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Considering the characteristics of complex nonlinear and multiple response variables of a super-high dam, kernel partial least
squares (KPLS) method, as a strongly nonlinear multivariate analysis method, is introduced into the field of dam safety monitoring
for the first time. A universal unified optimization algorithm is designed to select the key parameters of the KPLS method and
obtain the optimal kernel partial least squares (OKPLS). Then, OKPLS is used to establish a strongly nonlinear multivariate safety
monitoring model to identify the abnormal behavior of a super-high dam via model multivariate fusion diagnosis. An analysis of
deformation monitoring data of a super-high arch dam was undertaken as a case study. Compared to the multiple linear regression
(MLR), partial least squares (PLS), and KPLS models, the OKPLS model displayed the best fitting accuracy and forecast precision,
and the model multivariate fusion diagnosis reduced the number of false alarms compared to the traditional univariate diagnosis.
Thus, OKPLS is a promising method in the application of super-high dam safety monitoring.

1. Introduction

Currently, 51 super-high dams of heights greater than 200
meters exist worldwide, and another 31 super-high dams
are under construction or are proposed for construction.
These projects provide substantial comprehensive benefits,
including power generation, flood control, and irrigation.
Meanwhile, dam safety significantly influences the security
of personal property and ecological environment in the area
around the dam. Except the direct damage detectionmethods
[1–4], the dam safety monitoring models based on dam
prototype monitoring data can well monitor dam behavior
to ensure dam safety [5]. The models first forecast future
dam response values, and then the predicted values and
the observed values are compared to ascertain whether the
observations are abnormal. Super-high dams have special
structural form, such as huge structure size, numerous struc-
tural joints and holes, and face complex work environments,
such as great hydrostatic pressure and complex geological
conditions. There is strong structure nonlinearity, such as
contact nonlinearity. Meanwhile, effect of dam material

nonlinearity and coupling effect of environmental factors are
both amplified. As a result, the behavior of a super-high
dam shows significant nonlinear characteristics; that is, there
is a complex nonlinear relationship between environmental
variables and response variables of a super-high dam. The
common physical hypothesis, namely, the elastic and linear
behavior of materials and the principle of superposition
of effects, is not valid in super-high dams. The multiple
linear regression (MLR) models [6, 7] based on the above
hypothesis cannot accurately model this complex nonlinear
relationship, and they may not perform well for super-high
dams. In addition, the traditional dam safety monitoring
models are almost always based on a single response variable.
Thesemodels not only are time-consuming to implement but
also easily result in false alarms [8]. Such drawbacks are more
prominent for super-high dams because more monitoring
instruments, including advanced distributed optical fiber,
are installed in super-high dams to fully monitor dam real-
time behavior. Every instrument outputs one or more dam
response variable that reflects the dam behavior. Therefore,
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it is urgent to research strongly nonlinear multivariate safety
monitoring models appropriate for super-high dams.

In recent years, a number of dam safety monitoring
models with strong nonlinear mapping ability were con-
stantly proposed, such as neural network (NN) models [6,
9–12] and support vector regression (SVR) models [13–15].
These nonlinear models could have better fitting accuracy
and forecast precision than MLR models when selecting
the appropriate parameters (NN layers and nodes, SVM
kernel functions, and regularization parameters). However,
it is difficult to select these key parameters. Furthermore,
training NN requires much computing time, and NN easily
falls into local minima. Alternatively, principle component
analysis (PCA), as a type of multivariate statistical data
analysis method, has been applied in dammultivariate safety
monitoring [8, 16–18].The environmental effect component is
first extracted from the multiple response variables by PCA,
and then abnormality is identified by analyzing the extracted
component. PCA can eliminate data noise and redundancy
and reduce false alarms. However, PCA does not consider the
environmental variables influencing dam response variables
when extracting the environmental effect component. The
extracted component may not be the true environmental
effect of dam response variables. Partial least squares (PLS)
method is a better form of the multivariate statistical data
analysismethod thanPCA for processmonitoring and output
prediction [19]. PLS combines multiple linear regression
(MLR) analysis, canonical correlation analysis (CCA), and
PCA. PLS can establish a regression model between multiple
dependent variables and multiple independent variables.
However, PLS is currently mainly used to establish univariate
safety monitoring models to solve the multicollinearity of
environmental variables [13, 20]. Furthermore, PLS is still
essentially a linear regression and cannot accurately obtain
the complex nonlinear relationship between environmental
variables and response variables of a super-high dam.

Kernel partial least squares (KPLS) [21] method is a
new nonlinear PLS used to address nonlinear problems. In
KPLS, the original input data are nonlinearly transformed
into a high-dimensional space via a kernel function, and
then a linear PLS model is created in the high-dimensional
space, so the linear relationship obtained by PLS in the high-
dimensional space corresponds to the nonlinear relationship
in the original input space. KPLS not only retains all of the
advantages of PLS but also has strong nonlinear mapping
ability. Compared to other nonlinear PLS approaches, such as
spline PLS [22], quadratic PLS [23, 24], and neural network
PLS [25, 26], KPLS essentially requires only linear algebra in
high-dimensional space,making it as simple as the linear PLS.
Moreover, KPLS can handle a wide range of nonlinearities by
using different types of kernel functions. In the last decade,
KPLS has been applied for nonlinear multivariate quality
prediction [27, 28] and process monitoring [29, 30].

