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Numerical approximation of nonlinear Klein-Gordon (KG) equation with quadratic and cubic nonlinearity is performed using the
element-free improved moving least squares Ritz (IMLS-Ritz) method. A regular arrangement of nodes is employed in this study
for the numerical integration to compute the system equation. A functional formulation for the KG equation is established and
discretized by the Ritz minimization procedure. Newmark’s integration scheme combined with an iterative technique is applied to
the resulting nonlinear system equations. The effectiveness and efficiency of the IMLS-Ritz method for the KG equation have been
testified through convergence analyses and comparison study between the present results and the exact solutions.

1. Introduction

The Klein-Gordon (KG) equation is essentially a relativistic
version of the Schrödinger equation. It has wide applica-
tions in many scientific fields, such as quantum mechanics,
solid state physics, and nonlinear optics [1]. Similar to the
Schrödinger equation, the KG equation is considered as one
of the important equations in mathematical physics, as well
as kinds of solitons studies, especially in the investigation
of solitons interactions for a collisionless plasma and the
recurrence of initial states [2, 3].

As a kind of essential nonlinear PDEs, the KG type equa-
tions have received considerable attention in deriving both
analytical and numerical solutions by using different types of
methods, such as the Adomian decompositionmethod [3, 4],
the sine-cosine ansatz and the tanh methods [2, 5, 6], the
auxiliary equation method, the Weierstrass elliptic function
method, the elliptic equation rational expansion method,
and the extended 𝐹-function method [7–9]. In the process,
various numerical schemes have also been developed based
on different theories, such as the homotopy method [10], the
cubic B-spline collocation method on a uniform mesh [11],
and the approximation with thin plate splines (TPS) radial
basis functions (RBF) based collocation approach [12].

To seek for an effective and efficient numerical technique,
the meshless method has been successfully developed to

solve partial differential equations that used to describemany
physical and engineering problems. The advantages of these
meshlessmethods are as follows: (i) solutions can be obtained
with only a minimum of meshing or no meshing at all [13–
18]; (ii) a set of scattered nodes is used instead of meshing
the entire domain of the problem. Several meshless methods
have been proposed and can be chosen as an alternative
to search for approximate solutions of the KG equations
[19, 20]. Based on different approximation functions, various
meshless methods were proposed, such as the element-free
Galerkin (EFG) method [21], the moving least squares differ-
ential quadrature method [22], the radial point interpolation
method [23], the smooth particle hydrodynamics methods
[24], the radial basis function [25], the element-free kp-Ritz
method [26–30], the meshless local Petrov-Galerkin method
[31], the reproducing kernel particle method [32], and the
local Krigging method [33].

In this study, by combining the IMLS approximation
and the Ritz procedure, the element-free IMLS-Ritz method
for numerical solution of the nonlinear KG equation is
presented. The cubic spline weight function and linear basis
are employed in this study. A regular arrangement of nodes is
employed for numerical integration to compute the system
equation. A functional formulation for the KG equation
is established and discretized by the Ritz procedure. The
essential boundary conditions are imposed by the penalty
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method. Newmark’s integration scheme is employed to solve
the nonlinear system equations. The applicability of the
IMLS-Ritz method is examined on a few selected example
problems. The accuracy of the presented method is also
investigated by comparing the obtained numerical results
with the existing analytical solutions.

2. Theoretical Formulation

2.1. Equivalent Functional of the One-Dimensional Nonlin-
ear KG Equation. We consider the following KG equation
including the nonlinear term as

𝜕
2
𝑢 (𝑥, 𝑡)

𝜕𝑡2
+ 𝛼

𝜕
2
𝑢 (𝑢, 𝑡)

𝜕𝑥2
+ 𝛽𝑢 (𝑢, 𝑡) + 𝛾𝑢

𝑘
= 𝑓 (𝑥, 𝑡) ,

𝑥 ∈ Ω, 0 < 𝑡 ≤ 𝑇,

(1)

subject to the initial condition

𝑢 (𝑥, 0) = 𝑢
0
, 𝑎 ≤ 𝑥 ≤ 𝑏 (2)

and the boundary conditions

𝑢 (𝑎, 𝑡) = 𝑔
1
(𝑡) , 𝑢 (𝑏, 𝑡) = 𝑔

2
(𝑡) , 0 < 𝑡 ≤ 𝑇, (3)

where Ω = [𝑎, 𝑏] ⊂ R, 𝑢(𝑥, 𝑡) denotes the wave displacement
at position 𝑥 and time 𝑡, 𝑢

0
, 𝑔
1
(𝑡), and 𝑔

2
(𝑡) are known

functions, and 𝛼, 𝛽, and 𝛾 are real numbers (𝛾 ̸= 0). The
function 𝑢 is to be determined when functions 𝑓, 𝑔

1
, and 𝑔

2

are given; 𝑘 = 2 for the case of quadratic nonlinearity and
𝑘 = 3 for a cubic nonlinearity.

