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Using the convex model approach, the bounds of uncertain variables are only required rather than the precise probability
distributions, based on which it can be made possible to conduct the reliability analysis for many complex engineering problems
with limited information. In this paper, three types of convex model including interval, ellipsoid, and multiellipsoid convex
uncertainty model are investigated, and a uniform model of nonprobabilistic reliability analysis is built. In the reliability analysis
process, an effective space-filling design is introduced to generate representative samples of uncertainty space so as to reduce the
computational cost and provide an accurate depiction of possible model outcome. Finally, Spearman’s rank correlation coefficient
is used to perform parameters global sensitivity analysis. Three numerical examples are investigated to demonstrate the feasibility
and accuracy of the presented method.

1. Introduction

In practical engineering problems, uncertainty is often una-
voidable due to the lack of knowledge, assumptions made
by model builders, variations of physical properties of mate-
rials, geometric dimensions, and operating environments
and other reasons. Therefore, these uncertainties involved in
structure should be taken into account for a proper design
process [1]. With the ever-increasing demands of struc-
ture security, the structural reliability analysis has received
considerable attention in the last decades and is becoming
increasingly important in the structural design [2].

The aim of reliability analysis is to assess the probability
of structural survival or the probability of structural failure
when the uncertainties involved in the structures are take
into account [3]. In the area of reliability analysis, probability
model is one of the most commonly used uncertainty
models, in which the uncertainties involved in structures
are described as random variables. This reliability model has
been intensively studied in the last decades and a variety of
important analysis techniques have been established, such as
the first order reliability method (FORM) [4, 5], second order

reliabilitymethod (SORM) [6, 7],Monte-Carlomethod (MC)
[8], and system reliability method [9, 10].

It is important to point out that the aforementioned
reliability method requires precise probabilistic distribution
characteristics, which come from a large number of input
samples. However, in real world engineering design prob-
lems, probabilistic reliability model is often hindered due
to the lack of samples information. For instance, in the
conceptual design stage of structures, it is difficult to provide
sufficient experimental samples to describe the distribution
of uncertainty input variables [11]. As revealed by Ben-Haim
[12] and Elishakoff [13], probabilistic reliability model is very
sensitive to small inaccuracy of input quantities, whichmeans
that misleading results may be yield due to the unjustified
assumption in constructing a probabilistic model.

This challenge thus raised the interest of the alterna-
tive nonprobabilistic approach for uncertainty description,
namely, the set theory-based convex model [14–18]. At
present, interval, ellipsoid, and multiellipsoid convex model
are three widely studied convex models [19]. Based on
interval model, Guo et al. [20] proposed a robust reliability
index to estimate structural nonprobability reliability and
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presented three solution methods of the reliability index.
Tao et al. [21] proposed a semianalytic method to solve the
nonprobabilistic reliability index. Chen et al. [22] suggested
an enhanced semianalytic method based on monotonicity
analysis. Qiu and Elishakoff studied the structural optimal
design method using the interval set model [23, 24]. With
multiellipsoid convex model, Kang et al. [25] and Luo et al.
[26] constructed a nonprobabilistic reliability optimization
design method.

This paper aims to develop a practical nonprobability
reliability global sensitivity analysis technique based on
optimal Latin hypercube sampling (OLHS) and Monte Carlo
simulation. The method proposed in this paper has wider
applicability. It can be used in solving more general problems
with intervalmodel, ellipsoidmodel, ormultiellipsoid convex
model.The proposedmethod has some very attractive advan-
tages, such as the following: its analysis process is simple,
computational cost is regardless with variables dimension
and the nonlinear degree of the performance function. Hence
it is particularly suitable for implementing the nonprobabilis-
tic reliability analysis for some complicated structure.

This paper is organized as follows. Firstly, three uncertain
information description methods, including interval model,
ellipsoid model, and multiellipsoid convex model, are intro-
duced.The nonprobabilistic reliability model and its physical
meaning are then discussed in detail in Section 3. Based
on OLHS, a Monte Carlo simulation and global sensitivity
analysis method for structural nonprobabilistic reliability is
proposed in Section 4. The feasibility and accuracy of the
presentedmethod are demonstrated through three numerical
examples in Section 5. Conclusions are given in Section 6.

2. The Description of Structural Uncertainty
with Convex Model

In this paper, three types of ellipsoid-bound convex models,
including interval model, ellipsoid model, and multiellipsoid
convex model, are introduced for the description of uncer-
tainty variables [14, 27].

(1) In interval uncertainty model, an uncertain variable
can be described by an interval set, which can be expressed
as

𝑥 = [𝑥
𝐿
, 𝑥
𝑈
] = {𝑥 ∈ 𝑅 | 𝑥

𝐿
≤ 𝑥 ≤ 𝑥

𝑈
} , (1)

where variable 𝑥 ∈ 𝑅 belongs to a bounded closed interval,
𝑥
𝐿 denotes the lower bound of interval variable, 𝑥𝑈 stands for

the upper bound of interval variable, and 𝑥𝐿 ≤ 𝑥
𝑈.