Similar to NN and SVR, the kernel function and the
number of latent variables in KPLS also have a strong
influence on the KPLS generalization performance [30–32].
The parameter selection of KPLS is simpler than SVR because
the only parameter (beyond choice of kernel) is the number of
latent variables and one needs to only consider a few discrete

values as opposed to the continuous parameters in SVR. The
number of latent variables is selected by the adjusted Word’s
𝑅 criterion [30, 33]. However, the selection of the kernel
function is still an open problem in KPLS [33, 34]. Currently,
the radial basis function of strong local approximation ability
is mostly used as a kernel function, and its kernel parameter
is selected by some formulas [30, 33] or cross-validation
[31, 32].The selectionmethod of the formulas is not of general
applicability and may not be optimal. The selection method
of cross-validationwill involve the number of latent variables.
Similarly, the above selection method of the number of latent
variables also involves the kernel parameters. There is a lack
of an executable unified method to select the kernel function
and the number of latent variables.

In this paper, a universal unified optimization algorithm
is designed to select the KPLS parameters and achieve the
optimal kernel partial least squares (OKPLS). Next, OKPLS
is used to establish a strongly nonlinear multivariate safety
monitoring model to monitor a super-high dam to ensure
its safety. The paper is organized as follows. Section 2.1
introduces the basic principle of KPLS. A universal unified
optimization algorithm for selecting the KPLS parameters
is given in Section 2.2. Section 3.1 introduces the method
of establishing the strongly nonlinear multivariate safety
monitoring model of a super-high dam using OKPLS. A
multivariate fusion diagnosis method of the safety moni-
toring model is presented in Section 3.2. Section 4 offers a
case analysis of radial deformation monitoring data obtained
in the pendulums of a super-high arch dam. The overall
conclusions are given in Section 5.

2. Optimal Kernel Partial Least
Squares (OKPLS)

2.1. KPLS Basic Principle. Consider a system with 𝑚 mea-
sured input variables {𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑚
} plus 𝑝measured output

variables {𝑦
1
, 𝑦
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, . . . , 𝑦

𝑝
}. PLS creates 𝐴 uncorrelated latent

variables {𝑡
1
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, . . . , 𝑡

𝐴
} and {𝑢

1
, 𝑢
2
, . . . , 𝑢

𝐴
} which are linear

combinations of the input and output variables, respec-
tively. The basic principle of the procedure is maximizing
the covariance among the input and output variables. The
objective of PLS is to eliminate data noise and extract the
comprehensive variables that best explain this system. A least
squares regression is then performed on the latent variables,
and then PLS obtains the relationship between the input
and output variables of the system. However, when a system
has strongly nonlinear characteristics, that is, when there
is a complex nonlinear relationship between the input and
output variables of the system, linear PLS is appropriate for
simulating the system. According to Cover’s theorem, the
nonlinear data structure in the input space is more likely to
be linear after a high-dimensional nonlinear mapping. KPLS
is formulated in this high-dimensional space to extend the
linear PLS to its nonlinear kernel form. Hence, KPLS can
simulate the complex nonlinear system as shown in Figure 1.

Assume that 𝑁 measurements of each variable are col-
lectedwhile the system is operating under normal conditions.
The input and output data can be denoted byX

𝑁×𝑚
andY

𝑁×𝑝

in the matrix, respectively. Consider a nonlinear mapping 𝜑
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Figure 1: Simulating complex nonlinear system using KPLS.

from the input variables space R𝑚 into a high-dimensional
space R𝑐 : x

𝑛
∈ R𝑚 → 𝜑(x

𝑛
) ∈ R𝑐. Note that the dimension

𝑐 of the high-dimensional space may be arbitrarily large and
can even be infinite, which ensures strong nonlinearmapping
ability. All input variables {x

𝑛
}
𝑁

𝑛=1
aremapped to be {𝜑(x

𝑛
)}
𝑁

𝑛=1

in the high-dimensional space. These mapped vectors can
be denoted by Φ

𝑁×𝑐
in the matrix. KPLS is equivalent to

constructing a linear PLS regression model between Φ and
Y, which can be expressed as

Y = ΦB + F, (1)

where B is a (𝑐 × 𝑝) matrix of the regression coefficients; F is
a (𝑁 × 𝑝) matrix of residuals.

In KPLS, through the kernel function 𝑘(x
𝑖
, x
𝑗
) (𝑘(x
𝑖
, x
𝑗
) =

⟨𝜑(x
𝑖
), 𝜑(x
𝑗
)⟩), we can avoid both performing explicit non-

linear mappings and computing dot products in the high-
dimensional space. ΦΦ𝑇 represents the kernel Gram matrix
K
𝑁×𝑁

of the cross dot products between all mapped vectors
{𝜑(x
𝑛
)}
𝑁

𝑛=1
. From the matrices K and Y, the modified KPLS

algorithm [30] is shown as follows:

(1) Set 𝑖 = 1, K
1

= K, and Y
1

= Y.
(2) Initialize the score-vector u

𝑖
(𝑁 × 1) of the latent

variable 𝑢
𝑖
of Y
𝑖
, as the maximum-variance column

of Y
𝑖
.

