online. The unknown nonlinear system functions are handled together with some functions resulting
from theoretical deduction, and suchmethod effectively reduces the number of adaptive tuning parameters. Using dynamic surface
control (DSC) technique, Itô formula, and Chebyshev’s inequality, the designed controller can guarantee that all the signals in the
closed-loop system are bounded in probability, and the error signals are semiglobally uniformly ultimately bounded inmean square
or the sense of four-moment. Simulation results are provided to verify the effectiveness of the proposed approach.

1. Introduction

During the past decades, backstepping in [1] and dynamic
surface control (DSC) in [2] have become two most popu-
lar methods for adaptive controller design. Many adaptive
control schemes based on fuzzy/neural networks have been
proposed for uncertain nonlinear systems using backstepping
or dynamic surface control method in [3–13]. In the exist-
ing literature, three types of uncertainties were commonly
considered, which included unknown system functions and
parameter uncertainties and unmodeled dynamics. Unmod-
eled dynamics was dealt with by introducing an available
dynamic signal in [3]. In addition, it was handled by a
description method of Lyapunov function in [4]. In [4,
5], adaptive tracking control schemes were developed by
backstepping andDSC for a class of strict-feedback uncertain
nonlinear systems, respectively. In [7–10], adaptive control
schemes were presented for a class of pure-feedback non-
linear systems. In [11–13], the adaptive tracking approaches
for single-input single-output (SISO) nonlinear systems were
extended to uncertain large-scale nonlinear systems.

When system states are assumed to be unmeasurable,
output feedback adaptive control based on filters or observers

has attractedmuch attention. In [14], K-filterswere firstly pro-
posed, and adaptive output feedback control was developed
using K-filters. Inspired by the work in [14], robust adaptive
output feedback control schemes were studied for SISO
uncertain nonlinear systems in [15, 16]. In [17], combining
backstepping technique with small-gain approach, indirect
adaptive output feedback fuzzy control was developed. In
[18], decentralized adaptive output-feedback control was
designed based on high-gain K-filters and dynamic surface
control method for a class of uncertain interconnected
nonlinear systems.

It is well known that due to the stochastic terms and
the extra quadratic variation terms resulting from the Itô
differentiation rule, both the structures and the controller
design of stochastic systems are commonlymore complicated
than those of deterministic systems. In the past decade,
much effort has focused on the study of adaptive control
schemes for uncertain stochastic nonlinear systems and the
proof of the control system stability in probability sense. In
[19–21], Deng et al. proposed the adaptive control scheme,
based on backstepping for stochastic strict feedback or
output-feedback nonlinear systems, and introduced a con-
trol Lyapunov function formula for stochastic disturbance
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attenuation earlier. In [22], by employing the stochastic
Lyapunov-like theorem, adaptive backstepping state feedback
control was developed for a class of stochastic nonlinear
systems with unknown backlash-like hysteresis nonlineari-
ties. In [23], the problem of decentralized adaptive output-
feedback control was discussed for a class of stochastic non-
linear interconnected systems. In [24, 25], output feedback
adaptive fuzzy control approaches were considered using
backstepping method for a class of uncertain stochastic non-
linear systems. In [26], by combining stochastic small-gain
theorem with backstepping design technique, an adaptive
output feedback control scheme was presented for a class of
stochastic nonlinear systems with unmodeled dynamics and
uncertain nonlinear functions. In [27], a concept of stochastic
integral input-to-state stability (SiISS) using Lyapunov func-
tion was first introduced, and output feedback control was
developed for stochastic nonlinear systems with stochastic
inverse dynamics. In [28], two linear output feedback control
schemes were studied to make the closed-loop system noise-
to-state stable or globally asymptotically stable in probability.
In [29], by using the homogeneous domination technique and
appropriate Lyapunov functions, an output-feedback stabi-
lizing controller was designed to be globally asymptotically
stable in probability. In [30], the small-gain control method
was investigated for stochastic nonlinear systems with SiISS
inverse dynamics. In [31], based on a reduced-order observer,
small-gain type condition on SiISS and stochastic LaSalle
theorem, an output feedback controller was developed for
stochastic nonlinear systems. In [32], an adaptive output
feedback control scheme was investigated by combining K-
filters with DSC for a class of stochastic nonlinear sys-
tems with dynamic uncertainties and unmeasured states. In
[33], adaptive control was developed using the backstepping
method for a class of stochastic nonlinear systems with time-
varying state delays and unmodeled dynamics.

Motivated by the above-mentioned results [4, 14, 32], in
this paper, adaptive neural stochastic output feedback control
is developed by combining K-filters with dynamic surface
control to guarantee the stability of the closed-loop system.
The main contributions of the paper lie in the following.

(i) Adaptive neural output feedback control is developed
using K-filters and dynamic surface control for a
class of stochastic nonlinear systems with unmodeled
dynamics and unmeasured states. The advantage of
the design is that once the local system constructed
by the filter signals is stabilized, all the signals in the
closed-loop system are bounded in probability.

(ii) Unmodeled dynamics is dealt with first by introduc-
ing a novel description based on Lyapunove function
without using the dynamic signal to handle dynamic
uncertainty in [32]. The novel description, which
provides an effectivemethod for dealingwith unmod-
eled dynamics in output feedback adaptive controller
design, is the development of original idea about
handling unmodeled dynamics in [4].

(iii) Utilizing the boundedness of continuous function,
the unknown nonlinear system functions are handled
together with some functions produced in stability

analysis, rather than directly approximated before
stability analysis in [6, 8, 9, 11, 12].Therefore the design
effectively reduces the order of filters and the number
of adjustable parameters of the whole system, without
estimating Ξ in [32].

(iv) Using bounded input bounded output (BIBO) sta-
bility and the filter special structure, the stability
of the closed-loop system is proved. Therefore, the
difficulty, that the transfer function cannot be used
in a stochastic system while it was widely used to
analyze the boundedness of the K-filters signals in the
deterministic systems in [4, 14, 16–18], is solved by the
proposed stability analysis approach in this paper.

The rest of the paper is organized as follows.The problem
formulation and preliminaries are given in Section 2. The
neural filters are designed, and adaptive stochastic output
feedback control is developed based on dynamic surface
control method. The stability in the closed-loop system in
probability sense is analyzed in Section 3. Simulation results
are presented to illustrate the effectiveness of the proposed
scheme in Section 4. Section 5 contains the conclusions.

2. Problem Statement and Preliminaries

Consider the following uncertain stochastic nonlinear sys-
tems with unmodeled dynamics:

𝑑𝑧 = 𝑞 (𝑧, 𝑦) 𝑑𝑡

𝑑𝑥
1
= (𝑥
2
+ 𝑓
1
(𝑦) + Δ

1
(𝑧, 𝑦, 𝑡)) 𝑑𝑡 + 𝑔

𝑇

1
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.

.
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(1)

where 𝑥 = [𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
]
𝑇
∈ 𝑅
𝑛 is the state; 𝑢 ∈ 𝑅 is

the input, and 𝑦 ∈ 𝑅 is the output; 𝜎(𝑦) ̸= 0 is a known
positive continuous function; 𝑓

𝑖
(𝑦) is the unknown smooth

function; 𝑧 ∈ 𝑅𝑛0 is the unmodeled dynamics, and Δ
𝑖
(𝑧, 𝑦, 𝑡)

is the unknown smooth nonlinear dynamic disturbance; 𝑏 =
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𝑚
, . . . , 𝑏

1
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0
]
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+⋅ ⋅ ⋅+𝑏

1
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𝑖
(𝑧, 𝑦, 𝑡) and 𝑞(𝑧, 𝑦) are the unknown Lipschitz
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functions; 𝑤 is an 𝑟-dimensional standard Brownian motion
defined on the complete probability space (Ω, 𝐹, 𝑃) with Ω

being a sample space, 𝐹 being a 𝜎 field, and 𝑃 being a
probability measure. In this paper, it is assumed that only
output 𝑦 is available for measurement.

The control objective is to design output feedback adap-
tive control 𝑢 for system (1) such that the output 𝑦 follows
the specified desired trajectory 𝑦

𝑑
, and all the signals of the

closed-loop system are bounded in probability.

Assumption 1 (see [4]). The unknown nonlinear dynamic
disturbances Δ

𝑖
(𝑧, 𝑦, 𝑡), 𝑖 = 1, 2, . . . , 𝑛, satisfy |Δ

𝑖
(𝑧, 𝑦, 𝑡)| ≤

𝜌
𝑖1
(|𝑦|) + 𝜌

𝑖2
(𝑦)‖𝑧‖, and 𝜌

𝑖1
(|𝑦|) and 𝜌

𝑖2
(𝑦) are the unknown

nonnegative smooth functions, and ‖⋅‖ denotes the Euclidian
norm of a vector.

Assumption 2. The system 𝑧̇ = 𝑞(𝑧, 0, 𝑡) − 𝑞(0, 0, 𝑡) is globally
exponentially stable when 𝑧 = 0; that is, there exists a
Lyapunov function𝑊(𝑡, 𝑧) satisfying

𝑐
1 ‖𝑧‖
4
≤ 𝑊(𝑧, 𝑡) ≤ 𝑐

2 ‖𝑧‖
4
,

𝜕𝑊

𝜕𝑡
(𝑧, 𝑡) +

𝜕𝑊

𝜕𝑧
(𝑧, 𝑡) (𝑞 (𝑧, 0, 𝑡) − 𝑞 (0, 0, 𝑡))

≤ −𝑐
3 ‖𝑧‖
4
,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
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3
,

(2)

where 𝑐
1
,𝑐
2
, 𝑐
3
, 𝑐
4
are positive constants, and there exists 𝑐

5
≥ 0

such that ‖𝑞(0, 0, 𝑡)‖ ≤ 𝑐
5
, ∀𝑡 ≥ 0.