For easy expression, the variable 𝑥 can also be expressed
by

𝑥 = (1 + 𝛿) ⋅ 𝑥, (2)

where 𝛿 denotes a dimensionless variable and 𝑥 denotes the
nominal value of the uncertain variable; it can be expressed
by

𝑥 =

𝑥
𝐿
+ 𝑥
𝑈

2

. (3)

(2) In ellipsoid uncertain model, the uncertain variables
are assumed to fall into amultidimensional (hyper-) ellipsoid.
The uncertainty domain can be expressed by

𝛿 = {𝛿 : 𝛿
𝑇W𝛿 ≤ 𝜀

2
} , (4)

where W is the characteristic matrix of the ellipsoid and 𝜀

is real number standing for the magnitude of the parameter
variability.

(3) In multiellipsoid uncertain model, the uncertain vari-
ables are assumed to fall into several ellipsoid sets. Supposing
𝑘 ellipsoid sets are employed, the vector of the grouped
uncertain variables can be expressed by

x𝑇 = {x𝑇
1
, x𝑇
2
, . . . , x𝑇

𝑘
} , (5)

where each group of variables is bounded by an ellipsoid set
as follows:

𝛿
𝑖
= {𝛿
𝑖
: 𝛿
𝑇

𝑖
W
𝑖
𝛿
𝑖
≤ 𝜀
2

𝑖
} (𝑖 = 1, 2, . . . , 𝑘) , (6)

where 𝛿
𝑖
denotes the dimensionless vector of x

𝑖
, W
𝑖
denotes

the characteristic matrix of the 𝑖th ellipsoid, and 𝜀
𝑖
(𝑖 =

1, 2, . . . , 𝑘) are real numbers.
For illustrative purpose, we provide a problem with three

uncertain variables. Its dimensionless vector is expressed by
𝛿 = {𝛿

1
, 𝛿
2
, 𝛿
3
}
𝑇. We describe it with interval model, ellipsoid

model, and multiellipsoid convex model, respectively.

(a) Interval model:

𝛿
2

1
≤ 𝜀
2

1
, 𝛿

2

2
≤ 𝜀
2

2
, 𝛿

2

3
≤ 𝜀
2

3
. (7)

(b) Single-ellipsoid model:

{𝛿
1
, 𝛿
2
, 𝛿
3
}
[

[

3 0 1

0 3 1

1 1 1

]

]

{

{

{

𝛿
1

𝛿
2

𝛿
3

}

}

}

≤ 𝜀
2
. (8)

(c) Multiellipsoid uncertain model:

{𝛿
1
, 𝛿
2
} [

1 0

0 1
] {

𝛿
1

𝛿
2

} ≤ 𝜀
2

1
, 𝛿

2

3
≤ 𝜀
2

2
. (9)

The above three types of convex model are schematically
shown in Figures 1(a)–1(c).

3. A Reliability Model with
Convex Uncertainty

During the reference review, we found that Jiang et al. [28]
proposed a desirable structural nonprobabilistic reliability
model, in which reliability is defined as a ratio of the
multidimensional volume falling into the reliability domain
to the one of whole convex model. This reliability model has
a very intuitional and easily understandable mathematical
form and can be used to deal with some complex engineering
problems. In this reference, ellipsoid convex model is inten-
sively discussed, while, in this paper, this reliability model
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Figure 1: Convex models for three uncertain variables.
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Figure 2: Nonprobabilistic reliability for 2D problem.

will be expanded to interval model, ellipsoid model, and
multiellipsoid convex model, which will be able to deal with
more general convex model problems. Assume a structural
performance function is expressed by

𝑌 = 𝑔 (x) , (10)
where x stands for an 𝑛-dimensional vector of input parame-
ters.

Firstly, a two-dimensional problem is considered. As
shown in Figure 2

From Figure 2, the whole uncertainty domain is divided
into two regions by the failure surface. One is in the reliability
region, which is denoted by 𝑔(x) ≥ 0. The other one is in the
failure region, which is denoted by 𝑔(x) < 0. The reliability
can be evaluated as follows:

𝑅
𝑐
=

𝐴 − 𝐴
1

𝐴

, (11)

where 𝐴 stands for the region of the whole convex model,
𝐴
1
stands for the failure region, and 𝐴 − 𝐴

1
stands for the

reliability region.
When a three-dimensional problem is taken into account,

the domain of whole convex model will extend to corre-
sponding volumes as shown in Figure 3.