(3) Compute the score-vector t
𝑖
(𝑁 × 1) of the latent
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𝑖
ofΦ
𝑖
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𝑖
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𝑖
u
𝑖
/‖K
𝑖
u
𝑖
‖, ‖t
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(4) Regress the columns of Y
𝑖
on t
𝑖

: c
𝑖

= Y𝑇
𝑖
t
𝑖
, where c

𝑖

is weighting vector.
(5) Calculate the new score-vector: u

𝑖
= Y
𝑖
c
𝑖
/‖Y
𝑖
c‖,

‖u
𝑖
‖ = 1.

(6) Repeat steps (3) to (5) until the convergence of t
𝑖
.

(7) Deflate thematrices:K
𝑖+1

= (I−t
𝑖
t𝑇
𝑖
)K
𝑖
(I−t
𝑖
t𝑇
𝑖
),Y
𝑖+1

=

Y
𝑖
− t
𝑖
t𝑇
𝑖
Y
𝑖
.

(8) Save the data in the matrices: T ← t
𝑖
, U ← u

𝑖
.

(9) Set 𝑖 = 𝑖 + 1, and return to step (2). Stop when 𝑖 > 𝐴,
with 𝐴 being the selected number of latent variables.

Finally, we can obtain the score matrices T = [t
1
, . . . , t

𝐴
]

and U = [u
1
, . . . , u

𝐴
] which are orthogonal by columns. On

this basis, the regression coefficients matrix B in (1) can be
obtained from

B = Φ
𝑇U (T𝑇KU)

−1

T𝑇Y. (2)

The prediction of the output variables is given by

Ŷ = ΦB = KU (T𝑇KU)
−1

T𝑇Y. (3)

For a new observation x of input variables, the output is
estimated by

ŷ = B𝜑 (x) = Y𝑇T [U (T𝑇KU)
−1

]

𝑇

k (x) , (4)

where 𝜑(x) is the mapped vector of the new observation x in
the high-dimensional space. k(x) = [𝑘(x

1
, x), . . . , 𝑘(x

𝑁
, x)]
𝑇

is the vector of kernel functions evaluated in the pairs (x
𝑛
, x)

for 𝑛 = 1, . . . , 𝑁.
Before applying KPLS, mean centering in the high-

dimensional space should be performed.Thismean centering
can be performed by substituting the kernel matrixK and the
kernel vector k(x) with K and k(x), where

K = (I − E)K (I − E) ,

k (x) = (I − E) (k (x) − Ke) ,

(5)

where I is a 𝑁-dimensional identity matrix; E is a 𝑁 × 𝑁

matrix with all its entries equal to 1/𝑁; e is a column vector
with all its entries equal to 1/𝑁.

2.2. Optimization Selection of the KPLS Parameters. There
are two main issues in KPLS: (1) the selection of the
kernel function and its parameters and (2) the selection of
the number of latent variables. Both decisions have strong
influence on KPLS generalization performance.

Any symmetric function satisfying Mercer’s theorem,
such as polynomial kernel, radial basis kernel, and sigmoid
kernel, can be used as a kernel function. For specific applica-
tion and a given set of samples, constructing an appropriate
kernel function is the key to applying the kernel function.
However, an effective method does not exist to construct
such a kernel function. Substantial progress wasmainlymade
in the selection of the kernel parameters. Cross-validation
[35] is a universal method to select model parameters.
The parameters obtained by cross-validation are considered
optimal.

In 𝑘-fold cross-validation, the samples are randomly split
into 𝑘 blocks of the substantially same number of samples.
Assuming some specific parameters, a model is established
based on (𝑘 − 1) blocks of the samples. The excluded block
is used for testing, and an individual predicted error sum
of squares (PRESS) is calculated. This procedure is repeated
by excluding each block, once and only once, and then
the total PRESS is calculated for the specific parameters
by summing the individual PRESS values. The total PRESS
is used to estimate the generalization performance of the
specific parameters. The cross-validation is applied in dif-
ferent parameters. The parameters of the minimum PRESS
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are considered optimal. In fact, cross-validation only gives
an index evaluating the expected risk of one model, for
example, the above-described PRESS. Some optimization
algorithms, such as grid searchingmethod, genetic algorithm,
and particle swarm optimization, must be used to obtain the
optimal kernel parameters.

The number of latent variables is usually selected by
the adjusted Word’s 𝑅 criterion. The adjusted Word’s 𝑅

criterion is also a method based on cross-validation. The
differences from the cross-validation selecting kernel param-
eters are as follows: the evaluation index is not the PRESS
but a new index established based on the PRESS, 𝑅(ℎ) =

PRESS(ℎ)/PRESS(ℎ − 1), where PRESS(ℎ) is the total PRESS
calculated for ℎ latent variables; when the index 𝑅(ℎ) exceeds
a predefined threshold (e.g., 0.9), the optimal number of
latent variables is equal to ℎ − 1. Such treatment can avoid
producing an overfitted model of poor prediction ability due
to the inclusion of an excessive number of latent variables
[36].