Assumption 3. There exists an unknown function 𝜓
0
, and

𝜓
0
(0) = 0, such that ‖𝑞(𝑧, 𝑦, 𝑡) − 𝑞(𝑧, 0, 𝑡)‖ ≤ 𝜓

0
(|𝑦|) holds.

Assumption 4. Thedesired trajectory 𝑥
𝑑
= [𝑦
𝑑
, ̇𝑦
𝑑
, ̈𝑦
𝑑
]
𝑇
∈ Ω
𝑑

is known, where Ω
𝑑
= {𝑥
𝑑
: 𝑦
2

𝑑
+ ̇𝑦
2

𝑑
+ ̈𝑦
2

𝑑
≤ 𝐵
0
}, and 𝐵

0
is a

known constant.

Assumption 5. There exists a known constant 𝑏max such that
the following inequality 0 < |𝑏

𝑚
| ≤ 𝑏max holds.

Remark 6. Assumption 2 is the extension of the description
of unmodeled dynamics in [4], and it can effectively deal with
unmodeled dynamics in output feedback adaptive controller
design. To the best of authors’ knowledge, this assumption is
first addressed.

Consider the following stochastic nonlinear system:

𝑑𝑥 = 𝑓 (𝑡, 𝑥) 𝑑𝑡 + ℎ
𝑇
(𝑡, 𝑥) 𝑑𝑤, (3)

where 𝑥 ∈ 𝑅
𝑛 is the system state, 𝑤 is an 𝑟-dimensional

standard Brownian motion, 𝑓 : 𝑅
+
× 𝑅
𝑛
→ 𝑅
𝑛, ℎ𝑇 : 𝑅+ ×

𝑅
𝑛
→ 𝑅
𝑛×𝑟 are locally Lipschitz and 𝑓(𝑡, 0), ℎ(𝑡, 0) are uni-

formly ultimately bounded. For any given 𝑉(𝑡, 𝑥(𝑡)) ∈ 𝐶
1,2,

associated with the stochastic system (3), the infinitesimal
generator ℓ is defined as follows:

ℓ𝑉 (𝑡, 𝑥 (𝑡)) =
𝜕𝑉 (𝑡, 𝑥 (𝑡))

𝜕𝑡
+
𝜕𝑉 (𝑡, 𝑥 (𝑡))

𝜕𝑥𝑇
𝑓

+
1

2
tr{ℎ𝜕

2
𝑉 (𝑡, 𝑥 (𝑡))

𝜕𝑥𝑇𝜕𝑥
ℎ
𝑇
} ,

(4)

where tr(𝐴) is the trace of a matrix 𝐴.

Definition 7 (see [34]). The stochastic process {𝑥(𝑡)} is said to
be bounded in probability, if lim

𝑐→∞
sup
0≤𝑡<∞

𝑃(|𝑥(𝑡)| > 𝑐) =

0.

Definition 8. The solution 𝑥(𝑡) of system (3) is said to be
semiglobally uniformly ultimately bounded (SGUUB) in 𝑝th
moment (𝑝 ≥ 1), if for some compact set Ω ⊂ 𝑅

𝑛 and any
initial state 𝑥

0
= 𝑥(𝑡
0
) ∈ Ω, there exists a constant 𝜀 > 0 and

a time constant 𝑇 = 𝑇(𝜀, 𝑥
0
) such that 𝐸[‖𝑥(𝑡)‖𝑝] ≤ 𝜀 for all

𝑡 > 𝑡
0
+ 𝑇, especially, when 𝑝 = 2, it is usually called SGUUB

in mean square.

Lemma 9 (see [32]). For any stochastic process {𝜉(𝑡)}, if there
exists a positive integer 𝑝 and a positive constant 𝐶

0
such that

𝐸|𝜉(𝑡)|
𝑝
≤ 𝐶
0
, ∀𝑡 ≥ 0, then {𝜉(𝑡)} is bounded in probability.

Lemma 10 (see [21]). Consider system (3) and suppose that
there exists a 𝐶

2 function 𝑉(𝑡, 𝑥(𝑡)): 𝑅𝑛 × 𝑅 → 𝑅
+, two

constants 𝑐
1
> 0, 𝑐
2
≥ 0, class 𝜅

∞
functions 𝜇

1
, 𝜇
2
such that

𝜇
1
(‖𝑥‖) ≤ 𝑉 (𝑡, 𝑥) ≤ 𝜇2 (‖𝑥‖) ,

ℓ𝑉 ≤ −𝑐
1
𝑉 + 𝑐
2

(5)

for all 𝑥 ∈ 𝑅
𝑛 and 𝑡 > 𝑡

0
. Then, (i) for any initial state

𝑥
0
∈ 𝑅
𝑛, there exists a unique strong solution 𝑥(𝑡) for system

(3); (ii) the solution 𝑥(𝑡) of system (3) is bounded in probability;
(iii) 𝐸[𝑉(𝑡

0
, 𝑥)] ≤ 𝑉(𝑡

0
, 𝑥
0
)𝑒
−𝑐1𝑡 + 𝑐

2
/𝑐
1
, ∀𝑡 ≥ 𝑡

0
.

In order to design filters and observer, (1) can be rewritten
as follows:

𝑧̇ = 𝑞 (𝑧, 𝑦) ,

𝑑𝑥 = (𝐴𝑥 + 𝑓 (𝑦) + 𝐹
𝑇
(𝑦, 𝑢) 𝑏 + Δ) 𝑑𝑡 + 𝑔

𝑇
(𝑦) 𝑑𝑤,

𝑦 = 𝑒
𝑇

1
𝑥,

(6)

where

𝐴 = [
0 𝐼
𝑛−1

0 0
] ,

𝑓 (𝑦) =
[
[

[

𝑓
1
(𝑦)

.

.

.

𝑓
𝑛
(𝑦)

]
]

]

,
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Δ (𝑧, 𝑦, 𝑡) =
[
[

[

Δ
1
(𝑧, 𝑦, 𝑡)

.

.

.

Δ
𝑛
(𝑧, 𝑦, 𝑡)

]
]

]

,

𝑒
1
= [1, 0, . . . , 0]

𝑇
,

𝐹
𝑇
(𝑦, 𝑢) = [

0
(𝜌−1)×(𝑚+1)

𝐼
𝑚+1

] 𝜎 (𝑦) 𝑢.

(7)

3. Adaptive Robust Controller
Design and Stability Analysis

3.1. Neural Filters and Controller Design. In order to estimate
the state 𝑥, we introduce the following filters:

̇𝜉 = 𝐴
0
𝜉 + 𝐿𝑦, 𝜉 ∈ 𝑅

𝑛
,

Ω̇
𝑇
= 𝐴
0
Ω
𝑇
+ 𝐹
𝑇
(𝑦, 𝑢) , Ω

𝑇
∈ 𝑅
𝑛×(𝑚+1)

,

(8)

where𝐴
0
= 𝐴−𝐿𝑒

𝑇

1
, 𝐿 = [𝑙

1
, . . . , 𝑙
𝑛
]
𝑇,𝐴
0
is a Hurwitz matrix;

that is

𝑃𝐴
0
+ 𝐴
𝑇

0
𝑃 = −ℎ𝐼,

𝑃 = 𝑃
𝑇
> 0,

(9)

where ℎ > 0 is a design constant.
Define the state estimate as follows:

𝑥 = 𝜉 + Ω
𝑇
𝑏 (10)

The observer error is defined as 𝜀 = 𝑥 − 𝑥. Thus

𝑥 = 𝜉 + Ω
𝑇
𝑏 + 𝜀, (11)

𝑑𝜀 = (𝐴
0
𝜀 + 𝑓 (𝑦) + Δ) 𝑑𝑡 + 𝑔

𝑇
(𝑦) 𝑑𝑤. (12)

Denote the columns ofΩ𝑇 as follows:

Ω
𝑇
= [V
𝑚
, . . . , V

1
, V
0
] , Ω

𝑇
∈ 𝑅
𝑛×(𝑚+1)

. (13)

Inspired by thework in [14], the filters are designed as follows:

̇𝜉 = 𝐴
0
𝜉 + 𝐿𝑦, 𝜉 ∈ 𝑅

𝑛
,

𝜆̇ = 𝐴
0
𝜆 + 𝑒
𝑛
𝜎 (𝑦) 𝑢, 𝜆 ∈ 𝑅

𝑛
,

V̇
𝑗
= 𝐴
0
V
𝑗
+ 𝑒
𝑛−𝑗
𝜎 (𝑦) 𝑢, V

𝑗
∈ 𝑅
𝑛
, 𝑗 = 0, 1, . . . , 𝑚.

(14)

It is easy to show that

𝐴
𝑗

0
𝑒
𝑛
= 𝑒
𝑛−𝑗
, 𝑗 = 0, 1, . . . , 𝑚, (15)

V
𝑗
= 𝐴
𝑗

0
𝜆, 𝑗 = 0, 1, . . . , 𝑚, (16)

where 𝑒
𝑖
denotes 𝑛 dimensional vector with the 𝑖th element

being one and other elements being all zeros, 𝑖 = 1, . . . , 𝑛.

