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Network topology and node dynamics play a key role in forming synchronization of complex networks. Unfortunately there is
no effective synchronization criterion for pinning synchronization of complex dynamical networks with switching topology. In
this paper, pinning synchronization of complex dynamical networks with switching topology is studied. Two basic problems
are considered: one is pinning synchronization of switched complex networks under arbitrary switching; the other is pinning
synchronization of switched complex networks by design of switching when synchronization cannot achieved by using any
individual connection topology alone. For the two problems, common Lyapunov function method and single Lyapunov function
method are used respectively, some global synchronization criteria are proposed and the designed switching law is given. Finally,
simulation results verify the validity of the results.

1. Introduction

A complex dynamical network is a set of coupled nodes
interconnected by edges, in which each node is a dynamical
system [1, 2]. Undoubtedly, many systems in nature can be
described by models of complex networks, such as ecological
networks, power grids, wireless communication networks,
and World Wide Web. Over the last decade, the analysis and
control of dynamical networks have become research focus
in many fields, such as mathematics, physics, biology, and
engineering.

Synchronization, the most important collective behavior
of complex dynamical networks, has received much of the
focus [3–5]. The synchronization of complex dynamical net-
works has been extensively investigated and many synchro-
nization criteria for complex networks have been proposed,
such as the master stability function based criteria [6],
Lyapunov function based criteria [7, 8], and graph stability
method based criteria [9].

As we know now, some complex network can be syn-
chronized by itself, but the general case is that the whole
network cannot synchronize by itself; from the perspective of
control theory, designing controllers is an effective method,
and one natural idea is to assign controllers to all nodes of
the controlled complex dynamical network [10–12].

However, complex networks in the real world normally
have a large number of nodes. Therefore, it is usually difficult
to control a complex network by adding the controllers to
all nodes. To reduce the number of the controllers, a natural
approach is to control a complex network by pinning part of
nodes. This idea is actually adding the controllers to a small
fraction of network nodes to achieve synchronization of the
whole complex networks. In [13], Grigoriev et al. investigated
the pinning control of spatiotemporal chaos. Subsequently,
Parekh et al. studied the local and global control in coupled
map lattices [14]. In [15, 16], Wang and Chen considered
the problem of pinning a complex dynamical network to its
equilibrium, and both specific and randompinning strategies
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were proposed. In [17], the controllability of a coupled
complex network via pinning has been studied by means of
a Master Stability Function approach. In [18], Chen et al.
pointed out that a general complex network can be pinned
by a single controller if the coupling strength is large enough.
A network under a typical framework can realize synchro-
nization subject to any linear feedback pinning scheme and
the relationship between coupling strength and the number
of pinning nodes for a general complex dynamical network
through adaptive pinning [19, 20].

Note that most investigations about synchronization of
complex networks under pinning control are with the con-
stant connection topology. Actually, constant connection is
only a special case. It is well known that the interaction of
two different nodes in the real world networks always evolves
with time continuously, and the interaction between different
nodes may change abruptly at some time instants, which
results in switching topology, such as mobile agents [21] and
power grids [22].

The switched system theory provides an effective tool
for studying complex networks with switching topology
[23]. By using the common Lyapunov function method, the
synchronization problem for complex dynamical networks
with switching topology has been studied in [24]. In [25], the
synchronization of switched complex dynamical networks
was discussed from the view point of switched systems, under
the assumptions that all the connection outer matrices are
simultaneous triangularization, and several synchronization
criteria have been established by means of constructing
a common Lyapunov function and single Lyapunov and
multiple Lyapunov functions, respectively. In [26], the syn-
chronization problem was studied with switched coupling
using the average dwell time method. A synchronization
criterion for dynamical networks with nonidentical nodes
and switching topology was given in [27]. However, to our
knowledge, so far, none of the results of pinning synchroniza-
tion of complex networks with switching topology have been
reported. Motivated by the above discussions, in this paper,
the pinning synchronization of complex dynamical networks
is investigated with switching topology. First, we study the
problem of pinning synchronization of switched complex
network under arbitrary switching. Second, when pinning
synchronization is impossible for each individual connection
topology, the problem of synchronization via the design of
switching signal of pregiven connection topology is studied.
By using commonLyapunov functionmethod and single Lya-
punov function method, respectively, we design controllers
and the switching laws to ensure the pinning synchronization.
Without assuming that the coupling matrix is symmetric, we
give some criteria for the global pinning synchronization of
complex networks with switching topology.