An equivalent functional is defined in the weighted
integral form based on (1) with the initial condition in the
following form:

Π (𝑢) = ∫
Ω

𝑤[
𝜕
2
𝑢 (𝑥, 𝑡)

𝜕𝑡2
+ 𝛼

𝜕
2
𝑢 (𝑢, 𝑡)

𝜕𝑥2

+ 𝛽𝑢 (𝑢, 𝑡) + 𝛾𝑢
𝑘
− 𝑓 (𝑥, 𝑡)] 𝑑Ω.

(4)

Using integration by parts and the divergence theorem, (4)
yields the following expression:

Π (𝑢) = ∫
Ω

[−
𝛼

2
(
𝜕𝑢

𝜕𝑥
)

2

−
1

2
(
𝜕𝑢

𝜕𝑡
)

2

+
1

2
𝛽𝑢
2
+

𝛾

𝑘 + 1
𝑢
𝑘+1

− 𝑢𝑓 (𝑥, 𝑡)] 𝑑Ω,

(5)

where the weight 𝑤 is set to be 𝑢 in this numerical study.

2.2. Improved Moving Least Squares Shape Functions. The
IMLS approximation was proposed for construction of
the shape functions in the element-free method. In one-
dimensional IMLS approximation, for all 𝑓(𝑥), 𝑔(𝑥) ∈

span(p), we define

(𝑓, 𝑔) =

𝑛

∑

𝐼=1

𝑤 (𝑥 − 𝑥
𝐼
) 𝑓 (𝑥

𝐼
) 𝑔 (𝑥
𝐼
) , (6)

where (𝑓, 𝑔) is an inner product and span(p) is the Hilbert
space.

In span(p), for the set of points {𝑥
𝑖
} and weight functions

{𝑤
𝑖
}, if functions 𝑝

1
(𝑥), 𝑝
2
(𝑥), . . . , 𝑝

𝑚
(𝑥) satisfy the condi-

tions

(𝑝
𝑘
, 𝑝
𝑗
) =

𝑛

∑

𝑖=1

𝑤
𝑖
𝑝
𝑘
(𝑥
𝑖
) 𝑝
𝑗
(𝑥
𝑖
) = {

0, 𝑘 ̸= 𝑗

𝐴
𝑘
, 𝑘 = 𝑗

(𝑘, 𝑗 = 1, 2, . . . , 𝑚) ,

(7)

we furnish the function set 𝑝
1
(𝑥), 𝑝
2
(𝑥), . . . , 𝑝

𝑚
(𝑥) as a

weighted orthogonal function set with a weight function {𝑤
𝑖
}

about points {𝑥
𝑖
}. If 𝑝
1
(𝑥), 𝑝
2
(𝑥), . . . , 𝑝

𝑚
(𝑥) are polynomials,

the function set 𝑝
1
(𝑥), 𝑝
2
(𝑥), . . . , 𝑝

𝑚
(𝑥) is called a weighted

orthogonal polynomials set with a weight function {𝑤
𝑖
} about

points {𝑥
𝑖
}.

Consider an equation system fromMLS approximation:

A (𝑥) a (𝑥) = B (𝑥) u, (8)

whereA is the moment matrix. Then, (8) can be expressed as

[
[
[
[

[

(𝑝
1
, 𝑝
1
) (𝑝
1
, 𝑝
2
) ⋅ ⋅ ⋅ (𝑝

1
, 𝑝
𝑚
)

(𝑝
2
, 𝑝
1
) (𝑝
2
, 𝑝
2
) ⋅ ⋅ ⋅ (𝑝

2
, 𝑝
𝑚
)

.

.

.
.
.
. d

.

.

.

(𝑝
𝑚
, 𝑝
1
) (𝑝
𝑚
, 𝑝
2
) ⋅ ⋅ ⋅ (𝑝

𝑚
, 𝑝
𝑚
)

]
]
]
]

]

[
[
[
[

[

𝑎
1
(x)

𝑎
2
(x)
.
.
.

𝑎
𝑚
(x)

]
]
]
]

]

=

[
[
[
[

[

(𝑝
1
, 𝑢
𝐼
)

(𝑝
2
, 𝑢
𝐼
)

.

.

.