Let V
𝑖,𝑗
be the 𝑗th element of the vector V

𝑖
and 𝜆

𝑙
the 𝑙th

element of the vector 𝜆, respectively. From [14], we know

V
𝑖,𝑗
= [∗ ⋅ ⋅ ⋅ ∗ 1]

[
[
[
[

[

𝜆
1

𝜆
2

.

.

.

𝜆
𝑖+𝑗

]
]
]
]

]

,

𝑗 = 1, . . . , 𝜌; 𝑖 = 0, 1, . . . , 𝑚; 𝜆
𝑙
= 0, 𝑙 > 𝑛.

(17)

According to (11), we get

𝑥
2
= 𝜉
2
+ 𝜔
𝑇
𝑏 + 𝜀
2
= 𝜉
2
+ [V
𝑚,2
, . . . , V

1,2
, V
0,2
] 𝑏 + 𝜀

2

= 𝑏
𝑚
V
𝑚,2

+ 𝜉
2
+ 𝜔
𝑇
𝑏 + 𝜀
2
,

(18)

where𝜔𝑇 denotes the second rowof thematrixΩ𝑇, 𝜉
2
denotes

the second element of the vector 𝜉, and 𝜀
2
is the second

element of 𝜀.
Substituting (18) into (1), it yields

𝑑𝑦

= (𝑏
𝑚
V
𝑚,2

+ 𝜉
2
+ 𝜔
𝑇
𝑏 + 𝜀
2
+ 𝑓
1
(𝑦) + Δ

1
(𝑧, 𝑦, 𝑡)) 𝑑𝑡

+ 𝑔
𝑇

1
(𝑦) 𝑑𝑤,

(19)

where

𝜔
𝑇
= [V
𝑚,2
, V
𝑚−1,2

, . . . , V
1,2
, V
0,2
] ,

𝜔
𝑇
= [V
𝑚−1,2

, . . . , V
1,2
, V
0,2
] ,

𝑏
𝑇

= [𝑏
𝑚−1

, . . . , 𝑏
1
, 𝑏
0
] .

(20)

In view of (19) and (14), the system used to design adaptive
output feedback DSC in next section is addressed as follows:

𝑑𝑦 = (𝑏
𝑚
V
𝑚,2

+ 𝜉
2
+ 𝜔
𝑇
𝑏 + 𝜀
2
+ 𝑓
1
(𝑦) + Δ

1
) 𝑑𝑡

+ 𝑔
𝑇

1
(𝑦) 𝑑𝑤,

V̇
𝑚,𝑖

= V
𝑚,𝑖+1

− 𝑙
𝑖
V
𝑚,1
, 𝑖 = 2, . . . , 𝜌 − 1,

V̇
𝑚,𝜌

= 𝜎 (𝑦) 𝑢 + V
𝑚,𝜌+1

− 𝑙
𝜌
V
𝑚,1
.

(21)

3.2. Stochastic Adaptive Dynamic Surface Controller Design.
In this subsection, according to (21) and by using dynamic
surface control method, we propose an output feedback
stochastic adaptive tracking control scheme. Similar to back-
stepping, the whole design needs 𝜌 steps.

For convenience, somenotations are presented below. 𝑠
𝑖
=

[𝑠
1
, . . . , 𝑠

𝑖
]
𝑇, 𝑦
𝑗
= [𝑦
2
, . . . , 𝑦

𝑗
]
𝑇, where 𝑠

𝑖
, 𝑦
𝑗
will be given

in the controller design later, 𝑖 = 1, 2, . . . , 𝜌, 𝑗 = 2, . . . , 𝜌.
𝑦
𝑗
= 𝜔
𝑗
− 𝛼
𝑗−1

, 𝑗 = 2, . . . , 𝜌, 𝜔
𝑗
is the output of a first-

order filter with 𝛼
𝑖−1

as the input, and 𝛼
𝑖−1

is an intermediate
control which will be developed for the corresponding (𝑖 −
1)th subsystem.
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Define some Lyapunov functions as follows:

𝑉
𝜀
= 𝜀
𝑇
𝑃𝜀,

𝑉
𝑊
=

1

𝜆
0

𝑊(𝑧, 𝑡) , 𝜆
0
> 0,

𝑉
𝑠𝑖
=
1

4
𝑠
4

𝑖
,

𝑉
𝑠𝑊𝜀

= 𝑉
𝑠1
+ 𝑉
𝜀
+ 𝑉
𝑊
,

(22)

where𝑊(𝑧, 𝑡) is given in Assumption 2.
Using Young’s inequality, the infinitesimal generator of𝑉

𝜀

satisfies

ℓ𝑉
𝜀
= 𝜀
𝑇
(𝑃𝐴
0
+ 𝐴
𝑇

0
𝑃) 𝜀 + 2𝜀

𝑇
𝑃𝑓 (𝑦) + 2𝜀

𝑇
𝑃Δ

+ tr (𝑔 (𝑦) 𝑃𝑔𝑇 (𝑦))

≤ 𝜀
𝑇
(𝑃𝐴
0
+ 𝐴
𝑇

0
𝑃) 𝜀 + 2𝜀

𝑇
𝜀 + ‖𝑃‖

2 󵄩󵄩󵄩󵄩𝑓 (𝑦)
󵄩󵄩󵄩󵄩

2

+ ‖𝑃‖
2
‖Δ‖
2
+ tr (𝑔 (𝑦) 𝑃𝑔𝑇 (𝑦))

(23)

According to Assumption 1 and by using Young’s inequality,
we obtain

ℓ𝑉
𝜀
≤ − (ℎ − 2) 𝜀

𝑇
𝜀 +

𝑛

∑

𝑗=1

‖𝑃‖
2
𝑓
2

𝑗
(𝑦)

+

𝑛

∑

𝑗=1

‖𝑃‖
2
(𝜌
𝑗1
(
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨) + 𝜌𝑗2 (𝑦) ‖𝑧‖)

2

+ tr (𝑔 (𝑦) 𝑃𝑔𝑇 (𝑦))

≤ − (ℎ − 2) 𝜀
𝑇
𝜀 +

𝑛

∑

𝑗=1

‖𝑃‖
2
𝑓
2

𝑗
(𝑦)

+

𝑛

∑

𝑗=1

2 ‖𝑃‖
2
(𝜌
2

𝑗1
(
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨) + 𝜌
2

𝑗2
(𝑦) ‖𝑧‖

2
)

+ tr (𝑔 (𝑦) 𝑃𝑔𝑇 (𝑦))

≤ − (ℎ − 2) 𝜀
𝑇
𝜀 +

𝑛

∑

𝑗=1

‖𝑃‖
2
𝑓
2

𝑗
(𝑦)

+

𝑛

∑

𝑗=1

2 ‖𝑃‖
2
𝜌
2

𝑗1
(
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨)

+
16𝑛𝜆
0

𝑐
3

𝑛

∑

𝑗=1

‖𝑃‖
4
𝜌
4

𝑗2
(𝑦) +

𝑐
3

16𝜆
0

‖𝑧‖
4

+ tr (𝑔 (𝑦) 𝑃𝑔𝑇 (𝑦))

(24)

According to Assumptions 2 and 3, using Young’s inequality,
we get

𝑉̇
𝑊
=

1

𝜆
0

(
𝜕𝑊

𝜕𝑧
(𝑧, 𝑡) 𝑧̇ +

𝜕𝑊

𝜕𝑡
(𝑧, 𝑡))

≤ −
5𝑐
3

8𝜆
0

‖𝑧‖
4
+
16𝑐
4

4

𝜆
0
𝑐
3

3

𝜓
4

0
(
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨) +

16𝑐
4

4
𝑐
4

5

𝜆
0
𝑐
3

3

.

(25)

Step 1. Let 𝜔
1
= 𝑦
𝑑
. Define the first dynamic surface as

follows:

𝑠
1
= 𝑥
1
− 𝜔
1
. (26)

Using the first equation of (21), we obtain

𝑑𝑠
1
= (𝑏
𝑚
V
𝑚,2

+ 𝜉
2
+ 𝜔
𝑇
𝑏 + 𝜀
2
+ 𝑓
1
(𝑦) + Δ

1
− ̇𝑦
𝑑
) 𝑑𝑡

+ 𝑔
𝑇

1
(𝑦) 𝑑𝑤.

(27)

Choose the virtual control law 𝛼
1
as follows:

𝛼
1
=

𝑏̂
𝑚

𝑏̂2
𝑚
+ 𝛽

(−𝑘
1
𝑠
1
− 𝜔
𝑇̂
𝑏 − 𝜉
2
− 𝑠
3

1
𝜃
𝑇

1
𝜓
1
(𝑋)) , (28)

where 𝛽 > 0, 𝑘
1
> 0 are design constants, 𝜃

1
, 𝑏̂
𝑚
, ̂𝑏 are the

estimates of 𝜃
1
, 𝑏
𝑚
, 𝑏 at time 𝑡, respectively, and 𝑏̃

𝑚
= 𝑏
𝑚
− 𝑏̂
𝑚
,

𝜃
1
= 𝜃
1
− 𝜃
1
, ̃𝑏 = 𝑏 −

̂
𝑏, 𝜃
1
and 𝜓

1
(𝑋) will be given later.