The remainder of the paper is organized as follows.
Some preliminaries are described in Section 2. Pinning
synchronization criteria for arbitrary switching are derived in
Section 3. In Section 4, pinning synchronization via design of
switching is studied. In Section 5, several numerical examples
are given. Conclusions are drawn in Section 6.

2. Preliminaries

Now consider a switched complex dynamical network with
𝑁 identical nodes; the mathematics model of the system can
be described as follows:

�̇�
𝑖
= 𝑓 (𝑥

𝑖
) + 𝑐

𝑁

∑

𝑗=1

𝑎
𝜎(𝑡)

𝑖𝑗
Γ𝑥
𝑗
, 𝑖 = 1, 2, . . . , 𝑁, (1)

where𝑥
𝑖
= (𝑥
𝑖1
, 𝑥
𝑖2
, . . . , 𝑥

𝑖𝑛
)
𝑇
∈ 𝑅
𝑛 is the state vector of the 𝑖th

node, Γ is the inner-coupling matrix between two connected
nodes, 𝑓 is a continuously differentiable vector function, 𝑐
is the coupling strength, 𝜎 : [0,∞) → 𝑀 = {1, 2, . . . , 𝑚},
for each 𝑘 ∈ 𝑀, 𝐴

𝑘
= {𝑎
𝑘

𝑖𝑗
} ∈ 𝑅

𝑁×𝑁 is the outer-coupling
matrix, assume 𝑎𝑘

𝑖𝑖
= ∑
𝑁

𝑗=1,𝑗 ̸=𝑖
𝑎
𝑘

𝑖𝑗
, and let 𝑠(𝑡) be a solution of

each isolated node; that is, ̇𝑠(𝑡) = 𝑓(𝑠(𝑡)).
Normally, a complex dynamical network has a large

number of nodes, so it is difficult to add the controllers to
all nodes. By pinning control methods, the controllers are to
be added to part of nodes, and the other nodes need not be
controlled; without loss of generality, let the first 𝑙 nodes be
controlled; then (1) can be expressed as

�̇�
𝑖
= 𝑓 (𝑥

𝑖
) + 𝑐

𝑁

∑

𝑗=1

𝑎
𝜎(𝑡)

𝑖𝑗
Γ𝑥
𝑗
+ 𝑢
𝜎(𝑡)

𝑖
, 𝑖 = 1, 2, . . . , 𝑙,

�̇�
𝑖
= 𝑓 (𝑥

𝑖
) + 𝑐

𝑁

∑

𝑗=1

𝑎
𝜎(𝑡)

𝑖𝑗
Γ𝑥
𝑗
, 𝑖 = 𝑙 + 1, 𝑙 + 2, . . . , 𝑁,

(2)

where 𝑢𝑘
𝑖
are the given controller, which can be described as

𝑢
𝑘

𝑖
= −𝑐𝑞

𝑘

𝑖
Γ (𝑥
𝑖
− 𝑠) , 𝑖 = 1, 2, . . . , 𝑙, 𝑞

𝑘

𝑖
> 0. (3)

It is easy to see that the systems (2) are pinned to
synchronization if lim

𝑡→∞
‖𝑥
𝑖
(𝑡) − 𝑠(𝑡)‖ = 0. Next, define

𝑒
𝑖
= 𝑥
𝑖
− 𝑠; then the error system can be described as

̇𝑒
𝑖
= 𝑓 (𝑥

𝑖
) − 𝑓 (𝑠) + 𝑐

𝑁

∑

𝑗=1

𝑎
𝜎(𝑡)

𝑖𝑗
Γ𝑒
𝑗
− 𝑐𝑞
𝜎(𝑡)

𝑖
Γ𝑒
𝑖
, 𝑖 = 1, 2, . . . , 𝑙,

̇𝑒
𝑖
= 𝑓 (𝑥

𝑖
) − 𝑓 (𝑠) + 𝑐

𝑁

∑

𝑗=1

𝑎
𝜎(𝑡)

𝑖𝑗
Γ𝑒
𝑗
, 𝑖 = 𝑙 + 1, 𝑙 + 2, . . . , 𝑁,

(4)

and it should be noted that only the first 𝑙 nodes have
controllers, so the last term of the second line of (4) is zero.
Now, the synchronization problem of system (2) turns into
the stability of system (4); throughout this paper, we need the
following assumption.