(𝑝
𝑚
, 𝑢
𝐼
)

]
]
]
]

]

.

(9)

If the basis function set 𝑝
𝑖
(𝑥) ∈ span(p), 𝑖 = 1, 2, . . . , 𝑚,

is a weighted orthogonal function set about points {𝑥
𝑖
}, that

is, if

(𝑝
𝑖
, 𝑝
𝑗
) = 0, (𝑖 ̸= 𝑗) , (10)

then (8) becomes

[
[
[
[

[

(𝑝
1
, 𝑝
1
) 0 ⋅ ⋅ ⋅ 0

0 (𝑝
2
, 𝑝
2
) ⋅ ⋅ ⋅ 0

.

.

.
.
.
. d

.

.

.

0 0 ⋅ ⋅ ⋅ (𝑝
𝑚
, 𝑝
𝑚
)

]
]
]
]

]

[
[
[
[

[

𝑎
1
(x)

𝑎
2
(x)
.
.
.

𝑎
𝑚
(x)

]
]
]
]

]

=

[
[
[
[

[

(𝑝
1
, 𝑢
𝐼
)

(𝑝
2
, 𝑢
𝐼
)

.

.

.

(𝑝
𝑚
, 𝑢
𝐼
)

]
]
]
]

]

.

(11)

Subsequently, coefficients 𝑎
𝑖
(𝑥) can be determined

accordingly:

𝑎
𝑖
(𝑥) =

(𝑝
𝑖
, 𝑢
𝐼
)

(𝑝
𝑖
, 𝑝
𝑖
)
, 𝑖 = 1, 2, . . . , 𝑚; (12)

that is,

a (𝑥) = Ã (𝑥)B (𝑥) u, (13)
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where

Ã (𝑥) =

[
[
[
[
[
[
[
[
[
[

[

1

(𝑝
1
, 𝑝
1
)

0 ⋅ ⋅ ⋅ 0

0
1

(𝑝
2
, 𝑝
2
)
⋅ ⋅ ⋅ 0

.

.

.
.
.
. d

.

.

.

0 0 ⋅ ⋅ ⋅
1

(𝑝
𝑚
, 𝑝
𝑚
)

]
]
]
]
]
]
]
]
]
]

]

. (14)

From (8) and (12), the expression of approximation
function 𝑢ℎ(𝑥) is

𝑢
ℎ
(𝑥) = Φ̃ (𝑥)u =

𝑛

∑

𝐼=1

Φ̃
𝐼
(𝑥) 𝑢
𝐼
, (15)

where Φ̃(𝑥) is the shape function and

Φ̃ (𝑥) = (Φ̃
1
(𝑥) , Φ̃

2
(𝑥) , . . . , Φ̃

𝑛
(𝑥)) = pT (𝑥) Ã (𝑥)B (𝑥) .

(16)

The abovementioned formulation details an IMLS
approximation in which coefficients 𝑎

𝑖
(x) are obtained

directly. It is, therefore, avoiding forming an ill-conditioned
or singular equation system.

From (16), we have

Φ̃
𝐼
(𝑥) =

𝑚

∑

𝑗=1

𝑝
𝑗
(𝑥) [Ã (𝑥)B (𝑥)]

𝑗𝐼
, (17)

which represents the shape function of the IMLS approx-
imation corresponding to node 𝐼. From (17), the partial
derivatives of Φ̃

𝐼
(𝑥) lead to

Φ̃
𝐼,𝑖
(𝑥) =

𝑚

∑

𝑗=1

[𝑝
𝑗,𝑖
(ÃB)
𝑗𝐼
+ 𝑝
𝑗
(Ã
,𝑖
B + ÃB

,𝑖
)
𝑗𝐼
] . (18)

The weighted orthogonal basis function set p = (𝑝
𝑖
) is

formed by using the Schmidt method as

𝑝
1
= 1,

.

.

.

𝑝
𝑖
= 𝑟
𝑖−1

−

𝑖−1

∑

𝑘=1

(𝑟
𝑖−1
, 𝑝
𝑘
)

(𝑝
𝑘
, 𝑝
𝑘
)
𝑝
𝑘
, 𝑖 = 2, 3, . . . .