Consider

ℓ𝛼
1
=
𝜕𝛼
1

𝜕𝑦
(𝑏
𝑚
V
𝑚,2

+ 𝜉
2
+ 𝜔
𝑇
𝑏 + 𝜀
2
+ 𝑓
1
(𝑦) + Δ

1
(𝑧, 𝑦, 𝑡))

+
𝜕𝛼
1

𝜕𝑏̂
𝑚

̇̂
𝑏
𝑚
+
𝜕𝛼
1

𝜕𝜉𝑇
̇𝜉 +
𝜕𝛼
1

𝜕𝜃
𝑇

1

̇̂
𝜃
1
+
𝜕𝛼
1

𝜕𝑦
𝑑

̇𝑦
𝑑

+
𝜕𝛼
1

𝜕 ̇𝑦
𝑑

̈𝑦
𝑑
+
1

2

𝜕
2
𝛼
1

𝜕𝑦2
𝑔
𝑇

1
(𝑦) 𝑔
1
(𝑦) ,

𝑑𝛼
1
= ℓ𝛼
1
𝑑𝑡 +

𝜕𝛼
1

𝜕𝑦
𝑔
𝑇

1
(𝑦) 𝑑𝑤.

(29)

Therefore, we have

ℓ𝑉
𝑠1

= 𝑠
3

1
(𝑏
𝑚
V
𝑚,2

+ 𝜉
2
+ 𝜔
𝑇
𝑏 + 𝜀
2
+ 𝑓
1
(𝑦) + Δ

1
− ̇𝑦
𝑑
)

+
3

2
𝑠
2

1

󵄩󵄩󵄩󵄩𝑔1 (𝑦)
󵄩󵄩󵄩󵄩

2

.

(30)

A first-order filter with 𝛼
1
as the input is designed as

follows:

𝜏
2
𝜔̇
2
+ 𝜔
2
= 𝛼
1
, 𝜔
2
(0) = 𝛼

1
(0) . (31)
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Let 𝑦
2
= 𝜔
2
−𝛼
1
; thus, 𝜔̇

2
= −𝑦
2
/𝜏
2
. Since V

𝑚,2
= 𝑠
2
+𝑦
2
+𝛼
1
,

using Young’s inequality, it yields

ℓ𝑉
𝑠1
≤ − (𝑘

1
−
3

2
𝑏max) 𝑠

4

1
+ 𝑏̃
𝑚
𝑠
3

1
𝛼
1
+
𝑏max
4

𝑠
4

2

+
𝑏max
4

𝑦
4

2
+ 𝑠
3

1
𝜔
𝑇̃
𝑏 − 𝑠
3

1
𝜃
𝑇

1
𝜓
1
(𝑋)

−
𝑠
3

1
𝛽

𝑏̂2
𝑚
+ 𝛽

(−𝑘
1
𝑠
1
− 𝜔
𝑇̂
𝑏 − 𝜉
2
− 𝑠
3

1
𝜃
𝑇

1
𝜓
1
(𝑋))

+ 𝑠
3

1
𝜀
2
+ 𝑠
3

1
𝑓
1
(𝑦) + 𝑠

3

1
Δ
1
− 𝑠
3

1
̇𝑦
𝑑

+
3

2
𝑠
2

1

󵄩󵄩󵄩󵄩𝑔1 (𝑦)
󵄩󵄩󵄩󵄩

2

.

(32)

From Assumption 1, we obtain

󵄨󵄨󵄨󵄨󵄨
𝑠
3

1

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨Δ 1
󵄨󵄨󵄨󵄨 ≤

󵄨󵄨󵄨󵄨󵄨
𝑠
3

1

󵄨󵄨󵄨󵄨󵄨
𝜌
11
(
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨) +

󵄨󵄨󵄨󵄨󵄨
𝑠
3

1

󵄨󵄨󵄨󵄨󵄨
𝜌
12
(𝑦) ‖𝑧‖

≤
3

4
𝑠
4

1
+
1

4
𝜌
4

11
(
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨) +

3

2

3
√
𝜆
0

2𝑐
3

𝑠
4

1
𝜌
4/3

12
(𝑦)

+
𝑐
3

16𝜆
0

‖𝑧‖
4
.

(33)

In view of (24), (25), (32), and (33) and by using Young’s
inequality, we obtain

ℓ𝑉
𝑠𝑊𝜀

≤ − (ℎ − 2) 𝜀
𝑇
𝜀 − (𝑘

1
−
3

2
𝑏max −

3

4
) 𝑠
4

1

−
𝑐
3

2𝜆
0

‖𝑧‖
4
+ 𝑏̃
𝑚
𝑠
3

1
𝛼
1
+ 𝑠
3

1
𝜔
𝑇̃
𝑏 +

𝑏max
4

𝑠
4

2

+
𝑏max
4

𝑦
4

2
+
󵄨󵄨󵄨󵄨󵄨
𝑠
3

1

󵄨󵄨󵄨󵄨󵄨
𝑆 + 𝑠
3

1
𝐻
1
(𝑋) + 𝑄 (𝑦) +

1

4
𝜀
2

2

− 𝑠
3

1
𝜃
𝑇

1
𝜓
1
(𝑋) +

16𝑐
4

4
𝑐
4

5

𝜆
0
𝑐
3

3

+ 1,

(34)

where

𝑄 (𝑦) =

𝑛

∑

𝑗=1

‖𝑃‖
2
𝑓
2

𝑗
(𝑦) +

𝑛

∑

𝑗=1

2 ‖𝑃‖
2
𝜌
2

𝑗1
(
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨)

+
16𝑛𝜆
0

𝑐
3

𝑛

∑

𝑗=1

‖𝑃‖
4
𝜌
4

𝑗2
(𝑦) +

16𝑐
4

4

𝜆
0
𝑐
3

3

𝜓
4

0
(
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨)

+
1

4
𝜌
4

11
(
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨) + tr (𝑔 (𝑦) 𝑃𝑔𝑇 (𝑦)) ,

𝐻
1
(𝑋) =

3

2

3
√
𝜆
0

2𝑐
3

𝑠
1
𝜌
4/3

12
(𝑦) − ̇𝑦

𝑑
+
9

16
𝑠
1

󵄩󵄩󵄩󵄩𝑔1 (𝑦)
󵄩󵄩󵄩󵄩

4

+ 𝑠
3

1
,

𝑋 = [𝑠
1
, 𝑦
𝑑
, ̇𝑦
𝑑
]
𝑇

∈ 𝑅
3
.

(35)

𝑆(𝑠
1
, 𝑏̂
𝑚
,
̂
𝑏, 𝜃
1
, 𝜉, 𝜆
𝑚+2

, 𝑦
𝑑
) is a nonnegative continuous func-

tion, and
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑓
1
(𝑦) −

𝛽

𝑏̂2
𝑚
+ 𝛽

(−𝑘
1
𝑠
1
− 𝜔
𝑇̂
𝑏 − 𝜉
2
− 𝑠
3

1
𝜃
𝑇

1
𝜓
1
(𝑥))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑆 (𝑠
1
, 𝑏̂
𝑚
,
̂
𝑏, 𝜃
1
, 𝜉, 𝜆
𝑚+2

, 𝑦
𝑑
) ,

(36)

where 𝜆
𝑚+2

= [𝜆
1
, . . . , 𝜆

𝑚+2
]
𝑇.

Let Ω
𝑋
= {𝑋 | ‖𝑋‖ ≤ 𝑀

𝑋
} ⊂ 𝑅

3 be a given compact set
with𝑀

𝑋
> 0 being a design constant, and let 𝜃𝑇

1
𝜙
1
(𝑋) be the

approximation of the radial basis function neural networks
on the compact set Ω

𝑋
to 𝐻
1
(𝑋). Then, we have 𝐻

1
(𝑋) =

𝜃
𝑇

1
𝜓
1
(𝑋) + 𝐵

1
(𝑋), where 𝐵

1
(𝑋) denotes the approximation

error and 𝜓
1
(𝑋) = [𝜓

11
(𝑋), . . . , 𝜓

1𝑀1
(𝑋)]
𝑇
∈ 𝑅
𝑀1 denotes

the basis function vector with 𝜓
1𝑗
(𝑋) being chosen as the

commonly used Gaussian functions, which have the form

𝜓
1𝑗
(𝑋) = exp[

[

−

󵄩󵄩󵄩󵄩󵄩
𝑋 − 𝜇

1𝑗

󵄩󵄩󵄩󵄩󵄩

2

𝑏
2

1𝑗

]

]

(37)

𝑗 = 1, . . . ,𝑀
1
, and 𝜇

1𝑗
is the center of the receptive field and

𝑏
1𝑗
is the width of the Gaussian function; 𝜃

1
is an adjustable

parameter vector.
According to (34) and by using Young’s inequality, it

yields

ℓ𝑉
𝑠𝑊𝜀

≤ −(ℎ −
9

4
) 𝜀
𝑇
𝜀 − (𝑘

1
−
3

2
𝑏max −

3

2
) 𝑠
4

1
−

𝑐
3

2𝜆
0

‖𝑧‖
4

+ 𝑏̃
𝑚
𝑠
3

1
𝛼
1
+ 𝑠
3

1
𝜔
𝑇̃
𝑏 +

𝑏max
4

𝑠
4

2
+
𝑏max
4

𝑦
4

2

+
1

4
𝑆
4
+ 𝑠
3

1
(𝜃
𝑇

1
𝜓
1
(𝑋) + 𝐵

1
(𝑋)) + 𝑄 (𝑦)

− 𝑠
3

1
𝜃
𝑇

1
𝜓
1
(𝑋) +

16𝑐
4

4
𝑐
4

5

𝜆
0
𝑐
3

3

+ 1.