Assumption 1. Assume that there is a positive defined matrix
𝑃 and a constant matrix𝐾, such that 𝑓 satisfies the following
inequality:

(𝑥 − 𝑦)
𝑇
𝑃 (𝑓 (𝑥) − 𝑓 (𝑦)) ≤ (𝑥 − 𝑦)

𝑇
𝐾Γ (𝑥 − 𝑦) ,

∀𝑥, 𝑦 ∈ 𝑅
𝑛
.

(5)
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Note that Assumption 1 is verymild; many systems satisfy
this condition, such as Lorenz system, Liu system, and Chen
system. In the following section, we will investigate the
problems of pinning synchronization by common Lyapunov
function method and single Lyapunov function method,
respectively.

3. Arbitrary Switching

In this section, we study the pinning synchronization of com-
plex dynamical networks under arbitrary switching topology.
A network with switching topology may not realize synchro-
nization by pinning controller, even if pinning synchroniza-
tion is achieved by using each individual connection topology
alone.Therefore, seeking for pinning synchronization criteria
for arbitrary switching topology is not trivial. By using
common Lyapunov functionmethod, a criterion is derived to
ensure the global synchronization under arbitrary switching.

Theorem 2. Suppose that Assumption 1 holds, the pinning
controlled complex dynamical system in (2) achieves global
synchronization under arbitrary switching if there exist a
positive definite matrix 𝑃 such that the condition

𝐼
𝑁
⊗ 𝐾Γ + 𝑐 (𝐴

𝑘
− 𝑄
𝑘
) ⊗ 𝑃Γ < 0, 𝑘 = 1, 2, . . . , 𝑚, (6)

holds, where ⊗ is Kronecker product, 𝐼
𝑁
is an N-dimensional

identity matrix, and 𝑄
𝑘

= diag{𝑞𝑘
1
, 𝑞
𝑘

2
, . . . , 𝑞

𝑘

𝑙
, 0, . . . , 0} ∈

𝑅
𝑁×𝑁.

Proof. Construct the commonLyapunov function as the form
of

𝑉 (𝑡) =
1

2

𝑁

∑

𝑖=1

𝑒
𝑇

𝑖
𝑃𝑒
𝑖
. (7)

Thederivative of𝑉(𝑡) along the trajectories of each subsystem
of (4) gives
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=
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𝑖
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𝑘
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Γ𝑒
𝑖
]

]

− 𝑐
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∑
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𝑘

𝑖
𝑒
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𝑖
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𝑖

≤

𝑁

∑

𝑖=1

𝑒
𝑇

𝑖
[

[

𝐾Γ𝑒
𝑖
+ 𝑐𝑃

𝑁

∑

𝑗=1

𝑎
𝑘

𝑖𝑗
Γ𝑒
𝑖
]

]

− 𝑐

𝑙

∑

𝑖=1

𝑞
𝑘

𝑖
𝑒
𝑇

𝑖
𝑃Γ𝑒
𝑖

= 𝑒
𝑇
[𝐼
𝑁
⊗ 𝐾Γ + 𝑐 (𝐼

𝑁
⊗ 𝑃) (𝐴

𝑘
⊗ Γ) − 𝑐 (𝑄

𝑘
⊗ 𝑃Γ)] 𝑒

= 𝑒
𝑇
[𝐼
𝑁
⊗ 𝐾Γ + 𝑐 (𝐴

𝑘
⊗ 𝑃Γ) − 𝑐 (𝑄

𝑘
⊗ 𝑃Γ)] 𝑒,

(8)

where 𝑒 = (𝑒𝑇
1
, 𝑒
𝑇

2
, . . . , 𝑒

𝑇

𝑁
)
𝑇. From (6), it is easy to see that

�̇� (𝑡) < 0, (9)

the switched complex network in (2) achieves global syn-
chronization with the pinning controller (3) under arbitrary
switching, which completes the proof.