The definition of the nonprobabilistic reliability formu-
lated by (11) can easily be extended to an 𝑛-dimensional prob-
lem, in which the domain will become a multidimensional

volume.The value of𝑅
𝑐
is in the range of [0, 1], which canwell

describe the safety extent of a structure. Correspondingly, the
dangerous degree 𝑓

𝑐
can be expressed by

𝑓
𝑐
=

𝐴
1

𝐴

. (12)

Obviously, we can find that the relationship of dangerous
degree 𝑓

𝑐
with reliability 𝑅

𝑐
can be expressed by

𝑅
𝑐
+ 𝑓
𝑐
= 1. (13)

4. Reliability and Variables Global
Sensitivity Solution Method Based on
Optimal Latin Hypercube Sampling

It should be pointed out that the reliability model mentioned
above is based on areas or volumes. However, the magnitude
of reliability domain in the whole uncertainty domain is
difficult to be computed analytically for some complex engi-
neering problems. Thus, a Monte Carlo simulation method
has been developed in [28] to deal with this problem. How-
ever, the Monte Carlo simulation present in this reference
can not assure the samples are uniformly scattered in the
uncertainty space. Hence the number of samples falling into
reliability domain can not effectively represent themagnitude
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Figure 3: Nonprobabilistic reliability for 3D problem.

of reliability domain. The precision of analysis result can not
be ensured even though a lot of samples are used.

In this study, we approached the problem by a space-
filling design of computer experiment. This method is pro-
posed by Jin et al. [29] and named as optimal Latin hypercube
sampling (OLHS). Because OLHS can evenly spread out
sample points over the entire design space, people also named
it as space-filling design [30]. After samples of structural
uncertainty variables are generated readily by the OLHS in
Section 4.1, an efficient nonprobabilistic reliability and global
sensitivity analysis method will be proposed in Sections 4.2
and 4.3, respectively.

4.1. Generate the Samples of Convex Model Uncertainty
Variables Based on Uniform Design. When the uncertain
variables are defined as (tolerances) intervalswith given lower
and upper bounds, failure analysis methods are needed to
consider the complete range of uncertain domain. Theoret-
ically, every point within the interval has some unknown
probability of occurrence. Therefore, all the possible combi-
nations of these uncertain intervals must be considered in the
analysis.

In this section, we will use optimal Latin hypercube
sampling (OLHS) to solve structural nonprobabilistic relia-
bility index. OLHS is one of the space-filling designs and it
seeks experimental points to be uniformly scattered in the
experimental domain, which is proposed by Jin et al. [29, 30].

OLHS has several advantages. It can explore relationships
between the response and the factors with a reasonable
number of runs and is shown to be robust to the situation
where little knowledge is known about the function to be
modeled. In the past decade, it has been successfully applied
in industry, system engineering, pharmaceutics, and natural
sciences. Its practical success is due to its economical and
flexible experimental runs to study many factors with high
levels simultaneously.

In order to verify the space-filling capability of OLHS, a
graphical comparison of Monte Carlo sampling (MCS), Hal-
ton sequence, Latin square sampling (LHS), Maximin Latin
hypercube sampling (Maximin LHS), and Optimal Latin

hypercube (Optimal LHS) for two independent variables is
presented in Figure 4.

As shown in Figure 4, among these sampling methods,
the OLHS method has been shown to be capable of space-
filling uniformity. It can uniformly scatter samples in the 2D
space and obviously is better than the othermethods in terms
of space-filling capability. Hence, in this paper, OLHS will be
introduced to solve the nonprobabilistic index. Concerning
how to carry out the optimal Latin hypercube sampling, this
content is discussed detailedly in [25]. So we will not repeat
it in this paper.

Consider that a structure contains 𝑆 variables that can
be realized 𝑁 times. The samples of input variables can be
arranged as an inputmatrix with𝑁 row and 𝑆 columns. Using
OLHS to generate𝑁×𝑆 uniform numbers 𝑟

𝑖
in [0 1], arrange

these values into a 𝑁 × 𝑆 matrix, which has the smallest
discrepancy and excellent space-filling capability. After the
matrix 𝑁 × 𝑆 in [0, 1] has been generated, we will construct
the sampling matrix 𝑁 × 𝑆 for three types of uncertainty
convex model including interval model, ellipsoid model, and
multiellipsoid convex model.

(1) IntervalModel. For intervalmodel, uncertain variables can
be described by an interval set with upper and lower bounds
(Figure 5). The uncertain domain can be expressed by

Ω
1
= {𝑥 = (𝑥

𝑖
, . . . , 𝑥

𝑆
) : 𝑥
𝐿

𝑖
≤ 𝑥
𝑖
≤ 𝑥
𝑈

𝑖
, 𝑖 = 1, . . . , 𝑆} , (14)

where variable 𝑥
𝑖
∈ 𝑅 and belong to a bounded closed

interval, 𝑥𝐿
𝑖
is the lower bound of interval variable, 𝑥𝑈

𝑖
is the

upper bound of interval variable, and 𝑥𝐿
𝑖
≤ 𝑥
𝑈

𝑖
.

Consider a computermodel requiring 𝑆 variables that can
be realized 𝑁 times. After a matrix 𝑁 × 𝑆 in [0, 1] has been
generated, we will construct the sampling matrix by

𝑥
∗

𝑖
= 𝑥
𝐿

𝑖
− 𝑟
∗

𝑖
(𝑥
𝑈

𝑖
− 𝑥
𝐿

𝑖
) , (15)

where𝑥∗
𝑖
is the sample of interval variable and 𝑟∗

𝑖
is the sample

of matrix𝑁 × 𝑆 in [0, 1].