The respective selection methods of the kernel param-
eters and the number of latent variables have been given.
Because selecting either one will involve another, a unified
optimization solution similar to that in SVR is the best
approach. However, their evaluation indices are different,
which adds trouble to the unified optimization solution.
Hence, a universal unified optimization algorithm selecting
the KPLS parameters is designed as shown in Figure 2. The
algorithm contains two loops. The outer loop optimizes the
kernel parameters via a genetic algorithm. The inner loop
selects the number 𝐴 of latent variables by the adjusted
Word’s 𝑅 criterion, and the obtained PRESS(𝐴) is used as
the target of the outer optimization. The optimal values of
the kernel parameters and the number of latent variables can
be obtained after the 𝑇

𝑁
optimization iterations, where 𝑇

𝑁

is the predefined number of optimization iterations as the
termination condition. Finally, OKPLS can be obtained when
KPLS parameters are set to the obtained optimal values.

The designed algorithm has the following characteristics:

(1) The algorithm is universal for any kernel function.
(2) In the algorithm, the kernel parameters and the

number of latent variables are selected together and
they are both verified by the cross-validation in the
inner loop.

(3) The two different evaluation indices of KPLS param-
eters are used in the inner loop and the outer loop,
making the kernel parameters and the number of
latent variables both optimal.

(4) The kernel parameters may be any continuous value,
and the number of latent variables may only be a
few discrete values. Moreover, for different kernel
parameters, the kernel Gram matrix Kmust be recal-
culated, which is the largest computational cost in
KPLS. Therefore, the algorithm design of the outer
and inner loops can reduce the computational cost of
selecting the optimal KPLS parameters.

(5) Finally, the algorithm is easy to implement and
execute using a computer.
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Figure 2: Flow chart of the universal unified optimization algorithm
for selecting the KPLS parameters.
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3. Super-High Dam Safety Monitoring
Using OKPLS

For the dam system shown in Figure 3, the environmental
variables that influence the dam system can be considered as
system inputs, generally including hydrostatic pressure (H),
seasonal temperature (T), and time effect (𝜃). As measured
using monitoring instruments installed on the dam, the dam
response variables, for example, deformation, seepage, and
stress, can be considered to be the system outputs. Dam
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safety monitoring is the process of identifying abnormal
dam behavior according to inputs and outputs of the dam
system. When no abnormalities appear on the dam structure
or the monitoring instruments, a relationship exists between
the inputs and outputs of the dam system. Therefore, some
mathematical methods can be used to obtain the determined
relationship according to input and output data without
abnormalities and establish dam safety monitoring models.
Subsequently, the model diagnosis of the dam behavior can
be performed. The models forecast future dam response
values according to the new values of the environmental
variables and identify abnormal dam behavior by comparing
the predicted values and the observed values.

Given that super-high dam is a complex nonlinear system
ofmultiple inputs andmultiple outputs, OKPLS, as a strongly
nonlinear multivariate statistical data analysis method, is
used to perform super-high dam safety monitoring.

3.1. Modeling Based on OKPLS. Establishing dam safety
monitoring models involves obtaining the determined rela-
tionship between the environmental variables and the dam
response variables according to the dam monitoring data
without abnormalities. For a super-high dam, a complex
nonlinear relationship exists between the environmental vari-
ables and the response variables. KPLS obtains the complex
nonlinear relationship by a nonlinear mapping (𝜑), two
linear mappings (𝛼, 𝛽), and a linear regression (𝛾), shown in
Figure 1.Theoriginal environmental variables are nonlinearly
transformed into a high-dimensional space via the nonlinear
mapping 𝜑; next, in the high-dimensional space, the complex
nonlinear relationship is obtained via 𝛼, 𝛽, and 𝛾 in PLS.

The original environmental variables contain noise, and
nonlinear mapping adds some useless, redundant compo-
nents for the response variables. The useful environmental
component t

𝑖
is extracted by the linear mapping 𝛼. Similarly,

the useful response component u
𝑖
regarding the behavior

of a super-high dam is extracted by the linear mapping 𝛽.
Finally the linear regression 𝛾 establishes the relationship
between the useful response component u

𝑖
and the useful

environmental component t
𝑖
. The useful components t

𝑖
and

u
𝑖
are the score-vectors of the latent variables 𝑡

𝑖
and 𝑢

𝑖
,

respectively. Using PLS, these latent variables are jointly
extracted from the environmental variables and the response
variables of a super-high dam. Hence, the obtained useful
environmental and response components can best explain
the behavior of a super-high dam. Furthermore, because
the dam response variables are highly correlated, that is,
they are highly multicollinear, multivariate KPLS might be
advantageous in eliminating data noise and redundancy [21].