(38)

There exists a nonnegative continuous function 𝜅(𝑠
1
, 𝑦
𝑑
, ̇𝑦
𝑑
)

satisfying
󵄨󵄨󵄨󵄨𝐵1 (𝑋)

󵄨󵄨󵄨󵄨 ≤ 𝜅 (𝑠1, 𝑦𝑑,
̇𝑦
𝑑
) . (39)

Using Young’s inequality, we have

ℓ𝑉
𝑠𝑊𝜀

≤ − (ℎ −
9

4
) 𝜀
𝑇
𝜀 − (𝑘

1
−
3

2
𝑏max −

9

4
) 𝑠
4

1

−
𝑐
3

2𝜆
0

‖𝑧‖
4
+ 𝑏̃
𝑚
𝑠
3

1
𝛼
1
+ 𝑠
3

1
𝜔
𝑇̃
𝑏 +

𝑏max
4

𝑠
4

2

+
𝑏max
4

𝑦
4

2
+
1

4
𝑆
4
+ 𝑄 (𝑦) + 𝑠

3

1
𝜃
𝑇

1
𝜓
1
(𝑋)

+
1

4
𝜅
4
+ 𝐶
0
,

(40)

where 𝐶
0
= 16𝑐
4

4
𝑐
4

5
/𝜆
0
𝑐
3

3
+ 1.
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Step 𝑖 (2 ≤ 𝑖 ≤ 𝜌 − 1). Define the 𝑖th dynamic surface 𝑠
𝑖
=

V
𝑚,𝑖

− 𝜔
𝑖
, thus

̇𝑠
𝑖
= V
𝑚,𝑖+1

− 𝑙
𝑖
V
𝑚,1

− 𝜔̇
𝑖
. (41)

Select the virtual control law 𝛼
𝑖
as follows:

𝛼
𝑖
= −𝑘
𝑖
𝑠
𝑖
+ 𝑙
𝑖
V
𝑚,1

+ 𝜔̇
𝑖
,

ℓ𝛼
𝑖
= −𝑘
𝑖
(V
𝑚,𝑖+1

− 𝑙
𝑖
V
𝑚,1

− 𝑤̇
𝑖
) + 𝑙
𝑖
V̇
𝑚,1

−
ℓ𝑦
𝑖

𝜏
𝑖

,

𝑑𝛼
𝑖
= ℓ𝛼
𝑖
𝑑𝑡 +

𝜕𝛼
𝑖

𝜕𝑦
𝑔
𝑇

1
(𝑦) 𝑑𝑤.

(42)

A first-order filter with the input 𝛼
𝑖
is designed as follows:

𝜏
𝑖+1
𝜔̇
𝑖+1

+ 𝜔
𝑖+1

= 𝛼
𝑖
, 𝜔
𝑖+1

(0) = 𝛼
𝑖
(0) , (43)

where 𝜏
𝑖+1

> 0 is a design constant.
Let 𝑦
𝑖+1

= 𝜔
𝑖+1

− 𝛼
𝑖
. Then 𝜔̇

𝑖+1
= −𝑦

𝑖+1
/𝜏
𝑖+1

. Noting
V
𝑚,𝑖+1

= 𝑠
𝑖+1

+ 𝑦
𝑖+1

+ 𝛼
𝑖
, in view of (41) and (42), we obtain

ℓ𝑉
𝑠𝑖
= 𝑠
3

𝑖
̇𝑠
𝑖
= 𝑠
3

𝑖
(V
𝑚,𝑖+1

− 𝑙
𝑖
V
𝑚,1

− 𝑤̇
𝑖
)

= −𝑘
𝑖
𝑠
4

𝑖
+ 𝑠
3

𝑖
𝑠
𝑖+1

+ 𝑠
3

𝑖
𝑦
𝑖+1

≤ −(𝑘
𝑖
−
3

2
) 𝑠
4

𝑖
+
1

4
𝑠
4

𝑖+1
+
1

4
𝑦
4

𝑖+1
.

(44)

Step 𝜌.The control lawwill be determined in this step. Define
the 𝜌th dynamic surface as 𝑠

𝜌
= V
𝑚,𝜌

− 𝜔
𝜌
. The derivative of

𝑠
𝜌
is

̇𝑠
𝜌
= 𝜎 (𝑦) 𝑢 + V

𝑚,𝜌+1
− 𝑙
𝜌
V
𝑚,1

− 𝜔̇
𝜌
. (45)

Choose the control law as follows:

𝑢 =

(−𝑘
𝜌
𝑠
𝜌
− V
𝑚,𝜌+1

+ 𝑙
𝜌
V
𝑚,1

+ 𝜔̇
𝜌
)

𝜎 (𝑦)
. (46)

In view of (45) and (46), we have

ℓ𝑉
𝑠𝜌
= 𝑠
3

𝜌
̇𝑠
𝜌
= −𝑘
𝜌
𝑠
4

𝜌
. (47)

The parameters 𝜃
1
, 𝑏̂
𝑚
, and ̂𝑏 are updated as follows:

̇̂
𝜃
1
= 𝛾
1
(𝑠
3

1
𝜓
1
(𝑋) − 𝜎

1
𝜃
1
) , (48)

̇̂
𝑏
𝑚
= 𝛾
2
(𝑠
3

1
𝛼
1
− 𝜎
2
𝑏̂
𝑚
) ,

̇̂
𝑏 = 𝛾
3
(𝑠
3

1
𝜔 − 𝜎
3

̂
𝑏) ,

(49)

where 𝛾
1
, 𝛾
2
, 𝛾
3
, 𝜎
1
, 𝜎
2
, 𝜎
3
are the design constants.

3.3. Stability Analysis of Adaptive Control System. In this
subsection, we will discuss the stability analysis of the closed-
loop system. Firstly we define some Lyapunov functions and
compact sets as follows:

𝑉
1
=
1

2
𝑠
4

1
+ 2𝑉
𝜀
+
1

𝛾
1

𝜃
𝑇

1
𝜃
1
+
1

𝛾
2

𝑏̃
2

𝑚
+
1

𝛾
3

̃
𝑏

𝑇
̃
𝑏

+
𝑐
3

𝜆
0

‖𝑧‖
4
,

𝑉
𝑖
=

𝑖

∑

𝑗=1

1

2
𝑠
4

𝑗
+ 2𝑉
𝜀
+

𝑖

∑

𝑗=2

1

2
𝑦
4

𝑗
+
1

𝛾
1

𝜃
𝑇

1
𝜃
1
+
1

𝛾
2

𝑏̃
2

𝑚

+
1

𝛾
3

̃
𝑏

𝑇
̃
𝑏 +

𝑐
3

𝜆
0

‖𝑧‖
4
, 𝑖 = 2, . . . , 𝜌,

Ω
1
= {(𝑠

1
, 𝜀, 𝜃
1
, 𝑏̂
𝑚
,
̂
𝑏, ‖𝑧‖) : 𝑉1 ≤ 𝑝} ⊂ 𝑅

𝑝1 ,

Ω
𝑖
= {(𝑠

𝑖
, 𝑦
𝑖
, 𝜀, 𝜃
1
, 𝑏̂
𝑚
,
̂
𝑏, ‖𝑧‖) : 𝑉𝑖 ≤ 𝑝} ⊂ 𝑅

𝑝𝑖 ,

(50)

where 𝑖 = 2, . . . , 𝜌, 𝑝 > 0 is a design constant, 𝑝
𝑖
= 2𝑖 + 𝑀

1
+

𝑛 +𝑚+ 1. It is easy to know thatΩ
1
×𝑅
𝑝𝜌−𝑝1 ⊃ Ω

2
×𝑅
𝑝𝜌−𝑝2 ⊃

⋅ ⋅ ⋅ ⊃ Ω
𝜌−1

× 𝑅
𝑝𝜌−𝑝𝜌−1 ⊃ Ω

𝜌
.

According to 𝑦
2
= 𝜔
2
− 𝛼
1
, we obtain

ℓ𝑦
2
= 𝜔̇
2
− ℓ𝛼
1
= −

𝑦
2

𝜏
2

− ℓ𝛼
1
,

𝑑𝑦
2
= ℓ𝑦
2
𝑑𝑡 −

𝜕𝛼
1

𝜕𝑦
𝑔
𝑇

1
(𝑦) 𝑑𝑤.

(51)

From (4), we obtain

ℓ (
1

4
𝑦
4

2
) = 𝑦

3

2
ℓ𝑦
2
+
3

2
𝑦
2

2
(
𝜕𝛼
1

𝜕𝑦
)

2

󵄩󵄩󵄩󵄩𝑔1 (𝑦)
󵄩󵄩󵄩󵄩

2

= −
𝑦
4

2

𝜏
2

− 𝑦
3

2
ℓ𝛼
1
+
3

2
𝑦
2

2
(
𝜕𝛼
1

𝜕𝑦
)

2

󵄩󵄩󵄩󵄩𝑔1 (𝑦)
󵄩󵄩󵄩󵄩

2

.