(19)

Moreover, using the Schmidt method, the weighted
orthogonal basis function set p = (𝑝

𝑖
) can be formed from

the monomial basis function. For example, for the monomial
basis function

p̃ = (𝑝
𝑖
) = (1, 𝑥

1
, 𝑥
2
, 𝑥
3
, 𝑥
1
𝑥
2
, 𝑥
1
𝑥
3
, 𝑥
2
𝑥
3
, 𝑥
2

1
, 𝑥
2

2
, 𝑥
2

3
, . . .) ,

(20)

the weighted orthogonal basis function set can be generated
by

𝑝
𝑖
= 𝑝
𝑖
−

𝑖−1

∑

𝑘=1

(𝑝
𝑖
, 𝑝
𝑘
)

(𝑝
𝑘
, 𝑝
𝑘
)
𝑝
𝑘
, 𝑖 = 1, 2, 3, . . . . (21)

When the weighted orthogonal basis functions in (20)
and (21) are used, there exist fewer coefficients in the trial
function.

3. The Ritz Minimization Procedure and
Discretion Implementation

In the present work, the penalty method is used to modify
the constructed functional in implementing the specified
Dirichlet boundary conditions for a domain Ω bounded by
Γ. We use a penalty parameter 𝜆 to penalize the difference
between the displacement of the IMLS approximation and
the prescribed displacement on the essential boundary. The
penalty function can be expressed as

𝑇 =
𝜆

2
∫
Γ
1

(𝑢 − 𝑢)
2
𝑑Γ, (22)

where 𝜆 is the penalty parameter and 𝑢 is the specified
function on the Dirichlet boundary Γ

1
. Normally, 𝜆 is chosen

as 103 ∼ 107 which is case dependent.
The resulting functional enforcing the Dirichlet bound-

ary conditions for the KG equation is

Π
∗
(𝑢) = Π (𝑢) + 𝑇. (23)

Substituting (5) and (22) into the functional of (23), we have
the modified functional

Π
∗
(𝑢) = ∫

Ω

[−
𝛼

2
(
𝜕𝑢

𝜕𝑥
)

2

−
1

2
(
𝜕𝑢

𝜕𝑡
)

2

+
1

2
𝛽𝑢
2

+
𝛾

𝑘 + 1
𝑢
𝑘+1

− 𝑢𝑓 (𝑥, 𝑡) ] 𝑑Ω

+
𝜆

2
∫
Γ
𝑢

(𝑢 − 𝑢)
2
𝑑Γ.

(24)

The approximation of the field function can be obtained
from (15) as follows:

𝑢
ℎ
(𝑥, 𝑡) =

𝑛

∑

𝐼=1

Φ
𝐼
(𝑥) 𝑢
𝐼
(𝑡) = Φ (𝑥)U (𝑡) ,

𝜕𝑢
ℎ
(𝑥, 𝑡)

𝜕𝑥
=

𝑛

∑

𝐼=1

Φ
𝐼,𝑥
(𝑥) 𝑢
𝐼
(𝑡) = Φ

𝑥
(𝑥)U (𝑡) ,

𝜕
2
𝑢
ℎ
(𝑥, 𝑡)

𝜕𝑡2
=

𝑛

∑

𝐼=1

Φ
𝐼,𝑥
(𝑥)

𝜕
2
𝑢
𝐼
(𝑡)

𝜕𝑡2
= Φ
𝑥
(𝑥) Ü (𝑡) ,

(25)

where

Φ (𝑥) = (Φ
1
(𝑥) , Φ

2
(𝑥) , . . . , Φ

𝑛
(𝑥)) ,

Φ
𝑥
(𝑥) = (Φ

1,𝑥
(𝑥) , Φ

2,𝑥
(𝑥) , . . . , Φ

𝑛,𝑥
(𝑥)) ,

Ü (𝑡) = (
𝜕𝑢
2

1
(𝑡)

𝜕𝑡2
,
𝜕𝑢
2

2
(𝑡)

𝜕𝑡2
, . . . ,

𝜕𝑢
2

𝑛
(𝑡)

𝜕𝑡2
)

T

.

(26)
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Substituting (25) into (24) and applying the Ritz mini-
mization procedure to the maximum energy functionΠ∗

𝜕Π
∗

𝜕𝑢
𝐼
(𝑡)

= 0, 𝐼 = 1, 2, . . . , 𝑛, (27)

that yields the following matrix form:

Mü + Ku = F, (28)

where
K = 𝛽M − 𝛼K + K𝑎,

F = F + F𝑎,

M = ∫
Ω

Φ
T
Φ𝑑Ω,

K = ∫
Ω

Φ
T
𝑥
Φ
𝑥
𝑑Ω,

F = ∫
Ω

Φ𝑓 (𝑥, 𝑡) 𝑑Ω,

𝐾
𝑎

𝐼𝐽
= 𝛼 (Φ

𝐼
(𝑥)
𝑇
Φ
𝐽
(𝑥)

𝑥=𝑎
+ Φ
𝐼
(𝑥)
𝑇
Φ
𝐽
(𝑥)

𝑥=𝑏
) ,

𝐹
𝑎

𝐼
= −𝛾∫

Ω

Φ
𝐼
𝑢
𝑘
𝑑Ω + 𝜆 (Φ

𝐼
(𝑥)) 𝑢

𝑥=𝑎
+ Φ
𝐼
(𝑥) 𝑢

𝑥=𝑏
.