OKPLS is the KPLS based on parameter optimization
for practical problems; OKPLS is more likely to obtain the
correct relationship between the environmental variables
and the response variables of a super-high dam. The major
steps of establishing the strongly nonlinearmultivariate safety
monitoring model of a super-high dam based on OKPLS are
as follows.

Step 1. Select multiple response variables that belong to the
same monitoring project, and together reflect a particular

behavior of a super-high dam, such as deformation, seepage,
or stress, as the OKPLS outputs y = {𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑝
}. Their

corresponding measuring point positions are adjacent and
there are strong correlations among the multiple response
variables.

Step 2. Similar to MLR safety monitoring models [6, 7],
according to physical and mechanical analysis, select the
environmental variables influencing the particular behavior
in Step 1 as the OKPLS inputs x = {𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑚
}. They may

be hydrostatic pressure (H), seasonal temperature (T), and
time effect (𝜃).

Step 3. Select a period of normal history monitoring data
{X,Y} of the environmental variables and the response
variables, which vary over the largest possible range; that
is, they should include the monitoring data in extreme
environmental conditions, for example, possible highest or
lowest water reservoir water level and temperature.

Step 4. Select an appropriate type of kernel function 𝑘(x
𝑖
, x
𝑗
)

to generate the kernel Gram matrix K and then select the
optimal values of kernel parameters and the number of latent
variables using the universal unified optimization algorithm
shown in Figure 2.

Step 5. Calculate the matrix B of the regression coefficients
using the modified KPLS algorithm.

Step 6. Calculate the predicted values of the OKPLS model
according to (3) and (4).

3.2. Model Multivariate Fusion Diagnosis. Model diagnosis
of dam behavior involves identifying the abnormal dam
behavior by comparing the observed value and the predicted
value of the safety monitoring model. When abnormalities
appear on the dam structure or the monitoring instruments,
the residual, that is, the deviation between the observed
value and the predicted value, will increase significantly
and exceed certain control limits. Note that the prediction
accuracy of the safety monitoring model is important for
model diagnosis. If the prediction accuracy is poor, then the
residuals will contain a larger model error, which results in
incorrect diagnosis conclusions. According to the principle of
minor probability accident, the observed value is identified as
being normal, almost normal, or abnormal, depending on the
following [5]:

󵄨󵄨󵄨󵄨𝑦𝑖 − 𝑦
𝑖

󵄨󵄨󵄨󵄨 ≤ 2𝑆

󵄨󵄨󵄨󵄨𝑦𝑖 − 𝑦
𝑖

󵄨󵄨󵄨󵄨 ∈ (2𝑆, 3𝑆] ,

no tendency variation in the next 2 or 3 observations
󵄨󵄨󵄨󵄨𝑦𝑖 − 𝑦

𝑖

󵄨󵄨󵄨󵄨 > 3𝑆,

(6)

where𝑦
𝑖
is the 𝑖th observed value;𝑦

𝑖
is the 𝑖th predicted value;

𝑆 is the standard deviation of residuals and is estimated by
[37]

𝑆 = √
1

(𝑁 − 𝑚 − 1)

𝑁

∑

𝑖=1

(𝑦
𝑖
− 𝑦
𝑖
)
2

, (7)
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Figure 4: Monitoring control charts of univariate diagnosis: (a) normal; (b) almost normal; (c) abnormal.

where 𝑁 is the number of the observations used to establish
the models and 𝑚 is the number of environmental variables
used to establish the models. This above-described model
diagnosis method is the traditional univariate diagnosis. The
corresponding monitoring control charts of the diagnosis
method are shown in Figure 4.

The OKPLS model is a multivariate model outputting
multiple response variables. The model provides certain
advantages when performing multivariate fusion diagnosis
by integrating information of multiple response variables.
The multivariate fusion diagnosis can not only decrease the
number of diagnosed variables but also reduce the incorrect
diagnosis conclusions due to incomplete information of indi-
vidual response variable. To perform the multivariate fusion
diagnosis, the key works are constructing a fusion diagnosis
index and determining its control limits. By learning from
the squared prediction error (SPE) in multivariate statistical
process monitoring [29, 30] a fusion diagnosis index FDI is
constructed by

FDI
𝑖
=

1

𝑝

𝑝

∑

𝑗=1

[

[

(𝑦
𝑖𝑗

− 𝑦
𝑖𝑗
)

𝑆
𝑗

]

]

2

, (8)

where FDI
𝑖
is the value of the fusion diagnosis index FDI

for the 𝑖th observation and represents the comprehensive
prediction error of 𝑝 response variables; 𝑝 is the number of
response variables to be diagnosed; 𝑦

𝑖𝑗
is the 𝑖th observed

value of the 𝑗th response variable; 𝑦
𝑖
is the 𝑖th predicted value

of the 𝑗th response variable; 𝑆
𝑗
is the standard deviation of

residuals of 𝑗th response variable. Note that 𝑆
𝑗
is divided by

the standard deviation to eliminate the difference between
residuals of multiple response variables, and these response
variables will be treated equally in the fusion diagnosis.