(2) Ellipsoid Model. For ellipsoid convex model, it is difficult
to obtain the samples directly. Hence we can make the 𝑛
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Figure 4: Comparison of realization sets generated by MCS, Halton, LHS, Maximin LHS, and OLHS.
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Figure 5: Samples of interval model variables in 2D space.

uncertain parameters as independent random variables and
obtain samples by interval model at first. Then we substitute
the samples into the ellipsoidal function and obtain a pile of
samples X∗e satisfying

Ω
2
= {X∗e : 𝛿

𝑇W𝛿 ≤ 𝜀
2
} . (16)

By this treatment, we can get a pile of samples, which
can be uniformly scattered in the 𝑛-dimensional ellipsoidal
convex model. This principle is shown in Figure 6.

(3) Multiellipsoid Model. Similarly to ellipsoid convex model,
we can make the 𝑛 uncertain parameters as independent
random variables and obtain samples by interval model at
first. Then we substitute the samples into the multiellipsoidal
function and obtain a pile of samples X∗me satisfying

Ω
3
= {X∗me : 𝛿

𝑇

𝑖
W
𝑖
𝛿
𝑖
≤ 𝜀
2

𝑖
, 𝑖 = 1, 2, . . . , 𝑘} . (17)

By this treatment, we can get a pile of samples X∗me,
which can be uniformly scattered in the 𝑛-dimensional
multiellipsoidal convex model.

4.2. Reliability Solution Method of Convex Models Based on
Monte Carlo Simulation. In the process of reliability solution,
we calculate the number of samples instead of the magnitude
of failure region. The proposed reliability method can be
outlined as follows.

Step 1. Consider a computer model containing 𝑆 variable;
we first generate the input variables samples matrix by the
method mentioned in Section 4.1. Suppose the number of
generated samples is 𝑁; the samples of input variables can
be viewed as an input matrix with 𝑁 row and 𝑆 columns,
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which has the smallest discrepancy and excellent space-filling
capability.

Step 2. Sequentially substitute the samples into the perfor-
mance function. Then we can obtain the number of samples
satisfying the 𝑔(x) = 𝑔(𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) > 0. We denoted it by

𝑁
𝑠
. Through this step, the samples falling into the reliability

domain can be captured.

Step 3. Finally, calculate structural reliability through the
equation 𝑅

𝑐
= 𝑁
𝑠
/𝑁.

4.3. Global Sensitivity Analysis Method of Convex Uncer-
tainty Model. Compared with the researches on solving non-
probabilistic reliability index, the nonprobabilistic reliability
sensitivity analysis is less available. Sensitivity analysis can
quantitatively assess the impact of inputs on the output, which
can be used to identify significant inputs and thereby to help
you to improve design toward a more reliable and better
quality product.

In this paper, we will present a global sensitivities
analysis approach, different from local sensitivities [31].
Local sensitivities are mostly only local gradient informa-
tion. It usually calculates structural variables sensitivity by
finite-differencing scheme. Local sensitivities cannot globally
reflect the impact of the variability of inputs on the output.
It also neglects the influence of interactions between inputs
[32].The global approach proposed in this paper cannot only
consider the slope at a particular location, but also study
the global variability of an output induced by inputs over
the entire range of values of inputs. Hence it can provide an
overall view on the influence of inputs on the outputs.

In this paper, OLHS and Spearman’s rank correlation
coefficient [33] will be introduced to quantitatively assess the
influence of the inputs on the output performance function.

Suppose the samples of input variables are denoted by
𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
, and simulation results of output are denoted

by 𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
. Then we can calculate Spearman’s rank

correlation coefficient 𝑟
𝑠
as follows:

𝑟
𝑠
=

∑
𝑛

𝑖=1
(𝑅
𝑥𝑖
− 𝑅
𝑥
) (𝑅
𝑦𝑖
− 𝑅
𝑦
)

√∑
𝑛

𝑖=1
(𝑅
𝑥𝑖
− 𝑅
𝑥
)

2
√∑
𝑛

𝑖=1
(𝑅
𝑦𝑖
− 𝑅
𝑦
)

2

, (18)

where 𝑅
𝑥𝑖

is the rank of 𝑥
𝑖
within the set of samples

𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
. 𝑅
𝑦𝑖
is the rank of 𝑦

𝑖
within the set of samples

𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
. 𝑅
𝑥
denotes the average ranks of 𝑅

𝑥𝑖
, and it can

be calculated by 𝑅
𝑥
= ∑
𝑛

𝑖=1
𝑅
𝑥𝑖
/𝑛 = (𝑛 + 1)/2. 𝑅

𝑦
denotes

the average ranks of 𝑅
𝑦𝑖
, and it can be calculated by 𝑅

𝑦
=

∑
𝑛

𝑖=1
𝑅
𝑦𝑖
/𝑛 = (𝑛 + 1)/2. Equation (18) can be rewritten in a

simple manner as follows:

𝑟
𝑠
= 1 −

6 [∑
𝑛

𝑖=1
(𝑅
𝑦𝑖
− 𝑅
𝑥𝑖
)

2

]

2

𝑛 (𝑛
2
− 1)

, −1 ≤ 𝑟
𝑠
≤ 1.