(29)

To solve the above nonlinear system, time discretization
of (28) is forming with Newmark’s integration scheme.
According to the fundamental assumptions of Newmark’s
integration

u̇
𝑡+Δ𝑡

= u̇
𝑡
+ [(1 − 𝛿) ü

𝑡
+ 𝛿ü
𝑡+Δ𝑡

] Δ𝑡,

u
𝑡+Δ𝑡

= u
𝑡𝑡
+ u̇
𝑡
Δ𝑡 + [(−

1

2
− 𝛼) ü

𝑡
+ 𝛼ü
𝑡+Δ𝑡

]Δ𝑡
2
,

(30)

we have

ü
𝑡+Δ𝑡

=
1

𝛼Δ𝑡2
(u
𝑡+Δ𝑡

− u
𝑡
) −

1

𝛼Δ𝑡
u̇
𝑡
− (

1

2𝛼
− 1) ü

𝑡
,

u̇
𝑡+Δ𝑡

=
𝛿

𝛼Δ𝑡
(u
𝑡+Δ𝑡

− u
𝑡
) + (1 −

𝛿

𝛼
) u̇
𝑡
+ (1 −

𝛿

2𝛼
)Δ𝑡ü

𝑡
,

(31)

where 𝛿 ≥ 0.5 and 𝛼 ≥ 0.25(0.5 + 𝛿)
2 are redefined as

parameters here to influence the accuracy and stability of the
integration.

The dynamic form of (28) at 𝑡 + Δ𝑡 can be written as

Mü
𝑡+Δ𝑡

+ Ku
𝑡+Δ𝑡

= F
𝑡+Δ𝑡

. (32)

Substituting (31) into (32), we have the full discretized
equation

(K +
1

𝛼Δ𝑡2
M) u
𝑡+Δ𝑡

= F
𝑡+Δ𝑡

+M(
1

𝛼Δ𝑡2
u
𝑡
+

1

𝛼Δ𝑡
u̇
𝑡
+ (

1

2𝛼
− 1) ü

𝑡
) .

(33)

By solving the above iteration equations, we can obtain
numerical solutions to the one-dimensional nonlinear Klein-
Gordon equation.

Table 1: Values of 𝐿
2
-norm errors and 𝐿

∞
-norm errors and CPU

time as functions of the number of nodes (𝑁) for the solutions of
Example 1 (𝑡 = 10, Δ𝑡 = 0.1, and 𝑑max = 3).

𝑁 𝐿
2
-norm error 𝐿

∞
error CPU time (s)

11 4.7172 × 10−4 2.0891 × 10−4 1.5224
21 6.6446 × 10−4 2.1335 × 10−4 1.7486
51 1.0503 × 10−3 2.1488 × 10−4 5.2065
101 1.5343 × 10−3 2.1500 × 10−4 10.3477
201 2.1912 × 10−3 2.1504 × 10−4 19.8889
251 2.3485 × 10−3 2.1505 × 10−4 25.6620

4. Numerical Results and Discussion

Three selected examples are included with their numerical
solutions obtained by the presentedmethod for the nonlinear
KG equation. The problems are solved using regular node
arrangements. The convergence study is carried out for the
results of the KG equation. The accuracy and efficiency of
the IMLS-Ritzmethod are comparedwith available analytical
solutions by evaluating the 𝐿

2
-norm and 𝐿

∞
errors defined

as

𝐿
2
=
𝑢exact − 𝑢numerical

2
= √

𝑁

∑

𝑖=0

𝑢
𝑖

exact − 𝑢
𝑖

numerical


2

,

𝐿
∞
=
𝑢exact − 𝑢numerical

∞
= max
𝑖


𝑢
𝑖

exact − 𝑢
𝑖

numerical

,

(34)

where 𝑢exact and 𝑢numerical present the exact solution and
numerical approximation, respectively.

4.1. Example 1. Consider the KG equation (1) with quadratic
nonlinearity (𝑘 = 2), by taking the parameters 𝛼 = −1, 𝛽 = 0,
𝛾 = 1, and 𝑓(𝑥, 𝑡) = −𝑥 cos 𝑡 + 𝑥2cos2𝑡.