In dam safety monitoring, global structure damage and
serious local structure damage are the focuses. According to
(8), only when these types of damages appear on the dam,
the fusion diagnosis index FDI will increase significantly and
exceed certain control limits. Single monitoring instrument
malfunctions and slight local structure damage do not usually
greatly increase the FDI; thus they will not be identified as
being abnormal. In contrast, all of these above-described
abnormalities may be identified as being abnormal in the
traditional univariate diagnosis, which will greatly increase
the subsequent abnormal analysis.

According to (8), the fusion diagnosis index FDI is always
positive and does not meet a normal distribution. As a result,
a diagnosismethod such as (6) is not applicable. Additionally,
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Figure 5: Monitoring control charts of multivariate fusion diagnosis: (a) normal; (b) almost normal; (c) abnormal.

according to the principle of minor probability accident, the
FDI probability distribution is first estimated, and then some
control limits are set based on the probability distribution.
Finally, the dam behavior is diagnosed by these certain
control limits. Because the type of the FDI probability dis-
tribution is unknown, the kernel density estimation method
[38] is used to estimate the FDI probability distribution in this
paper. Similar to (6), two control limits (UCL1 and UCL2)
are set, and the probabilities of occurrence below them are
95.44% and 99.74%, respectively, which correspond to two
and three times, respectively, of the standard deviation of the
normal distribution. Hence, the fusion diagnosis index FDI
is identified as being normal, almost normal, or abnormal,
depending on the following:

FDI ≤ UCL1

FDI ∈ (UCL1,UCL2] ,

no tendency variation in the next 2 or 3 observations

FDI > UCL2.

(9)

The corresponding monitoring control charts are shown in
Figure 5.When the fusion diagnosis index FDI is identified as
being abnormal, great attention should be given. Every dam
response variable should be further analyzed by the output
results of the model to find the reason for the abnormality
and then an alarm is issued.

Through the above analysis, super-high dam safety mon-
itoring using OKPLS is the first to establish a strongly
nonlinear multivariate safety monitoring model based on
OKPLS, followed by performing model multivariate fusion

diagnosis to identify the abnormal behavior of a super-high
dam. The overall flow chart is shown in Figure 6.

4. Case Study

One super-high arch dam is a double curvature arch dam
with a maximum height of 294.5m. As shown in Figure 7,
the crest elevation of the dam is 1245m and its crest length
is 901.771m. The dam is composed of 43 dam sections and a
thrust pier. The crest width and bottom width of its crown
cantilever (the twenty-second dam section) are 12m and
72.912m, respectively. There are 5 crest overflow surface
holes, 6 flood discharge middle holes, 2 escape bottom holes,
4 diversion middle holes, and 2 diversion bottom holes in
the dam body. The normal water level of the dam is 1240m
with a corresponding storage capacity of 149.14 billionm3.
In dam foundation, as shown in Figure 8, there is one II-
grade fault (more than 1000m length, 18∼37m width), 19
III-grade faults (100∼1000m length, 0.5∼4m width), many
IV-grade faults (10∼100m length, 0.1∼0.5m width), and 5
large alteration zones. In total, 9406 monitoring points are
arranged in the dam to fully monitor the dam behavior such
as deformation, seepage, and stress. Among these points, 52
pendulum monitoring points are used to monitor the hori-
zontal deformation of the dam body and the dam foundation,
as shown in Figure 7. The radial displacements obtained by
the pendulums in the central block of the dam were used to
validate the super-high dam safety monitoring using OKPLS
in this paper. The pendulums contain one inverted and five
hanging pendulummonitoring points, which are at elevations
963.00m (denoted 𝑦

0
), 1010.00m (denoted 𝑦

1
), 1065.00m
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Figure 6: Flow chart of super-high dam safety monitoring using OKPLS.
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Figure 7: Super-high arch dam structure and the layout of the pendulum monitoring points.

(denoted𝑦
2
), 1100.00m (denoted𝑦

3
), 1173.70m (denoted𝑦

4
),

and 1245.00m (denoted 𝑦
5
).

In total, 764 monitoring data samples were obtained by
the pendulums from July 1, 2010, to December 31, 2012,
as shown in Figure 9. The former 750 samples are used as
training samples to establish the model and estimate the
probability distribution of the fusion diagnosis index FDI.
The latter 14 samples are used as test samples to verify
the model forecast performance and the multivariate fusion
diagnosis method. Note that these samples are obtained in
normal operation and that no abnormal occurrences exist.
The sign (−) indicates radial displacements upstream and the

sign (+) indicates radial displacements downstream. During
the same period, the observed values of the reservoir water
level are also shown in Figure 9.