(19)

The range of the value 𝑟
𝑠
is in the range of −1 to 1. Its

magnitude stands for the extent of closeness between the
input variable and output. A positive value will be obtained
if the variables are directly positively related, while a negative
value will be obtained if they are inversely related.

Consider a computer model containing 𝑆 variables. We
generate 𝑁 samples by uniform design. Then the Monte
Carlo simulation will be performed to obtain the sampling
results of performance function, which can be denoted by
{𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑁
}. We can organize the input parameter and

output parameter as follows:

[

[

[

[

[

𝑥
11

𝑥
12

. . . 𝑥
1𝑆

𝑥
21

𝑥
22

. . . 𝑥
2𝑆

.

.

.

.

.

.

.

.

.

.

.

.

𝑥
𝑁1

𝑥
𝑁2

. . . 𝑥
𝑁𝑆

]

]

]

]

]

[

[

[

[

[

𝑦
1

𝑦
2

.

.

.

𝑦
𝑁

]

]

]

]

]

. (20)

By the definition of Spearman’s rank correlation coeffi-
cient, we can divide the input parameter and output parame-
ter into 𝑆 groups as follows:

[
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, . . . ,
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. (21)

By performing nonparametric Spearman’s rank correla-
tion coefficient analysis, we can obtain the sensitivity infor-
mation of variables about structural performance function.
The advance of this method is that it does not increase
the computation cost. After the reliability analysis is imple-
mented, the sensitivity results can be obtained readily.

5. Engineering Examples and Discussion

5.1. Case Study 1. In order to expound the analysis process of
the proposed method easily, a simple finite element analysis
(FEA) model is investigated.
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Table 1: Uncertainty variables of plate structure.

Variable name Mean value Minimum Maximum
Length 𝐴 (mm) 95 93 97
Width 𝐵 (mm) 40 38 42
Height𝐻 (mm) 6 5 7
Young’s modulus 𝐸 (MPa) 71700 71600 71800
External load 𝐹 (N) 2000 1900 2100

B

H

A
F

Figure 7: A plate structure.

This model is a simple plate structure as shown in
Figure 7. Its length,width, andheight are denoted by𝐴,𝐵, and
𝐻, respectively. In this model, an external load denoted by 𝐹
is acted at the center of the upper surface, and four corners
of the lower surface are fixed. Young’s modulus of the plank
is denoted by 𝐸, and Poisson’s ratio is 0.33. The uncertainties
related to geometrical dimensions, material properties, and
external loads can be described with interval model and are
listed in Table 1.

The FEA model of the plate structure is initially built
with the mean value of variables, and structural response
(maximum strain) is shown in Figure 8.

Suppose the maximum strain of the plate is denoted by
𝑑(𝐴, 𝐵,𝐻, 𝐸, 𝐹) and the allowable strain of the plane is 𝑑

𝑚
=

0.5mm; we can define structural performance function as
follows:

𝑔 (𝐴, 𝐵,𝐻, 𝐸, 𝐹) = 𝑑
𝑚
− 𝑑 (𝐴, 𝐵,𝐻, 𝐸, 𝐹) . (22)

To perform Monte Carlo analysis with 1000 samples
generated by uniform design, the plane structural reliability
can be readily obtained by 𝑅

𝑐
= (1000 − 9)/1000 = 0.991.

The sampling results of performance function are shown in
Figure 9.

To implement the sensitivity analysis by the method
mentioned in Section 4.3, the bar chart of sensitivity results
is shown in Figure 10.

As shown in Figure 10, the variable 𝐻 is a main factor
that influences the magnitude of structural strain. Compared
with other variables, Young’s modulus 𝐸 has less impact on
the magnitude of structural strain.

5.2. Case Study 2. A practical 25-bar steel truss (Figure 11) is
investigated, which is modified from [28].

In this model, Young’s modulus is 199949.2MPa and
Poisson’s ratio is 0.3. Horizontal bars and the vertical bars
have the same length denoted by 𝐿. The cross-sectional area
of bars (1)–(4) is𝐴

1
, the cross-sectional area of bars (16)–(25)

is 𝐴
2
, the cross-sectional area of bars (11)–(15) is 𝐴

3
, and the

cross-sectional area of bars (5)–(10) is𝐴
4
. The joints 6, 8, and
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Figure 8: Strain of the plate structure.
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Figure 9: Sampling results of performance function.
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Figure 10: Bar chart of sensitivity analysis results.