The exact solution of the equation is given as [1]

𝑢 (𝑥, 𝑡) = 𝑥 cos 𝑡, −1 ≤ 𝑥 ≤ 1. (35)

The corresponding initial conditions and Dirichlet
boundary function can be extracted from the analytical
solution directly as

𝑢 (𝑥, 0) = 𝑥, −1 ≤ 𝑥 ≤ 1,

𝑢
𝑡
(𝑥, 0) = 0, −1 ≤ 𝑥 ≤ 1,

𝑢 (𝑥, 𝑡) = {
− cos 𝑡 𝑥 = −1

cos 𝑡 𝑥 = 1.

(36)

In the present example, the numerical solutions are
obtained as the penalty factor 𝛼 = 10

3 and 𝑑max = 3.
We examine the convergence of the element-free IMLS-Ritz
method by varying the number of nodes (𝑁) from 11 to 201.
The 𝐿

2
-norm and 𝐿

∞
errors of 𝑢(𝑥, 𝑡) with CPU times are

computed at 𝑡 = 10withΔ𝑡 = 0.1 and tabulated in Table 1.We
found that both 𝐿

2
-norm and 𝐿

∞
errors arise as𝑁 increases.
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Figure 1: IMLS-Ritz and exact solutions of 𝑢(𝑥, 𝑡) at𝑁 = 21, Δ𝑡 = 0.1 (Example 1). (a) Solutions of 𝑢(𝑥, 𝑡); (b) absolute error.
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Figure 2: IMLS-Ritz solutions and absolute errors of 𝑢(𝑥, 𝑡) at different times (Example 1). (a) Solution surface of 𝑢(𝑥, 𝑡); (b) absolute error
contour.

This may be due to that once convergent result has been
obtained, in this case on 𝑁 = 11, the additional arranged
nodes will cause errors being accumulated. Based on this
observation, the following analysis will be performed using
𝑁 = 11 for accuracy consideration. We also investigated the
influence of 𝑑max on the accuracy of the IMLS-Ritz method.
As illustrated in Table 2, by varying 𝑑max from 2 to 3, accurate

results can be furnished when 𝑑max = 2. Furthermore,
the predicted results are compared with the available exact
solutions at 𝑡 = 10 and illustrated in Figure 1. It is apparent
that a close agreement is obtained from the illustrated results.
The computed results of 𝑢(𝑥, 𝑡) for a time history are also
predicted between 𝑡 = 0 s and 𝑡 = 10 s (Δ𝑡 = 0.1) (see
Figure 2(a)). The corresponding absolute error contour is
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Figure 3: IMLS-Ritz and exact solutions of 𝑢(𝑥, 𝑡) (Example 2). (a) Solutions of 𝑢(𝑥, 𝑡) at𝑁 = 21, Δ𝑡 = 0.1; (b) solution surface of 𝑢(𝑥, 𝑡).

Table 2: Values of 𝐿
2
-norm errors and 𝐿

∞
-norm errors and CPU

time as functions of the 𝑑max for the solution of Example 1 (𝑁 = 11,
𝑡 = 10, and Δ𝑡 = 0.1).

𝑑max 𝐿
2
-norm error 𝐿

∞
error CPU time (s)

2 6.7304 × 10−4 2.1170 × 10−4 1.7510
2.2 6.9125 × 10−4 2.1913 × 10−4 1.7888
2.4 7.1843 × 10−4 2.2411 × 10−4 1.8604
2.6 6.5686 × 10−4 2.2234 × 10−4 1.7744
2.8 6.4655 × 10−4 2.1186 × 10−4 1.7812
3 6.6445 × 10−4 2.1335 × 10−4 1.7949

plotted in Figure 2(b). From the presented results, we can
conclude that the approximate solutions generated by the
IMLS-Ritz method agree well with the analytical results.

4.2. Example 2. In the present numerical example, we con-
sider KG in (1) with a quadratic nonlinearity (𝑘 = 2), by
taking the parameters 𝛼 = −1, 𝛽 = 0, 𝛾 = 1, and 𝑓(𝑥, 𝑡) =
6𝑥𝑡(𝑥

2
− 𝑡
2
) + 𝑥
6
𝑡
6. The initial conditions are described by

𝑢 (𝑥, 0) = 0, 0 ≤ 𝑥 ≤ 1,

𝑢
𝑡
(𝑥, 0) = 0, 0 ≤ 𝑥 ≤ 1.