Remark 3. For the special case is that 𝑃 = 𝐼 and let
the network has only one connection topology; then the
synchronization condition (6) degenerates into

𝐼
𝑁
⊗ 𝐾Γ + 𝑐 (𝐴 − 𝑄) ⊗ Γ < 0, (10)

which is expressed in [20].

Remark 4. If Γ is a positive definite matrix and 𝑃 is replaced
with 𝐼, then the conditions (6) inTheorem 2 can be simplified
as

𝜃𝐼
𝑁
+ 𝑐 (𝐴

𝑘
− 𝑄
𝑘
) < 0, 𝑘 = 1, 2, . . . , 𝑚, (11)

where 𝜃 = ‖𝐾‖.

4. Switching Design

In this section, we will study the case that none of subnet-
works can bring pinning synchronization if each individual
connection topology is put in use alone. So pinning syn-
chronization of switched networks under arbitrary switching
is impossible to be achieved for this case. But pinning
synchronization may still be achieved by switching between
connection topologies, so we discuss how to realize synchro-
nization by the suitable design of switching ruler between
connection topologies and give a convex combination based
method.

Let 𝐴 = ∑
𝑚

𝑘=1
𝜀
𝑘
𝐴
𝑘
with 𝜀

𝑘
≥ 0 and ∑

𝑚

𝑘=1
𝜀
𝑘

= 1;
then the convex combination of system (2) and the convex
combination of error system (3) can be described as

�̇�
𝑖
= 𝑓 (𝑥

𝑖
) + 𝑐

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
Γ𝑥
𝑗
+ 𝑢
𝑖
, 𝑖 = 1, 2, . . . , 𝑙,

�̇�
𝑖
= 𝑓 (𝑥

𝑖
) + 𝑐

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
Γ𝑥
𝑗
, 𝑖 = 𝑙 + 1, 𝑙 + 2, . . . , 𝑁,

(12)

̇𝑒
𝑖
= 𝑓 (𝑥

𝑖
) − 𝑓 (𝑠) + 𝑐

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
Γ𝑒
𝑗
− 𝑐𝑞
𝑖
Γ𝑒
𝑖
, 𝑖 = 1, 2, . . . , 𝑙,

̇𝑒
𝑖
= 𝑓 (𝑥

𝑖
) − 𝑓 (𝑠) + 𝑐

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
Γ𝑒
𝑗
, 𝑖 = 𝑙 + 1, 𝑙 + 2, . . . , 𝑁,

(13)

where 𝑎
𝑖𝑗
= ∑
𝑚

𝑘=1
𝜀
𝑘
𝑎
𝑖𝑗
, 𝑢
𝑖
= ∑
𝑚

𝑘=1
𝜀
𝑘
𝑢
𝑖
, 𝑞
𝑖
= ∑
𝑚

𝑘=1
𝜀
𝑘
𝑞
𝑖
, and

∑
𝑚

𝑘=1
𝜀
𝑘
= 1.

Theorem 5. Suppose that Assumption 1 holds, and there exist
a positive definite matrix 𝑃, and some convex combination
coefficients 𝜀

𝑖
, which satisfies the following condition:

𝐼
𝑁
⊗ 𝐾Γ + 𝑐

𝑚

∑

𝑘=1

𝜀
𝑘
(𝐴
𝑘
− 𝑄
𝑘
) ⊗ 𝑃Γ < 0,

𝑘 = 1, 2, . . . , 𝑚,

𝑚

∑

𝑘=1

𝜀
𝑘
= 1,

(14)
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where ⊗ is Kronecker product, 𝐼
𝑁
is an N-dimensional identity

matrix, and 𝑄
𝑘
= diag{𝑞𝑘

1
, 𝑞
𝑘

2
, . . . , 𝑞

𝑘

𝑙
, 0, . . . , 0} ∈ 𝑅

𝑁×𝑁; then
the controlled complex dynamical system in (13) achieves global
pinning synchronization under the following switching laws:

𝜎 (𝑡) = 𝑖 𝑖𝑓 𝜎 (𝑡
−
) = 𝑖, 𝑒 ∈ Ωi (𝑡) ,

𝜎 (𝑡) = 𝑗 𝑖𝑓 𝜎 (𝑡
−
) = 𝑖, 𝑒 ∈ 𝜕Ω

𝑖 (𝑡) ∩ Ω𝑗 (𝑡) ,

(15)

with

Ω
𝑖 (𝑡)

= {𝑒 | 𝑒
𝑇
[𝐼
𝑁
⊗ 𝐾Γ + 𝑐 (𝐴

𝑖
⊗ 𝑃Γ) − 𝑐 (𝑄

𝑖
⊗ 𝑃Γ)] 𝑒 < 0} ,

Ω
𝑗 (𝑡)

= {𝑒 | 𝑒
𝑇
[𝐼
𝑁
⊗ 𝐾Γ + 𝑐 (𝐴

𝑗
⊗ 𝑃Γ) − 𝑐 (𝑄

𝑗
⊗ 𝑃Γ)] 𝑒 < 0} ,

𝜕Ω
𝑖 (𝑡)

= {𝑒 | 𝑒
𝑇
[𝐼
𝑁
⊗ 𝐾Γ + 𝑐 (𝐴

𝑖
⊗ 𝑃Γ) − 𝑐 (𝑄

𝑖
⊗ 𝑃Γ)] 𝑒 = 0} ,

(16)

where 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑚}.

Proof. Construct the Lyapunov function as the form of

𝑉 (𝑡) =
1

2

𝑁

∑

𝑖=1

𝑒
𝑇

𝑖
𝑃𝑒
𝑖
. (17)

The derivative of 𝑉(𝑡) along the trajectories of system (12)
gives

�̇� (𝑡) =

𝑁

∑

𝑖=1

𝑒
𝑇

𝑖
𝑃 ̇𝑒
𝑖

=

𝑁

∑

𝑖=1

𝑒
𝑇

𝑖
𝑃[

[

𝑓 (𝑥
𝑖
) − 𝑓 (𝑠) + 𝑐

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
Γ𝑒
𝑖
]

]

− 𝑐

𝑙

∑

𝑖=1

𝑞
𝑖
𝑒
𝑇

𝑖
𝑃Γ𝑒
𝑖

≤

𝑁

∑

𝑖=1

𝑒
𝑇

𝑖
[

[

𝐾Γ𝑒
𝑖
+ 𝑐𝑃

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
Γ𝑒
𝑖
]

]

− 𝑐

𝑙

∑

𝑖=1

𝑞
𝑖
𝑒
𝑇

𝑖
𝑃Γ𝑒
𝑖

= 𝑒
𝑇
[𝐼
𝑁
⊗ 𝐾Γ + 𝑐 (𝐼

𝑁
⊗ 𝑃) (𝐴 ⊗ Γ) − 𝑐 (𝑄 ⊗ 𝑃Γ)] 𝑒

= 𝑒
𝑇
[𝐼
𝑁
⊗ 𝐾Γ + 𝑐 (𝐴 ⊗ 𝑃Γ) − 𝑐 (𝑄 ⊗ 𝑃Γ)] 𝑒,

(18)

where 𝑒 = (𝑒
𝑇

1
, 𝑒
𝑇

2
, . . . , 𝑒

𝑇

𝑁
)
𝑇, 𝐴 = ∑

𝑚

𝑘=1
𝜀
𝑘
𝐴
𝑘
, and 𝑄 =

∑
𝑚

𝑘=1
𝜀
𝑘
𝑄
𝑘
. If the condition in (14) is satisfied, then the sets

Ω
𝑖
(𝑡) in (16) will make a partition of 𝑅𝑁𝑛 by the convex

combination technique [23]; that is,∪𝑚
𝑖=1
Ω
𝑖
= 𝑅
𝑁𝑛. According

to the switching laws (16), if the 𝑘th subsystem is activated,
then the 𝑘th subsystem is described as