(52)

There exist two nonnegative continuous functions 𝜂
2
(𝑠
2
, 𝑦
2
,

𝜃
1
, 𝑏̂
𝑚
, ̂𝑏, 𝜉, 𝜆

𝑚+2
, 𝜀
2
,𝑦
𝑑
, ̇𝑦
𝑑
, ̈𝑦
𝑑
) and 𝜁

2
(𝑠
2
, 𝑦
2
, 𝜃
1
, 𝑏̂
𝑚
,
̂
𝑏, 𝜉, 𝜆

𝑚+2
,

𝜀
2
,𝑦
𝑑
, ̇𝑦
𝑑
, ̈𝑦
𝑑
) such that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

ℓ𝑦
2
+
𝑦
2

𝜏
2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝜂
2
(𝑠
2
, 𝑦
2
, 𝜃
1
, 𝑏̂
𝑚
,
̂
𝑏, 𝜉, 𝜆

𝑚+2
, 𝜀
2
, 𝑦
𝑑
, ̇𝑦
𝑑
, ̈𝑦
𝑑
) ,

(53)

3

2
𝑦
2

2
(
𝜕𝛼
1

𝜕𝑦
)

2

󵄩󵄩󵄩󵄩𝑔1 (𝑦)
󵄩󵄩󵄩󵄩

2

≤ 𝜁
2
(𝑠
2
, 𝑦
2
, 𝜃
1
, 𝑏̂
𝑚
,
̂
𝑏, 𝜉, 𝜆

𝑚+2
, 𝜀
2
, 𝑦
𝑑
, ̇𝑦
𝑑
, ̈𝑦
𝑑
) .

(54)
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From (53), we have

𝑦
3

2
ℓ𝑦
2
≤ −

𝑦
4

2

𝜏
2

+
󵄨󵄨󵄨󵄨󵄨
𝑦
3

2

󵄨󵄨󵄨󵄨󵄨
𝜂
2
(𝑠
2
, 𝑦
2
, 𝜃
1
, 𝑏̂
𝑚
,
̂
𝑏, 𝜉, 𝜆

𝑚+2
, 𝜀
2
, 𝑦
𝑑
, ̇𝑦
𝑑
, ̈𝑦
𝑑
)

≤ −
𝑦
4

2

𝜏
2

+
3

4
𝑦
4

2
+
1

4
𝜂
4

2
.

(55)

From (52), (54), and (55), we obtain

ℓ (
1

4
𝑦
4

2
) ≤ −

𝑦
4

2

𝜏
2

+
3

4
𝑦
4

2
+
1

4
𝜂
4

2
+ 𝜁
2
. (56)

The infinitesimal generator of 𝑦
𝑖+1

is

ℓ𝑦
𝑖+1

= −
𝑦
𝑖+1

𝜏
𝑖+1

− ℓ𝛼
𝑖
,

𝑦
3

𝑖+1
ℓ𝑦
𝑖+1

= −
𝑦
4

𝑖+1

𝜏
𝑖+1

− 𝑦
3

𝑖+1
ℓ𝛼
𝑖
,

(57)

ℓ(
𝑦
4

𝑖+1

4
) = −

𝑦
4

𝑖+1

𝜏
𝑖+1

− 𝑦
3

𝑖+1
ℓ𝛼
𝑖

+
3

2
𝑦
2

𝑖+1
(
𝜕𝛼
𝑖

𝜕𝑦
)

2

󵄩󵄩󵄩󵄩𝑔1 (𝑦)
󵄩󵄩󵄩󵄩

2

.

(58)

There exist two nonnegative continuous functions 𝜂
𝑖+1
(𝑠
𝑖+1
,

𝑦
𝑖+1

, 𝜃
1
, 𝑏̂
𝑚
,
̂
𝑏, 𝜉, 𝜆

𝑚+2
, 𝜀
2
,𝑦
𝑑
, ̇𝑦
𝑑
, ̈𝑦
𝑑
) and 𝜁

𝑖+1
(𝑠
𝑖+1
, 𝑦
𝑖+1

, 𝜃
1
, 𝑏̂
𝑚
,

̂
𝑏, 𝜉, 𝜆

𝑚+2
, 𝜀
2
, 𝑦
𝑑
, ̇𝑦
𝑑
, ̈𝑦
𝑑
) such that the following inequalities

hold:
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

ℓ𝑦
𝑖+1

+
𝑦
𝑖+1

𝜏
𝑖+1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝜂
𝑖+1

(𝑠
𝑖+1
, 𝑦
𝑖+1
, 𝜃
1
, 𝑏̂
𝑚
,
̂
𝑏, 𝜉, 𝜆

𝑚+2
, 𝜀
2
, 𝑦
𝑑
, ̇𝑦
𝑑
, ̈𝑦
𝑑
) ,

(59)

3

2
𝑦
2

𝑖+1
(
𝛼
𝑖

𝜕𝑦
)

2

󵄩󵄩󵄩󵄩𝑔1 (𝑦)
󵄩󵄩󵄩󵄩

2

≤ 𝜁
𝑖+1

(𝑠
𝑖+1
, 𝑦
𝑖+1
, 𝜃
1
, 𝑏̂
𝑚
,
̂
𝑏, 𝜉, 𝜆

𝑚+2
, 𝜀
2
, 𝑦
𝑑
, ̇𝑦
𝑑
, ̈𝑦
𝑑
) .

(60)

From (59), we obtain

𝑦
3

𝑖+1
ℓ𝑦
𝑖+1

≤ −
𝑦
4

𝑖+1

𝜏
𝑖+1

+
󵄨󵄨󵄨󵄨󵄨
𝑦
3

𝑖+1

󵄨󵄨󵄨󵄨󵄨
𝜂
𝑖+1

(𝑠
𝑖+1
, 𝑦
𝑖+1
, 𝜃
1
, 𝑏̂
𝑚
,
̂
𝑏, 𝜉, 𝜆

𝑚+2
, 𝜀
2
, 𝑦
𝑑
, ̇𝑦
𝑑
, ̈𝑦
𝑑
)

≤ −
𝑦
4

𝑖+1

𝜏
𝑖+1

+
3𝑦
4

𝑖+1

4
+
𝜂
4

𝑖+1

4
.

(61)

From (58), (60), and (61), we obtain

ℓ (
1

4
𝑦
4

𝑖+1
) ≤ −

𝑦
4

𝑖+1

𝜏
𝑖+1

+
3

4
𝑦
4

𝑖+1
+
1

4
𝜂
4

𝑖+1
+ 𝜁
𝑖+1
. (62)

The continuous function 𝑆(⋅) on the compact setΩ
𝑑
×Ω
1
has

a maximum 𝑀(𝑝), which depends on the constant 𝑝, and
𝜅(𝑠
1
, 𝑦
𝑑
, ̇𝑦
𝑑
) on the compact set Ω

𝑑
× Ω
1
has a maximum

𝑁
0
(𝑝), 𝜂
𝑖+1
(⋅) and 𝜁

𝑖+1
(⋅) on the compact setΩ

𝑑
×Ω
𝑖+1

have the
maximum𝑁

𝑖+1
(𝑝) and 𝐶

𝑖+1
(𝑝) when 𝜉, 𝜆

𝑚+2
are bounded.

Theorem 11. Consider the closed-loop system consisting of
the plant (1) under Assumptions 1–5, the controller (46), and
the adaptation laws (48) and (49). For any bounded initial
conditions, there exist constants 𝑘

𝑖
, 𝜏
𝑖
, ℎ, 𝛾
1
, 𝛾
2
, 𝛾
3
, 𝜎
1
, 𝜎
2
, 𝜎
3

satisfying𝑉(0) ≤ 𝑐, such that all of the signals in the closed-loop
system are bounded in probability, and 𝑠

1
, . . . , 𝑠

𝜌
,𝑦
2
, . . . , 𝑦

𝜌
are

SGUUB in four-moment, 𝜃
1
, 𝑏̃
𝑚
, ̃𝑏 are SGUUB inmean square,

and 𝑘
𝑖
, 𝜏
𝑖
, and ℎ satisfy

𝑘
𝑖
≥
3

2
𝑏max +

9

4
+
1

4
𝛼
0
, 𝑖 = 1, 2, . . . , 𝜌,

1

𝜏
𝑖

≥
1

4
𝑏max + 1 +

1

4
𝛼
0
, 𝑖 = 2, . . . , 𝜌,

ℎ ≥
9

4
+ 𝛼
0
𝜆max (𝑃) ,

𝛼
0
= min{

𝑐
3

2𝑐
2

, 𝛾
1
𝜎
1
, 𝛾
2
𝜎
2
, 𝛾
3
𝜎
3
} ,

(63)

where 𝑐 > 0 is a positive constant; 𝑉 will be given later in the
proof of Theorem 11.

Proof. Choose the following Lyapunov function candidate:

𝑉 = 𝑉
𝑠𝑊𝜀

+

𝜌

∑

𝑖=2

𝑉
𝑠𝑖
+
1

4

𝜌

∑

𝑖=2

𝑦
4

𝑖
+

1

2𝛾
1

𝜃
𝑇

1
𝜃
1
+

1

2𝛾
2

𝑏̃
2

𝑚

+
1

2𝛾
3

̃
𝑏

𝑇
̃
𝑏

(64)

For any given positive constant, if 𝐸𝑉 ≤ 𝑐, according to
Lemma 9, we obtain that 𝑠

1
, . . . , 𝑠

𝜌
, 𝑦
2
, . . . , 𝑦

𝜌
, 𝑦, 𝜃

1
, 𝑏̂
𝑚
, ̂𝑏

are bounded in probability. 𝑉
𝑊

≤ 𝑉
𝑠𝑊𝜀

= 𝑉
𝑠1
+ 𝑉
𝑊
+ 𝑉
𝜀
≤

𝑉 ≤ 𝑐, and, from Assumption 2, we obtain that (𝑐
1
/𝜆
0
)‖𝑧‖
4
≤

(1/𝜆
0
)𝑊 ≤ 𝑐; that is, ‖𝑧‖4 ≤ 𝜆

0
𝑐/𝑐
1
, so 𝑧 is bounded in

probability.
Furthermore, (64) is rewritten as 𝑉 = (1/𝜆

0
)𝑊 +

(1/2)𝑉
𝜌
− (𝑐
3
/2𝜆
0
)‖𝑧‖
4; then 𝑉

𝜌
= 2𝑉 − (2/𝜆

0
)𝑊 +

(𝑐
3
/𝜆
0
)‖𝑧
4
‖ ≤ (2 + 𝑐

3
/𝑐
1
)𝑐, and choosing 𝑝 = (2 + 𝑐

3
/𝑐
1
)𝑐,

we get 𝑉
𝜌
≤ 𝑝.