(37)

The exact solution of the equation is given as [1]

𝑢 (𝑥, 𝑡) = 𝑥
3
𝑡
3
, 0 ≤ 𝑥 ≤ 1. (38)

Table 3: Values of 𝐿
2
-norm errors and 𝐿

∞
-norm errors and CPU

time as functions of the number of nodes (𝑁) for the solutions of
Example 2 (𝑡 = 1, Δ𝑡 = 0.1, and 𝑑max = 2.2).

𝑁 𝐿
2
-norm error 𝐿

∞
error CPU time (s)

6 2.1937 × 10−2 1.7231 × 10−2 0.1081
21 3.3745 × 10−4 2.0891 × 10−4 0.2683
26 3.7023 × 10−4 1.6600 × 10−4 0.3275
51 5.1750 × 10−4 1.6589 × 10−4 0.6268
101 7.2991 × 10−4 1.6588 × 10−4 1.1983

The corresponding Dirichlet boundary function can be
extracted from the analytical solution directly as

𝑢 (𝑥, 𝑡) = {
0 𝑥 = 0

𝑡
3

𝑥 = 1.
(39)

In this analysis, numerical solutions are predicted and
compared with the analytical solutions at 𝑡 = 1, Δ𝑡 = 0.01,
𝑑max = 2.2, and the penalty factor 𝜆 = 10

3. Table 3 presents
the convergence patterns of the IMLS-Ritz results by varying
𝑁 from 6 to 101. A similar convergence trend is observed in
Example 1; that is, convergent results can be obtained from
𝑁 = 6 to 21; then, the errors are accumulated as𝑁 increases.
Table 4 illustrates the values of 𝐿

2
-norm and 𝐿

∞
errors as

𝑑max varying from 2 to 3.5. A growing trend of 𝐿
2
-norm

and 𝐿
∞

errors is observed from Table 4, and the CPU time
rises oscillatory as 𝑑max increases. As presented in Figure 3,
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Figure 4: Absolute errors of 𝑢(𝑥, 𝑡) at𝑁 = 21 (Example 2). (a) Absolute errors of 𝑢(𝑥, 𝑡) at Δ𝑡 = 0.1; (b) absolute errors contour.
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Figure 5: Absolute errors of 𝑢(𝑥, 𝑡) at𝑁 = 101 (Example 2). (a) Absolute errors of 𝑢(𝑥, 𝑡) at Δ𝑡 = 0.1; (b) absolute errors contour.

the comparison study shows that the IMLS-Ritz method pro-
vides very similar solutions to the exact results. In Figure 4,
the absolute errors of 𝑢(𝑥, 𝑡) at a selected time point (𝑡 = 1)
and the absolute error contour on a time period (0 ≤ 𝑡 ≤ 1)
are exhibited at 𝑁 = 21. Figure 5 is plotted at 𝑁 = 101 for
comparison with Figure 4. Although the increase in number
of nodes has been identified to be unaided in enhancing the
accuracy of the approximation, it influences the smoothness
of the solutions indeed.

4.3. Example 3. Consider the nonlinear Klein-Gordon equa-
tion (1) with a cubic nonlinearity (𝑘 = 3), by taking
parameters as 𝛼 = −2.5, 𝛽 = 1, 𝛾 = 1.5, and 𝑓(𝑥, 𝑡) = 0.
The initial conditions are given by

𝑢 (𝑥, 0) = 𝐵 tan (𝐾𝑥) , 0 ≤ 𝑥 ≤ 1,

𝑢
𝑡
(𝑥, 0) = 𝐵𝑐𝐾 sec2 (𝐾𝑥) , 0 ≤ 𝑥 ≤ 1,

(40)

where 𝐵 = √𝛽/𝛾 and𝐾 = √−𝛽/2(𝛼 + 𝑐2) and 𝑐 = 0.05.
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Figure 6: IMLS-Ritz and exact solutions of 𝑢(𝑥, 𝑡) (Example 3). (a) Solutions of 𝑢(𝑥, 𝑡) at𝑁 = 21, Δ𝑡 = 0.1; (b) solution surface of 𝑢(𝑥, 𝑡).

Table 4: Values of 𝐿
2
-norm errors and 𝐿

∞
-norm errors and CPU

time as functions of the 𝑑max for the solution of Example 2 (𝑁 = 11,
𝑡 = 1, and Δ𝑡 = 0.1).