10 are roller-supported, and joint 12 is hinge-supported. The
vertical loads are denoted by𝐹

3
,𝐹
2
, and𝐹

1
and are acted at the

joints 7, 9, and 10, respectively. A horizontal load is denoted
by 𝐹
4
and is acted at the joint 1. The horizontal displacement

of joint 6 is denoted by 𝑑, and its allowable maximum value
is 𝑑
𝑚
. The five inputs (cross-sectional area 𝐴

𝑖
, 𝑖 = 1, 2, 3, 4,

and the length 𝐿) in this example are treated as uncertain
variables.The performance function of the structure can then
be expressed as

𝑔 (𝐴
1
, 𝐴
2
, 𝐴
3
, 𝐴
4
, 𝐿) = 𝑑

𝑚
− 𝑑 (𝐴

1
, 𝐴
2
, 𝐴
3
, 𝐴
4
, 𝐿) . (23)
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Figure 11: A 25-bar truss.

The uncertain intervals of the five input variables are

𝐴
1
= [630mm2; 770mm2] ,

𝐴
2
= [5580mm2, 6820mm2] ,

𝐴
3
= [4770mm2; 5830mm2] ,

𝐴
4
= [7920mm2; 9680mm2] ,

𝐿 = [13500mm; 16500mm2] .

(24)

The uncertainty domain of the design problem can be
represented as an ellipsoidal convex model:

[

[

[

[

[

[

[

𝐴
1
− 𝐴
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×
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0 0 0 0 0.4444
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×

[
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[
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4
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]
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]
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≤ 10
6
.

(25)

In this problem, the ANSYS software is used to solve
to the horizontal displacement 𝑑 of joint 6. In order to
observe the difference between interval model and ellipsoidal
model for reliability analysis results, different values of the
maximum allowable displacement 𝑑

𝑚
are taken into account.

We calculated the structural reliability with interval model
and ellipsoidal model by Monte Carlo simulation with 1000
samples, respectively. The reliability analysis results are given
in Figure 12.

As shown in Figure 12, with increasing of 𝑑
𝑚
, the non-

probabilistic reliability 𝑅
𝑐
also has an increasing trend. From

Figure 12, it is noted that interval model is more conservative
than results of ellipsoidal model.
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Figure 12: Reliability analysis results with interval model and
ellipsoidal model.
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Figure 13: Sensitivity analysis result with interval model and
ellipsoidal model.

Set the maximum allowable horizontal displacements
𝑑
𝑚
= 22; perform sensitivity analysis with ellipsoidal model;

the structural sensitivity can be obtained readily as shown in
Figure 13.

As shown in Figure 13, increasing the value of cross-
sectional area 𝐴

𝑖
, 𝑖 = 1, 2, 3, 4, will enhance the structural

rigidity and increase the structural reliability, while increas-
ing the input variable 𝐿will decrease the structural reliability.
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Table 2: Uncertainty variables of piccolo tube structure.

Variable name Nominal value Convex model description
Pipeline diameter 𝐴 (m) 0.060 𝛿

2

𝐴
≤ 0.01

2

Pipeline wall thickness 𝐵 (m) 0.002
{𝛿
𝐵
, 𝛿
𝐶
} [

1 0

0 1

]{

𝛿
𝐵

𝛿
𝐶

} ≤ 0.1
2

Hole diameter 𝐶 (m) 0.002
Hole side distance𝐷 (m) 0.040

{𝛿
𝐷
, 𝛿
𝐸
} [

1 0

0 1

]{

𝛿
𝐷

𝛿
𝐸

} ≤ 0.1
2

Hole interval length 𝐸 (m) 0.04
Hole angle 𝐹 (∘) 45 𝛿

2

𝐹
≤ 0.01

2

Young’s modulus𝑀 2.1𝐸11 𝛿
2

𝑀
≤ 0.02

2

Density 𝜌 (kg/m3) 7800 𝛿
2

𝜌
≤ 0.1
2

External vibration frequency 𝜆 (Hz) 1700 𝛿
2

𝜆
≤ 0.1
2

Table 3: Anterior four mode frequencies of piccolo tube structure.

Mode number 1 2 3 4
Natural frequency (Hz) 1538.4 1613.8 1819.0 1827.5

This sensitivity analysis results are in accordance with the
engineering practice.

5.3. Case Study 3. An anti-ice piccolo structure is the core
component part of a wing anti-ice system. It is close to aircraft
engines, subject to random excitation generated by the
engine. So there exists the potential possibility of structural
resonances. In this paper, we take a part of anti-ice piccolo
structure to perform the resonance reliability and variables
sensitivity analysis. The finite element model (FEM) of anti-
ice piccolo structure is shown in Figure 14, which is built with
ANSYS software.The local methmodel is shown in Figure 15.

The uncertain parameters of piccolo are described with
multiellipsoid convex model and are listed in Table 2.

Firstly, we take the mean value of variables as input
parameters. By mode analysis, the anterior four natural
frequencies of anti-ice piccolo structure can be obtained.The
anterior four mode frequencies are shown in Table 3. The
anterior four vibration modes are shown in Figure 16.