From (14) and (49), we have that 𝜉,𝜔, 𝛼
1
are also bounded

in probability. It yields that V
𝑚−1,2

, . . . , V
0,2

are all bounded
in probability. Noting V

𝑚,2
= 𝑠
2
+ 𝑦
2
+ 𝛼
1
, we obtain that

V
𝑚,2

is bounded in probability. From (14), we have that V̇
0,1

=

−𝑙
1
V
0,1
+ V
0,2

and V̇
𝑚,1

= −𝑙
1
V
𝑚,1

+ V
𝑚,2

. Thus we obtain that
V
0,1
, V
𝑚,1

are also bounded. Furthermore, from (42), we have
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that 𝛼
𝑖
(𝑖 = 2, . . . , 𝜌 − 1) are bounded. According to (16) and

(17), we obtain

[
[
[
[
[
[

[

V
0,1

V
0,2

V
1,2

.

.

.

V
𝑚−1,2

]
]
]
]
]
]

]

=

[
[
[
[
[
[

[

1 0 0 ⋅ ⋅ ⋅ 0

0 1 0 ⋅ ⋅ ⋅ 0

∗ ∗ 1 ⋅ ⋅ ⋅ 0

.

.

. d
.
.
.

∗ ∗ ⋅ ⋅ ⋅ ∗ 1

]
]
]
]
]
]

]

[
[
[
[
[
[

[

𝜆
1

𝜆
2

𝜆
3

.

.

.

𝜆
𝑚+1

]
]
]
]
]
]

]

. (65)

Since V
0,1
, V
0,2
, V
1,2
, . . . , V

𝑚−1,2
are bounded in probability, we

have that 𝜆
1
, . . . , 𝜆

𝑚+1
are all bounded in probability. From

(17), we get that 𝜆
𝑚+2

is also bounded. In view of (40), (44),
(47)–(49), and (62), using Young’s inequality, we obtain

ℓ𝑉 ≤ −(ℎ −
9

4
) 𝜀
𝑇
𝜀 −

𝜌

∑

𝑖=1

(𝑘
𝑖
−
3

2
𝑏max −

9

4
) 𝑠
4

𝑖

−

𝜌

∑

𝑖=2

(
1

𝜏
𝑖

−
1

4
𝑏max − 1)𝑦

4

𝑖
−

𝑐
3

2𝜆
0

‖𝑧‖
4

−

𝜎
1

󵄩󵄩󵄩󵄩󵄩
𝜃
1

󵄩󵄩󵄩󵄩󵄩

2

2
−
𝜎
2
𝑏̃
2

𝑚

2
−

𝜎
3

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

̃
𝑏

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

2
+ 𝑄 (𝑦)

+
1

4
𝑁
4

0
(𝑝) +

1

4
𝑀
4
(𝑝) +

1

4

𝜌

∑

𝑖=2

𝑁
4

𝑖
(𝑝)

+

𝜌

∑

𝑖=2

𝐶
𝑖
(𝑝) +

𝜎
1

󵄩󵄩󵄩󵄩𝜃1
󵄩󵄩󵄩󵄩

2

2
+
𝜎
2
𝑏
2

𝑚

2
+

𝜎
3

󵄩󵄩󵄩󵄩󵄩
𝑏
󵄩󵄩󵄩󵄩󵄩

2

2
+ 𝐶
0
.

(66)

Substituting (63) into (66), we obtain

ℓ𝑉 ≤ −𝛼
0
𝑉 + 𝜇

1
+ 𝜇
0
, (67)

where 𝜇
1
= (1/4)𝑁

4

0
(𝑝) + (1/4)𝑀

4
(𝑝) + (1/4)∑

𝜌

𝑖=2
𝑁
4

𝑖
(𝑝) +

∑
𝜌

𝑖=2
𝐶
𝑖
(𝑝)+ 𝜎

1
‖𝜃
1
‖
2
/2+ 𝜎

2
𝑏
2

𝑚
/2+ 𝜎

3
‖𝑏‖
2
/2+𝐶

0
. Since |𝑄(𝑦)|

is a nonnegative continuous function, let |𝑄(𝑦)| ≤ 𝜇
0
, where

𝜇
0
> 0.
If 𝛼
0
≥ (𝜇
1
+𝜇
0
)/𝑐, and𝐸𝑉 = 𝑐, thenwe have 𝑑𝐸𝑉/𝑑𝑡 ≤ 0.

Thus, if 𝐸𝑉(0) ≤ 𝑐, then 𝐸𝑉(𝑡) ≤ 𝑐, ∀𝑡 > 0; that is,

0 ≤ 𝐸𝑉 (𝑡) ≤
𝜇
1
+ 𝜇
0

𝛼
0

+ [𝑉 (0) −
𝜇
1
+ 𝜇
0

𝛼
0

] 𝑒
−𝛼0𝑡

≤ 𝑉 (0) .

(68)

Similar to the discussion of Theorem 11 in [32], it is easy to
know that the conclusion is true.

Remark 12. This paper differs from [32] in the following
several aspects. (1) Unmodeled dynamics is dealt with by
introducing a novel description based on Lyapunov function
in this paper while the dynamic signal was handled with the
help of a dynamic signal in [32]. (2) The unknown nonlinear
system functions are handled together with some functions
produced in stability analysis, but they were directly approx-
imated before constructing the observer in [32]. Therefore,
this brings out a good result that the filter order is reduced. (3)

The neural networks weight vector used to approximate the
black box function at the first design step is adjusted online
in this paper such that much more information of weight
vector can be used in adaptive law, whereas only the norm
of weight vector acts as adaptive tuning parameter in [32].
(4) Utilizing bounded input bounded output stability and
linear equations (65), the stability of the closed-loop system is
proved in this paper, which avoids using the transfer function
to make stability analysis in [32], which is questionable in
probability sense.

Remark 13. The design parameters 𝑘
𝑖
, 𝜏
𝑖
and 𝛼

0
determined

by (63) in Theorem 11 are only a sufficient condition. They
provide a guideline for the designers. From (63), some
suggestions are given for the choice of some key design
parameters for any given positive constants 𝐵

0
and 𝑐.

(i) Increasing 𝛾
1
, 𝛾
2
, 𝛾
3
helps to increase 𝛼

0
, subsequently

reduces 𝜇
1
/𝛼
0
.

(ii) Decreasing 𝜎
1
, 𝜎
2
, 𝜎
3
helps to reduce 𝜇

1
and reduces

𝜇
1
/𝛼
0
.

(iii) Increasing 𝑘
1
, . . . , 𝑘

𝜌
helps to increase 𝛼

0
and reduces

𝜇
1
/𝛼
0
.

In practical applications, to obtain good tracking perfor-
mance, some experiments need to be done before the valid
parameters are given.

4. Simulation Results

To demonstrate the effectiveness of the proposed approach,
two numerical examples are given.

Example 1. Consider the following third-order stochastic
nonlinear system with unmodeled dynamics:

𝑧̇ = 𝑞 (𝑧, 𝑦) ,

𝑑𝑥
1
= (𝑥
2
+
𝑦 − 𝑦
3

1 + 𝑦2
+ 0.5𝑧)𝑑𝑡 + 𝑦 sin (𝑦3) 𝑑𝑤,

𝑑𝑥
2
= (𝑥
3
+
𝑦 − 𝑦
3

1 + 𝑦2
+ 0.5𝑧 + 0.2 (35 + 𝑦

2
) 𝑢)𝑑𝑡

+ 𝑥
1
sin (𝑦3) 𝑑𝑤,

𝑑𝑥
3

= (𝑦
2 tanh (𝑦) − (𝑦2 + 2𝑦) sin𝑦 + 0.2 (35 + 𝑦2) 𝑢 + 𝑦𝑧) 𝑑𝑡

+ 0.5𝑦
2
𝑑𝑤,

𝑦 = 𝑥
1
,

(69)

where 𝑞(𝑧, 𝑦) = −2𝑧 + 𝑦 sin 𝑡 + 0.5, 𝑚 = 1, 𝜌 = 2. The
desired tracking trajectory is taken as 𝑦

𝑑
= 0.5 sin(0.5𝑡).