𝑑max 𝐿
2
-norm error 𝐿

∞
error CPU time (s)

2 3.3081 × 10−4 2.1170 × 10−4 0.2637
2.2 3.3746 × 10−4 1.6616 × 10−4 0.2644
2.4 3.4597 × 10−4 1.6866 × 10−4 0.2754
2.6 3.7193 × 10−4 1.7459 × 10−4 0.2690
2.8 3.8596 × 10−4 1.8276 × 10−4 0.2686
3 3.8960 × 10−4 1.9179 × 10−4 0.2650
3.2 4.2300 × 10−4 1.999 × 10−4 0.2644
3.5 4.9035 × 10−4 2.3717 × 10−4 0.2819

The exact solution of the equation is given as [4]

𝑢 (𝑥, 𝑡) = 𝐵 tan [𝐾 (𝑥 + 𝑐𝑡)] , 0 ≤ 𝑥 ≤ 1. (41)

The IMLS-Ritz computation is carried out by settingΔ𝑡 =
0.1, the penalty factor 𝜆 = 103, and 𝑑max = 2.5. The 𝐿

2
-norm

and 𝐿
∞

errors of 𝑢 are computed with the number of nodes
varied from 13 to 201. The results are tabulated in Table 5. It
is apparent that both 𝐿

2
-norm and 𝐿

∞
errors decrease as 𝑁

increases, indicating that convergent results are obtained by
the IMLS-Ritzmethod. FromTable 6, the results of numerical
analysis suggested that satisfied accuracy can be achieved
when 𝑑max = 2. In Figure 6, the numerical and analytical
solutions are plotted on a time point (𝑡 = 2) and a time period
(0 ≤ 𝑡 ≤ 2). From the comparison results, we can conclude
that the IMLS-Ritz method provides very similar solutions to
the exact results. In Figures 7 and 8, the absolute errors of

Table 5: Values of 𝐿
2
-norm errors and 𝐿

∞
-norm errors and CPU

time as functions of the number of nodes (N) for the solutions of
Example 3 (𝑡 = 2, Δ𝑡 = 0.1, and 𝑑max = 2.5).

𝑁 𝐿
2
-norm error 𝐿

∞
error CPU time (s)

13 1.9791 × 10−5 1.3049 × 10−5 447.3713
21 9.5355 × 10−6 5.7505 × 10−6 559.7717
51 2.8692 × 10−6 1.7171 × 10−6 600.6953
101 1.8512 × 10−6 1.3635 × 10−6 650.4551
126 1.4819 × 10−6 1.0907 × 10−6 687.4458
201 7.8596 × 10−7 5.3053 × 10−7 721.8184

Table 6: Values of 𝐿
2
-norm errors and 𝐿

∞
-norm errors and CPU

time as functions of the 𝑑max for the solution of Example 3 (𝑁 = 11,
𝑡 = 10, and Δ𝑡 = 0.1).

𝑑max 𝐿
2
-norm error 𝐿

∞
error CPU time (s)

2 5.5466 × 10−6 3.4260 × 10−6 793.1491
2.2 1.8244 × 10−5 1.0416 × 10−5 826.7344
2.4 3.2447 × 10−5 1.8490 × 10−5 891.1543
2.6 4.5397 × 10−5 2.5715 × 10−5 945.6493
2.8 4.4504 × 10−5 2.6234 × 10−5 975.9027
3 2.7963 × 10−5 1.6959 × 10−5 1027.5762
3.2 3.2756 × 10−5 1.6014 × 10−5 1070.3232

𝑢(𝑥, 𝑡) at a selected time point (𝑡 = 2) and the absolute error
contour on a time period (0 ≤ 𝑡 ≤ 1) are depicted at 𝑁 =

21 and 𝑁 = 201, respectively. As expected, more accurate
results can be obtained as𝑁 increases in this example. From
the results presented in both tables and figures, it is evident
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Figure 7: Absolute errors of 𝑢(𝑥, 𝑡) at𝑁 = 21 (Example 3). (a) Absolute errors of 𝑢(𝑥, 𝑡) at Δ𝑡 = 0.1; (b) absolute errors contour.
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Figure 8: Absolute errors of 𝑢(𝑥, 𝑡) at𝑁 = 201 (Example 3). (a) Absolute errors of 𝑢(𝑥, 𝑡) at Δ𝑡 = 0.1; (b) absolute errors contour.

that the IMLS-Ritz values almost coincide with the exact
solutions.

5. Conclusion

In this paper, an element-free IMLS-Ritz method and its
numerical implementation on three examples of nonlinear
KG equation have been presented. The effectiveness and

efficiency of the IMLS-Ritz method for KG equation have
been testified through convergence and comparison studies.
From the numerical results, it is concluded that the agreement
of the IMLS-Ritz solutions with the exact results is excellent.
Due to difficulties of constructing analytical solutions for
many nonlinear PDEs, the element-free IMLS-Ritz method
will have great advantages for solving them through simple
implementation with high accuracy.
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