As shown in Table 3, the first natural frequency denoted
by 𝜂 is close to external excitation frequency. According to
the requirement of antiresonance design, the performance
function of structural resonance failure can be expressed by

𝑔 (𝜂, 𝜆) = 𝜂 − 𝜆, (26)

where 𝜆 is the external excitation frequency and 𝜂 is the first
natural frequency. When |𝜂 − 𝜆| ≤ 𝛿, the structure will cause
resonance damage; when |𝜂 − 𝜆| > 𝛿, structure is safe. In
practical engineering, we usually set 𝛿 = 0.05𝜆; here 𝛿 =

60Hz.
To perform Monte Carlo analysis with 365 samples gen-

erated by the method mentioned in Section 4.3, the sampling
results of performance function are shown in Figure 17.

As shown in Figure 17, there are only 6 samples falling
into the structural resonance failure; the pipeline structural
reliability can be readily obtained by 𝑅

𝑐
= 350/356 =

0.9863. To implement the sensitivity analysis by the method

Figure 14: FEM of piccolo structure.

Figure 15: Local meth model of piccolo structure.

mentioned in Section 4.3, the bar chart of sensitivity analysis
results is shown in Figure 18.

Figure 18 provides a graphical illustration of the impact
of structural input variables on output. A positive sensi-
tivity indicates that increasing the value of input variable
will increase the structural reliability. Likewise, a negative
sensitivity indicates that increasing the value of input variable
will reduce the structural reliability.

6. Conclusions

In this paper, a practical nonprobability reliability and global
sensitivity analysis method for interval, ellipsoid, and multi-
ellipsoid convex uncertainty model is constructed. In order
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Figure 16: The diagram of anterior four vibration modes.
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Figure 18: Bar chart of sensitivity analysis results.

to provide an accurate depiction of possible model outcome,
uniform design, an effective space-filling design, is used to
generate representative samples for input variables. As the
computation of reliability index proposed in this paper is
based on Monte Carlo simulation, it is very suitable for more
general engineering problem, like some problems with black-
box performance function.

The global sensitivities analysis method present in this
paper is based on Spearman’s rank correlation coefficient,
which is different from local sensitivities analysis. The
advance of this method is that it does not increase the com-
putation cost. After the reliability analysis is implemented,
the sensitivity results can be obtained readily.These examples
demonstrated the feasibility of the presented method.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

Authors gratefully acknowledge the support of the National
Natural Science Foundation of China (E050401) and the
Foundation of G2015KY0103.

References

[1] G. Stefanou, “The stochastic finite element method: past,
present and future,” Computer Methods in Applied Mechanics
and Engineering, vol. 198, no. 9–12, pp. 1031–1051, 2009.

[2] Z. Qiu, D. Yang, and I. Elishakoff, “Probabilistic interval relia-
bility of structural systems,” International Journal of Solids and
Structures, vol. 45, no. 10, pp. 2850–2860, 2008.

[3] A.D.Kiureghian andO.Ditlevsen, “Aleatory or epistemic?Does
it matter?” Structural Safety, vol. 31, no. 2, pp. 105–112, 2009.

[4] A. M. Hasofer and N. C. Lind, “Exact and invariant second-
moment code format,”ASCE Journal of the EngineeringMechan-
ics Division, vol. 100, no. 1, pp. 111–121, 1974.

[5] R. Rackwitz and B. Flessler, “Structural reliability under com-
bined random load sequences,” Computers and Structures, vol.
9, no. 5, pp. 489–494, 1978.

[6] K. Breitung, “Asymptotic approximations for multinormal inte-
grals,” Journal of Engineering Mechanics, vol. 110, no. 3, pp. 357–
366, 1984.

[7] D. C. Polidori, J. L. Beck, and C. Papadimitriou, “New approxi-
mations for reliability integrals,” Journal of EngineeringMechan-
ics, vol. 125, no. 4, pp. 466–475, 1999.

[8] R. Y. Rubinstein and D. P. Kroese, Simulation and the Monte-
Carlo Method, Wiley Series in Probability and Statistics, Wiley-
Interscience, New York, NY, USA, 2nd edition, 2007.

[9] C. Thoft and M. Yoshisuda, Application of Structural Systems
Reliability Theory, Springer, Berlin, Germany, 1986.

[10] F. Tonon, “Using random set theory to propagate epistemic
uncertainty through a mechanical system,” Reliability Engineer-
ing & System Safety, vol. 85, no. 1-3, pp. 169–181, 2004.

[11] C. Jiang, X.Han, andG. R. Liu, “Optimization of structures with
uncertain constraints based on convex model and satisfaction
degree of interval,”ComputerMethods in AppliedMechanics and
Engineering, vol. 196, no. 49–52, pp. 4791–4800, 2007.

[12] Y. Ben-Haim, “A non-probabilistic concept of reliability,” Struc-
tural Safety, vol. 14, no. 4, pp. 227–245, 1994.