̇𝑒
𝑖
= 𝑓 (𝑥

𝑖
) − 𝑓 (𝑠) + 𝑐

𝑁

∑

𝑗=1

𝑎
𝑘

𝑖𝑗
Γ𝑥
𝑗
− 𝑐𝑞
𝑘

𝑖
Γ𝑒
𝑖
, 𝑖 = 1, 2, . . . , 𝑙,

̇𝑒
𝑖
= 𝑓 (𝑥

𝑖
) − 𝑓 (𝑠) + 𝑐

𝑁

∑

𝑗=1

𝑎
𝑘

𝑖𝑗
Γ𝑥
𝑗
, 𝑖 = 𝑙 + 1, 𝑙 + 2, . . . , 𝑁.

(19)

The derivative of 𝑉(𝑡) along the trajectories of system (19) is

�̇� (𝑡) =

𝑁

∑

𝑖=1

𝑒
𝑇

𝑖
𝑃 ̇𝑒
𝑖

=

𝑁

∑

𝑖=1

𝑒
𝑇

𝑖
𝑃[

[

𝑓 (𝑥
𝑖
) − 𝑓 (𝑠) + 𝑐

𝑁

∑

𝑗=1

𝑎
𝑘

𝑖𝑗
Γ𝑒
𝑖
]

]

− 𝑐

𝑙

∑

𝑖=1

𝑞
𝑘

𝑖
𝑒
𝑇

𝑖
𝑃Γ𝑒
𝑖

≤

𝑁

∑

𝑖=1

𝑒
𝑇

𝑖
[

[

𝐾Γ𝑒
𝑖
+ 𝑐𝑃

𝑁

∑

𝑗=1

𝑎
𝑘

𝑖𝑗
Γ𝑒
𝑖
]

]

− 𝑐

𝑙

∑

𝑖=1

𝑞
𝑘

𝑖
𝑒
𝑇

𝑖
𝑃Γ𝑒
𝑖

= 𝑒
𝑇
[𝐼
𝑁
⊗ 𝐾Γ + 𝑐 (𝐼

𝑁
⊗ 𝑃) (𝐴

𝑘
⊗ Γ) − 𝑐 (𝑄

𝑘
⊗ 𝑃Γ)] 𝑒

= 𝑒
𝑇
[𝐼
𝑁
⊗ 𝐾Γ + 𝑐 (𝐴

𝑘
⊗ 𝑃Γ) − 𝑐 (𝑄

𝑘
⊗ 𝑃Γ)] 𝑒 < 0.

(20)

From single Lyapunov function method [23], the complex
networks in (2) achieve global pinning synchronization
under the switching law (15), which completes the proof.

Remark 6. Similar to Remark 4, if Γ is a positive definite
matrix and 𝑃 is replaced with 𝐼, then the conditions (14) in
Theorem 5 can be simplified as

𝜃𝐼
𝑁
+ 𝑐

𝑚

∑

𝑘=1

𝜀
𝑘
(𝐴
𝑘
− 𝑄
𝑘
) < 0,

𝑚

∑

𝑘=1

𝜀
𝑘
= 1, (21)

where 𝜃 = ‖𝐾‖.

Remark 7. Although (7) and (17) are the same expression,
these equations have different meanings. Equation (7) has
been used as common Lyapunov function, which needs
�̇�(𝑡) < 0 for all the subnetworks. It means that each
pinning controlled subnetwork can achieve synchronization.
However, (17) has been used as single Lyapunov function,
compared with common Lyapunov function; it only needs
�̇�(𝑡) < 0 for the time period when the subnetwork is
activated; it is easy to see that single Lyapunov function
method can deal with more general case of switched complex
networks.