Select 𝑊(𝑧, 𝑡) = (1/4)𝑧
4, 𝑐
1
= 1/8, 𝑐

2
= 1, 𝑐

3
= 2, 𝑐

4
= 1,
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𝑐
5

= 0.5; then (𝜕𝑊/𝜕𝑡)(𝑧, 𝑡) + (𝜕𝑊/𝜕𝑧)(𝑧, 𝑡)(𝑞(𝑧, 0, 𝑡) −

𝑞(0, 0, 𝑡)) = −2𝑧
4, |(𝜕𝑊/𝜕𝑧)(𝑧, 𝑡)| = |𝑧|

3, |𝑞(0, 0, 𝑡)| = 0.5;
𝜓
0
(|𝑦|) = |𝑦|, |𝑞(𝑧, 𝑦, 𝑡) − 𝑞(𝑧, 0, 𝑡)| = |𝑦 sin 𝑡| ≤ 𝜓

0
(|𝑦|), and

it satisfies the conditions of Assumptions 2 and 3.
The filters are designed as follows:

̇𝜉
1
= −𝑙
1
𝜉
1
+ 𝜉
2
+ 𝑙
1
𝑦,

̇𝜉
2
= −𝑙
2
𝜉
1
+ 𝜉
3
+ 𝑙
2
𝑦,

̇𝜉
3
= −𝑙
3
𝜉
1
+ 𝑙
3
𝑦,

𝜆̇
1
= −𝑙
1
𝜆
1
+ 𝜆
2
,

𝜆̇
2
= −𝑙
2
𝜆
1
+ 𝜆
3
,

𝜆̇
3
= −𝑙
3
𝜆
1
+ 𝜎 (𝑦) 𝑢.

(70)

The adaptation laws are employed as follows:

̇̂
𝜃
1
= 𝛾
1
(𝑠
3

1
𝜓
1
(𝑋) − 𝜎

1
𝜃
1
) ,

̇̂
𝑏
1
= 𝛾
2
(𝑠
3

1
𝛼
1
− 𝜎
2
𝑏̂
1
) ,

̇̂
𝑏
0
= 𝛾
3
(𝑠
3

1
V
0,2
− 𝜎
3
𝑏̂
0
) ,

(71)

where𝑋 = [𝑠
1
, 𝑦
𝑑
, ̇𝑦
𝑑
]
𝑇.

The virtual control law 𝛼
1
is chosen as follows:

𝛼
1
=

𝑏̂
1

𝑏̂
2

1
+ 𝛽

(−𝑘
1
𝑠
1
− 𝜉
2
− V
0,2
𝑏̂
0
− 𝑠
3

1
𝜃
𝑇

1
𝜓
1
(𝑋)) . (72)

The control law is employed as follows:

𝑢 =
(−𝑘
2
𝑠
2
+ 𝑙
2
V
0,1
+ 𝜔̇
2
)

𝜎 (𝑦)
, (73)

where V
0,1

= 𝜆
1
, V
0,2

= 𝜆
2
, 𝜎(𝑦) = 35 + 𝑦2.

In the simulation, 𝑠
1
= 𝑦 − 𝑦

𝑑
, 𝑠
2
= V
0,2

− 𝜔
2
, 𝑙
1
= 6,

𝑙
2
= 11, 𝑙

3
= 6, 𝑘

1
= 40, 𝑘

2
= 50, 𝛽 = 0.02, 𝜔

2
(0) = 0.1,

𝜏
2
= 0.01, 𝛾

1
= 𝛾
2
= 𝛾
3
= 2, 𝜎

1
= 𝜎
2
= 𝜎
3
= 0.05, 𝑥(0) =

[0.2, 0, 0]
𝑇, 𝜉(0) = [0, 0, 0]

𝑇, 𝜆(0) = [0, 0, 0]
𝑇, 𝑏̂
0
(0) = 𝑏̂

1
(0) =

1, 𝜃
1
(0) = [0.1]

𝑇

1×10
, 𝑀
1
= 10. Simulation results are shown

in Figures 1, 2, and 3. From Figure 1, it can be seen that fairly
good tracking performance is obtained.

Remark 14. According to (69), we know that 𝑏
1
= 0.2 and

𝑏max = 1. From the above selected design parameters and
(63), it is easy to see that 𝑐

3
/(2𝑐
2
) = 1, 𝛼

0
= 0.1. The constant

ℎ is only used to analyze the stability in the closed-loop
system. Therefore, (63) is true for the above selected design
parameters 𝛾

1
, 𝛾
2
, 𝛾
3
, 𝜎
1
, 𝜎
2
, 𝜎
3
, 𝑘
1
, 𝑘
2
, 𝜏
2
.
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0

0.5

−0.5

y
,
y
d

t (s)

Figure 1: Output 𝑦 (solid line) and desired trajectory 𝑦
𝑑
(dotted

line).
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0

0.1

−0.1

s
1

t (s)

Figure 2: Tracking error 𝑠
1
.

Example 2. To compare the simulation results with [32],
consider the following same stochastic nonlinear systemwith
unmodeled dynamics in [32]:

𝑧̇ = 𝑞 (𝑧, 𝑦) ,

𝑑𝑥
1
= (𝑥
2
+
𝑥
1
− 𝑥
3

1

1 + 𝑥
2

1

+ 0.5𝑧)𝑑𝑡 + 𝑥
1
sin (𝑥3

1
) 𝑑𝑤,

𝑑𝑥
2
= (𝑥
2

1
tanh (𝑥

1
) − (𝑥

2

1
+ 2𝑥
1
) sin𝑥

1

+ 0.2 (0.5 + 𝑥
2

1
) 𝑢 + 𝑥

1
𝑧) 𝑑𝑡

+ 0.5𝑥
2

1
𝑑𝑤,

𝑦 = 𝑥
1
,

(74)
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Figure 3: Control signal 𝑢.
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t (s)
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0.5
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y
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y
d

Figure 4: Output 𝑦 (solid line) and desired trajectory 𝑦
𝑑
(dotted

line).

where 𝑞(𝑧, 𝑦) = −2𝑧 + 𝑦
2, 𝑚 = 0, 𝜌 = 2. The desired

tracking trajectory is taken as 𝑦
𝑑
= 0.5 sin(0.5𝑡). The filters

are designed as follows:

̇𝜉
1
= −𝑙
1
𝜉
1
+ 𝜉
2
+ 𝑙
1
𝑦,

̇𝜉
2
= −𝑙
2
𝜉
1
+ 𝑙
2
𝑦,

𝜆̇
1
= −𝑙
1
𝜆
1
+ 𝜆
2
,

𝜆̇
2
= −𝑙
2
𝜆
1
+ 𝜎 (𝑦) 𝑢.

(75)

The adaptation laws are employed as follows:

̇̂
𝜃
1
= 𝛾
1
(𝑠
3

1
𝜓
1
(𝑋) − 𝜎

1
𝜃
1
) ,

̇̂
𝑏
0
= 𝛾
3
(𝑠
3

1
V
0,2
− 𝜎
3
𝑏̂
0
) ,

(76)

where𝑋 = [𝑠
1
, 𝑦
𝑑
, ̇𝑦
𝑑
]
𝑇.

The virtual control law 𝛼
1
is chosen as follows:

𝛼
1
=

𝑏̂
0

𝑏̂
2

0
+ 𝛽

(−𝑘
1
𝑠
1
− 𝜉
2
− 𝜆
2
𝑏̂
0
− 𝑠
3

1
𝜃
𝑇

1
𝜓
1
(𝑋)) . (77)

0
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s
1

t (s)

−0.02

−0.04

−0.06

Figure 5: Tracking error 𝑠
1
.
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u
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−100

−150

Figure 6: Control signal 𝑢.

The control law is employed as follows:

𝑢 =
(−𝑘
2
𝑠
2
+ 𝑙
2
V
0,1
+ 𝜔̇
2
)

𝜎 (𝑦)
, (78)

where V
0,1

= 𝜆
1
, 𝜎(𝑦) = 0.5 + 𝑦2.

In the simulation, 𝑠
1
= 𝑦−𝑦

𝑑
, 𝑠
2
= V
0,2
−𝜔
2
, 𝑙
1
= 5, 𝑙
2
= 6,

𝑘
1
= 60, 𝑘

2
= 60, 𝛽 = 0.02, 𝜔

2
(0) = 0.1, 𝜏

2
= 0.01, 𝛾

1
= 𝛾
3
=

1.5, 𝜎
1
= 𝜎
3
= 0.05, 𝑥(0) = [0, 0]

𝑇, 𝑧(0) = 0, 𝜉(0) = [0, 0]
𝑇,

𝜆(0) = [0, 0]
𝑇, 𝑏̂
0
(0) = 1, 𝜃

1
(0) = [0.1, 0.1, 0.1, 0.1, 0.1]

𝑇,
𝑀
1
= 5. Simulation results are shown in Figures 4–6. If

the proposed approach in [32] is utilized, and the design
parameters of the adaptive controller are taken, the same
values as in [32], the corresponding simulation results are as
shown in Figures 7–9.

From Figures 4, 5, 7, and 8, it can be seen that better
tracking performance can be obtained than [32]. However, 42
equations need to be solved online using the method in [32]
while only 14 equations need to be solved online using the
approach in this paper. Moreover, we know that increasing
𝑘
1
, 𝑘
2
helps to improve the tracking precision.
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Figure 7: Output 𝑦 (solid line) and desired trajectory 𝑦
𝑑
(dotted

line).
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Figure 8: Tracking error 𝑠
1
.

5. Conclusions

Using K-filters and dynamic surface control, an adaptive
output feedback neural control scheme has been proposed
for a class of stochastic nonlinear systems with unmodeled
dynamics. Unmodeled dynamics has been dealt with by
introducing the novel description based on Lyapunov func-
tion. The unknown nonlinear system functions are handled
togetherwith some functions resulting from stability analysis,
and the filter order is reduced. The neural network weight
vector is adjusted online. Therefore, the more information
included in radial basis function can be fully made use of.
Using Chebyshev’s inequality and Itô formula, the designed
controller can guarantee that all the signals in the closed-
loop system are bounded in probability and the error signals
are semiglobally uniformly ultimately bounded in the sense
of four-moment or mean square. Simulation results illustrate
the effectiveness of the proposed approach.
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