4.1. Modeling. Based on physical and mechanical analysis,
the environmental factors influencing the radial deforma-
tion of the arch dam contain hydrostatic pressure terms
H, seasonal temperature terms T, and time effect terms
𝜃 [5]. The hydrostatic pressure terms H are the effect of
hydrostatic thrust on the dam: H = {ℎ

1
, ℎ
2
, ℎ
3
, ℎ
4
}, where

ℎ = 𝐻 − 950.50, 𝐻 is the reservoir water level, and 950.50
is the value of the elevation at the bottom of the arch
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dam. The seasonal temperature terms T are the effect of
seasonal concrete temperature variations which are mainly
influenced by air temperature during running stage. The
effect of seasonal temperature can be represented by periodic
harmonic: T = {sin(2𝜋𝑡/365), cos(2𝜋𝑡/365)}, where 𝑡 is the
number of days since the beginning of the analysis. The time
effect terms 𝜃 are the effect of concrete creep of the dam
body, rock creep of the dam foundation, and some irreversible
deformation, such as concrete and rock plastic and creep
deformations, concrete autogenous volume deformation, and
cracking deformation. This type of time effect deformation
occurs rapidly at the period of the first or initial impounding,
and it tends to be stationary over time, so it can be represented
by a combination of a polynomial function and a logarithm
function: 𝜃 = {𝜃, ln(𝜃 + 1)}, where 𝜃 = 𝑡/100.

In this paper, the radial basis function, 𝑘(𝑥
𝑖
, 𝑥
𝑗
) =

exp(‖𝑥
𝑖
− 𝑥
𝑗
‖
2
/𝑤), was selected as the kernel function of the

OKPLS. The kernel parameter 𝑤 and the number 𝐴 of latent
variables were selected by the universal unified optimization
algorithm shown in Figure 2. To save computing time, the

Table 1: Parameter setting of genetic algorithm.

Parameters Value
Range of the kernel parameter 𝑤 [0.125, 32]
Population size 15
Coding length 8
Crossover probability 0.05
Mutation probability 0.8
Termination iteration number 10
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Figure 10: Evolutionary process of the optimal fitness value.

10-fold cross-validation was used in the inner loop. The
parameter setting of the genetic algorithm in the outer loop
is given in Table 1. Among these parameters, the range of
the kernel parameter 𝑤 was a symmetrical expansion of
the parameter value selected by the formula in [30]. The
evolutionary process of the optimal fitness value is shown
in Figure 10. After four iterations, the optimal fitness value
achieves convergence. The optimal values of the kernel
parameters and the number of latent variables were finally
selected to be 3.5 and 22, respectively.

To verify the fitting and forecast performance of the
OKPLS model, six independent MLR models, a PLS model,
and a KPLS model for the six radial displacements were
established based on the same environmental variables. The
kernel function of the KPLS model was also the radial basis
function and its kernel parameter was directly calculated by
the formula in [30]. The number of latent variables in the
KPLS model was selected by the adjusted Word’s 𝑅 criterion.
In this paper, the mean square error (MSE) was used to
compare the fitting and forecast performance of the above-
described four models. The MSE is calculated by

MSE =
1

𝑛

𝑛

∑

𝑖=1

(𝑦
𝑖
− 𝑦
𝑖
)
2

, (10)

where 𝑛 is the number of training samples or test samples;
𝑦
𝑖
is the 𝑖th observed value; 𝑦

𝑖
is the 𝑖th model fitting value

or forecast value. The comparative results are presented in
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Figure 11: (a) Fitting and (b) forecast MSE of the MLR, PLS, KPLS, and OKPLS models.

Table 2: Mean square error of the MLR, PLS, KPLS, and OKPLS models.

Monitoring point 𝑦
0

𝑦
1

𝑦
2

𝑦
3

𝑦
4

𝑦
5

Average

MLR Fitting 0.008 0.109 0.533 0.686 0.794 1.547 0.613
Forecast 0.293 2.558 1.886 2.535 2.908 7.320 2.917

PLS Fitting 0.020 0.212 0.992 0.926 1.063 2.264 0.913
Forecast 0.051 0.631 0.363 1.050 0.922 5.563 1.430

KPLS Fitting 0.003 0.053 0.162 0.318 0.361 0.564 0.244
Forecast 0.075 1.225 1.514 0.759 1.032 1.465 1.011

OKPLS Fitting 0.002 0.014 0.077 0.064 0.086 0.202 0.074
Forecast 0.020 0.010 0.212 0.261 0.009 0.027 0.090

Figure 11 and Table 2. By careful comparative analysis, we can
find the following consequences:

(1) Compared to MLR, PLS shows a better forecast
performance for all radial displacements, with a lower
average MSE of 1.430; however, PLS exhibits a worse
fitting performance for all radial displacements, with
a higher average MSE of 0.913. This behavior may be
explained for two reasons. One reason is that MLR
produces spurious regression due to multicollinearity
of the four hydrostatic pressure terms (the minimum
value of their correlation coefficients is 0.9926). The
other reason is that the six radial displacements are
highly correlated (the ratio between the first and sixth
eigenvalues of the covariance matrix of the six radial
displacements equals 89804), and PLS well utilizes
their relevant information to eliminate noise and
accurately grasp the dam overall behavior.

(2) KPLS shows a better fitting performance for all radial
displacements versus MLR and PLS, with a lower
average MSE of 0.244; except for the displacements
𝑦
3
and 𝑦

5
, the forecast performance of KPLS is worse

than PLS. This result may be because the selected

parameters of KPLS are not appropriate and KPLS
does not obtain the correct relationship between the
environmental variables and the radial displacements
as is the case of MLR.