Remark 8. Compared with [25], there are three distinct
features. First of all, we investigated the pinning synchro-
nization problems of switched complex networks, including
pinning controller and switching laws design, however, [25]
only considering the synchronization problems of complex
networks from the switched system point of view, and it
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does not deal with the design of controller. So far, no
synchronization criteria have been reported for dynamical
networks with switching topology via pinning controller, so
the research topic is significant. Secondly, the assumptions
in the two papers are different. The results of [25] are under
the assumptions that all the connection outer matrices are
simultaneous triangularization, and these assumptions are
not easily satisfied. Compared with it, this paper does not
need these assumptions. Therefore, the results of this paper
cover more general cases of the dynamical networks in the
real world. Thirdly, compared with [25], the result of this
paper is more simpler and is easy to be verified, which is
conducive to engineering applications.

5. Examples

In this section, two simple examples are used to explain
the effectiveness of the proposed network synchronization
criteria.

Example 1. Consider the network

�̇�
𝑖
= 𝑓 (𝑥

𝑖
) + 𝑐

𝑁

∑

𝑗=1

𝑎
𝑘

𝑖𝑗
Γ𝑥
𝑗
+ 𝑢
𝑘

𝑖
, 𝑖 = 1, 2, . . . , 𝑙, 𝑘 = 1, 2

�̇�
𝑖
= 𝑓 (𝑥

𝑖
) + 𝑐

𝑁

∑

𝑗=1

𝑎
𝑘

𝑖𝑗
Γ𝑥
𝑗
, 𝑖 = 𝑙 + 1, 𝑙 + 2, . . . , 𝑁, 𝑘 = 1, 2,

(22)

where

𝑓 (𝑥
𝑖
) =

{

{

{

�̇�
𝑖1
= 10 (𝑥

𝑖2
− 𝑥
𝑖1
) ,

�̇�
𝑖2
= 40𝑥

𝑖1
− 25𝑥

𝑖1
𝑥
𝑖3
,

�̇�
𝑖3
= −𝑥
𝑖3
+ 4𝑥
2

𝑖1
.

(23)

Let 𝑇 = diag(1, 2, 1), 𝑐 = 6; herein we assume that the
network structure of (21) obeys the scale-free distribution of
the BA model [27]; the first subsystem’s parameters are given
by 𝑁 = 30, 𝑚

0
= 𝑚 = 3, and the second subsystem’s

parameters are given by 𝑁 = 30, 𝑚
0
= 𝑚 = 5, and, without

loss of generality, the pinning controllers are added to the first
node. Let 𝑞1

1
= 𝑞
2

1
= 20; the conditions of Theorem 2 are

satisfied. The states of error 𝑒
𝑖
(𝑖 = 1, 2, . . . , 30) are illustrated

in Figures 1, 2, and 3 with switching signal in Figure 4, which
show that the controlled network is globally asymptotically
stable under arbitrary switching by the pinning controller (3).

Example 2. Let 𝑓 and Γ be the same as (21), and the pinning
controllers are added to the first node. The outer-coupling
matrices 𝐴

1
and 𝐴

2
are pregiven; let 𝑞1

1
= 𝑞
2

1
= 90; then the

states of error 𝑒
𝑖
(𝑖 = 1, 2, . . . , 30) are illustrated in Figures 5,

6, 7, 8, 9, and 10.
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Figure 1: The synchronization errors 𝑒
𝑖1

of complex dynamical
system (22).
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Figure 2: The synchronization errors 𝑒
𝑖2
of complex dynamical

system (22).
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Figure 3: The synchronization errors 𝑒
𝑖3
of complex dynamical

system (22).



6 Mathematical Problems in Engineering

0 1 2 3 4
0.8

1

1.2

1.4

1.6

1.8

2

2.2

𝜎
(t
)

t (s)

Figure 4: The switching signal of system (22).
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Figure 5: The synchronization errors 𝑒
𝑖1
of the subnetwork 1 of

Example 2.
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Figure 6: The synchronization errors 𝑒
𝑖2
of the subnetwork 1 of

Example 2.
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Figure 7: The synchronization errors 𝑒
𝑖3
of the subnetwork 1 in

Example 2.
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Figure 8: The synchronization errors 𝑒
𝑖1
of the subnetwork 2 of

Example 2.
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Figure 9: The synchronization errors 𝑒
𝑖2
of the subnetwork 2 of

Example 2.