[13] I. Elishakoff, “Essay on uncertainties in elastic and viscoelastic
structures: from A. M. Freudenthal’s criticisms to modern
convex modeling,” Computers and Structures, vol. 56, no. 6, pp.
871–895, 1995.

[14] Y. Ben-Haim and I. Elishakoff, Convex Models of Uncertain-
ties in Applied Mechanics, Elsevier Science, Amsterdam, The
Netherlands, 1990.

[15] G. J. Klir, “Generalized information theory: aims, results, and
open problems,” Reliability Engineering and System Safety, vol.
85, no. 1–3, pp. 21–38, 2004.

[16] C. Jiang, X. Han, G. Y. Lu, J. Liu, Z. Zhang, and Y. C.
Bai, “Correlation analysis of non-probabilistic convex model
and corresponding structural reliability technique,” Computer
Methods in AppliedMechanics and Engineering, vol. 200, no. 33–
36, pp. 2528–2546, 2011.

[17] Y. Ben-Haim and I. Elishakoff, “Discussion on: a non-
probabilistic concept of reliability,” Structural Safety, vol. 17, no.
3, pp. 195–199, 1995.

[18] Y. Ben-Haim, “Uncertainty, probability and information-gaps,”
Reliability Engineering & System Safety, vol. 85, no. 1–3, pp. 249–
266, 2004.

[19] Y. Luo, Z. Kang, and Z. Yue, “Maximal stiffness design of two-
material structures by topology optimization with nonproba-
bilistic reliability,” AIAA Journal, vol. 50, no. 9, pp. 1993–2003,
2012.

[20] S. X. Guo, Z. Y. Lu, and Y. S. Feng, “Non-probabilistic model of
structural reliability based on interval analysis,”Chinese Journal
of Computational Mechanics, vol. 18, no. 1, pp. 56–60, 2001.

[21] J. Tao, C. Jian-Jun, and X. Ya-Lan, “A semi-analytic method for
calculating non-probabilistic reliability index based on interval
models,” Applied Mathematical Modelling, vol. 31, no. 7, pp.
1362–1370, 2007.

[22] X. Chen, C.-Y. Tang, C.-P. Tsui, and J. Fan, “Modified
scheme based on semi-analytic approach for computing non-
probabilistic reliability index,” Acta Mechanica Solida Sinica,
vol. 23, no. 2, pp. 115–123, 2010.

[23] Z. Qiu and I. Elishakoff, “Antioptimization of structures with
large uncertain-but-non-random parameters via interval anal-
ysis,” Computer Methods in Applied Mechanics and Engineering,
vol. 152, no. 3-4, pp. 361–372, 1998.

[24] I. Elishakoff, R. T. Haftka, and J. Fang, “Structural design under
bounded uncertainty—optimization with anti-optimization,”
Computers and Structures, vol. 53, no. 6, pp. 1401–1405, 1994.



12 Mathematical Problems in Engineering

[25] Z. Kang, Y. Luo, and A. Li, “On non-probabilistic reliability-
based design optimization of structures with uncertain-but-
bounded parameters,” Structural Safety, vol. 33, no. 3, pp. 196–
205, 2011.

[26] Y. Luo, A. Li, and Z. Kang, “Reliability-based design optimiza-
tion of adhesive bonded steel-concrete composite beams with
probabilistic and non-probabilistic uncertainties,” Engineering
Structures, vol. 33, no. 7, pp. 2110–2119, 2011.

[27] Y. Ben-Haim, “A non-probabilistic measure of reliability of
linear systems based on expansion of convexmodels,” Structural
Safety, vol. 17, no. 2, pp. 91–109, 1995.

[28] C. Jiang, R. G. Bi, G. Y. Lu, and X. Han, “Structural reliabil-
ity analysis using non-probabilistic convex model,” Computer
Methods in AppliedMechanics and Engineering, vol. 254, pp. 83–
98, 2013.

[29] R. Jin, W. Chen, and A. Sudjianto, “An efficient algorithm for
constructing optimal design of computer experiments,” Journal
of Statistical Planning and Inference, vol. 134, no. 1, pp. 268–287,
2005.

[30] R. C. Jin, Enhancements of Metamodeling Techniques in Engi-
neering Design, Graduate College, University of Illinois at
Chicago, Chicago, Ill, USA, 2004.

[31] A. Saltelli and J. Marivoet, “Non-parametric statistics in sen-
sitivity analysis for model output: a comparison of selected
techniques,” Reliability Engineering and System Safety, vol. 28,
no. 2, pp. 229–253, 1990.

[32] I. M. Sobol’, “Global sensitivity indices for nonlinearmathemat-
ical models and their Monte Carlo estimates,”Mathematics and
Computers in Simulation, vol. 55, no. 1–3, pp. 271–280, 2001.

[33] E. B. Niven and C. V. Deutsch, “Calculating a robust correlation
coefficient and quantifying its uncertainty,” Computers and
Geosciences, vol. 40, pp. 1–9, 2012.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