(3) Among the four models, OKPLS exhibits the best
fitting and forecast performance for all radial dis-
placements, and its averages of fitting and forecast
MSE are both the lowest, with values of 0.074 and
0.090, respectively. The good performance of OKPLS
may be attributed to two aspects. First, OKPLS
inherits the advantages of PLS. PLS not only solves
the multicollinearity of environmental variables, but
also well utilizes relevant information of the six radial
displacements. Second, using the kernel function,
OKPLS has ability to obtain the complex nonlinear
relationship between the environmental variables and
the radial displacements. Furthermore, the optimiza-
tion selection of the kernel parameters and the num-
ber of latent variables ensure that OKPLS correctly
obtains the complex nonlinear relationship.

4.2. Fusion Diagnosis. To diagnose the radial displacements
of the super-high arch dam using the multivariate fusion
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diagnosis method, the fusion diagnosis index FDI was first
calculated according to (8). Through the function ksdensity
(a kernel density estimation function) in MATLAB, the FDI
probability distribution was estimated based on the FDI of
the training samples, as shown in Figure 12. The two control
limits (UCL1 and UCL2) were obtained from Figure 12, with
values of 5.0 and 15.5, respectively. On this basis, the radial
displacements in the test period were diagnosed according
to (9). The multivariate fusion diagnosis results are shown in
Figure 13. Figure 13 shows that no abnormal occurrence was
observed, which is consistent with the real situation.

The radial displacements of every elevation were also
diagnosed according to (6). The results are shown in
Figure 14. Most observed values of these displacements are
identified to be normal. However, some late observed values
of the radial displacements 𝑦

0
and 𝑦

3
at elevations 963.00m

and 1100.00m, respectively, are misdiagnosed as abnormal.
These false abnormalities may be due to the decreased
forecast precision of the model. The phenomenon was also
reflected when increasing the FDI.

The super-high arch dam considered is in the early stages
of its operation and its behavior is undergoing constant
adjustment. Over time, the forecast precision of the model
will decline. From Figure 14, we can speculate that there may
be behavior adjustments in dam foundation (𝑦

0
) and middle

elevations (𝑦
3
) of the super-high arch dam. Overall, these

adjustments are local and slight, and the super-high arch
dam remains in normal operation. Hence, the multivariate
fusion diagnosis method provides the correct diagnosis and
reduces false alarms. The good performance of the method
may be attributed to information integration of multiple
response variables.The information integration enhances the
immunity to local false abnormalities.

5. Conclusions

With the ongoing construction of super-high dams, the secu-
rity issue of such dams is becoming increasingly prominent. A
super-high dam has the characteristics of complex nonlinear
and multiple response variables. Traditional linear and uni-
variate safety monitoring models have become appropriate
for monitoring a super-high dam. Recently proposed safety
monitoring models of complex nonlinear or multivariate
analysis functions also contain a few deficiencies. More-
over, they cannot simultaneously meet the requirements of
complex nonlinear and multivariate analysis of a super-high
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Figure 13: Multivariate fusion diagnosis of radial displacements in
the test period.

dam. Therefore, in this paper, KPLS, as a strong nonlinear
multivariate analysis method, was first introduced into the
field of dam safety monitoring. Because the kernel function
and the number of latent variables in KPLS have strong
influence on KPLS generalization performance, the universal
unified optimization algorithm is designed to select the
KPLS parameters and obtain the optimal kernel partial
least squares. Next, OKPLS is used to establish a strongly
nonlinear multivariate safety monitoring model to identify
the abnormal behavior of a super-high dam by the proposed
multivariate fusion diagnosis.

OKPLS cannot only solve the multicollinearity of envi-
ronmental variables but also well utilizes relevant informa-
tion of multiple response variables to eliminate noise and
accurately grasp dam overall behavior. OKPLS also has the
ability to obtain the complex nonlinear relationship between
the environmental variables and the response variables of a
super-high dam. Meanwhile, the designed universal unified
optimization algorithm may ensure that OKPLS correctly
obtains the complex nonlinear relationship. In addition,
the proposed multivariate fusion diagnosis method well
utilizes multiple output results of the OKPLS model. The
proposed method can achieve information integration of
multiple response variables by the fusion index FDI, thereby
improving the diagnosis efficiency and accuracy.

The application example shows the following: compared
to the MLR, PLS, and KPLS models, the average fitting and
forecast precisions of the OKPLS model are the highest; the
multivariate fusion diagnosis of the OKPLS model reduces
the number of false alarms compared to the traditional
univariate diagnosis. In this paper, we only use an analysis
of deformation monitoring data of a super-high arch dam
as a case study. The proposed methodology, that is, safety
monitoring of a super-high dam using optimal kernel partial
least squares, including the safety monitoring model (predic-
tion model) and the fusion diagnosis method, applies to all
physical data of super-high dams, for example, deformation,
seepage, and stress. Thus, OKPLS is appropriate for using in
safety monitoring of a super-high dam.
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