Mathematical Problems in Engineering 7

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

0
2
4
6
8
10
12
14

e i
3

−2

×10
9

t (s)

Figure 10: The synchronization errors 𝑒
𝑖3
of the subnetwork 2 of

Example 2.
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Figure 11: The synchronization errors 𝑒
𝑖1
of the switched networks

in Example 2.

FromFigures 5 to 10, it is easy to see that two pinning con-
trolled subnetworks cannot achieve synchronization. Apply-
ing Theorem 5, we can get synchronization via the designed
switching law:

𝜎 (𝑡)

= {
1, if 𝑒𝑇 [𝜃𝐼

30
⊗ Γ + 𝑐 (𝐴

1
⊗ 𝑃Γ)−𝑐 (𝑄

1
⊗ 𝑃Γ)] 𝑒≤0,

2, if 𝑒𝑇 [𝜃𝐼
30
⊗ Γ + 𝑐 (𝐴

2
⊗ 𝑃Γ)−𝑐 (𝑄

2
⊗ 𝑃Γ)] 𝑒≤0.

(24)

The simulations are shown in Figures 11, 12, 13, and 14.
FormFigures 11 to 13, it is easy to see that the states of error

systems are very large at the initial time, but after a while, it
converges to zero quickly, so the switched complex networks
achieved synchronization under the designed switching laws,
which verify the validity ofTheorem 5. In Figure 14, the value
of𝜎(𝑡) denotes the activated subsystem; itmeans that if𝜎(𝑡) =
1, the first subnetwork is activated, and if 𝜎(𝑡) = 2, the second
subnetwork is activated.
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Figure 12: The synchronization errors 𝑒
𝑖2
of the switched networks

in Example 2.
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Figure 13: The synchronization errors 𝑒
𝑖3
of the switched networks

in Example 2.
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Figure 14: Switching signal of Example 2.
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6. Conclusion

The pining synchronization problem of a complex net-
work with switching topology is investigated in this paper.
Employing common Lyapunov function method and sin-
gle Lyapunov function method, some criteria are given
to ensure the controlled complex networks achieve global
pinning synchronization under arbitrary switching and some
designed switching law, respectively. The criteria are simple
and easy to verified, but this paper only discussed the pinning
synchronization problem of switched dynamical networks by
common Lyapunov function and single Lyapunov function
method. How to solve this problem by multiple Lyapunov
function method is a challenging problem which deserves
future study.
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[11] J. Zhou, J. Lu, and J. Lü, “Adaptive synchronization of an
uncertain complex dynamical network,” IEEE Transactions on
Automatic Control, vol. 51, no. 4, pp. 652–656, 2006.

[12] W. W. Yu and J. D. Cao, “Adaptive synchronization and lag
synchronization of uncertain dynamical systemwith time delay
based on parameter identification,” Physica A, vol. 375, no. 2, pp.
467–482, 2007.

[13] R. O. Grigoriev, M. C. Cross, and H. G. Schuster, “Pinning
control of spatiotemporal chaos,” Physical Review Letters, vol.
79, no. 15, pp. 2795–2798, 1997.

[14] N. Parekh, S. Parthasarathy, and S. Sinha, “Global and local con-
trol of spatiotemporal chaos in coupled map lattices,” Physical
Review Letters, vol. 81, no. 7, pp. 1401–1404, 1998.

[15] X. F. Wang and G. Chen, “Pinning control of scale-free
dynamical networks,” Physica A: Statistical Mechanics and Its
Applications, vol. 310, no. 3-4, pp. 521–531, 2002.

[16] X. Li, X. Wang, and G. Chen, “Pinning a complex dynamical
network to its equilibrium,” IEEE Transactions on Circuits and
Systems I: Regular Papers, vol. 51, no. 10, pp. 2074–2087, 2004.

[17] F. Sorrentino, M. di Bernardo, F. Garofalo, and G. Chen,
“Controllability of complex networks via pinning,” Physical
Review E, vol. 75, no. 4, Article ID 046103, 6 pages, 2007.

[18] T. Chen, X. Liu, and W. Lu, “Pinning complex networks by a
single controller,” IEEE Transactions on Circuits and Systems I,
vol. 54, no. 6, pp. 1317–1326, 2007.
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