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An instrumental matrix approach to design output feedback passive controller for switched singular systems is proposed in
this paper. The nonlinear inequality condition including Lyapunov inverse matrix and controller gain matrix is decoupled by
introducing additional instrumental matrix variable. Combined withmultiple Lyapunov functionmethod, the nonlinear inequality
is transformed into linear matrix inequality (LMI). An LMI condition is presented for switched singular system to be stable
and passive via static output feedback under designed switching signal. Moreover, the conditions proposed do not require the
decomposition of Lyapunov matrix and its inverse matrix or fixing to a special structure. The theoretical results are verified by
means of an example. The method introduced in the paper can be effectively extended to a single singular system and normal
switched system.

1. Introduction

The switched singular systems arise from, for instance,
power systems, economic systems, and complex networks.
As pointed out in [1], when the interrelationships among
different industrial sectors are described and the capital
and the demand are variable depending on seasons, the
dynamic economic systems are modelled as periodically
switched singular systems. In some complex hybrid networks,
some algebraic constraints have to be considered. The spe-
cial algebraic constraints that, for example, communication
resources are always limited and required to be allocated to
different levels of privileged users, are needed in the resource
allocation process. Thus, constructing the network model
with a set of constraints is reasonable and indispensable.
The model can be denoted by a class of singular hybrid
systems [2]. There has been increasing interest in analysis
and synthesis for switched singular systems. The stability
issues are discussed for continuous-time switched singular
systems [3], discrete-time switched singular systems [4],

linear switched singular systems [5, 6], nonlinear switched
singular systems [7], and time-delay switched singular sys-
tems [8], respectively. In [9, 10], reachability conditions and
admissibility criteria are presented, respectively. Reference
[11] studies the initial instantaneous jumps at switching
points and a sufficient stability condition is obtained for
the switched singular system with both stable and unstable
subsystems. At arbitrary switching instant, inconsistent state
jump for switched singular systems can be compressed by
hybrid impulsive controllers in [12]. Filters and observers are
designed for switched singular systems in [13, 14] and [15],
respectively.

It has been shown that passivity is a suitable design
approach in power systems [16], neural networks [17], net-
work control [18–20], signal processing [21, 22], Markovian
jumping systems [23–25], switched systems [26, 27], and sin-
gular systems [28, 29]. In [16], the problem of passive control
is considered for uncertain singular time-delay systems, and
three types of controllers were designed, namely, state feed-
back controller, observer-based state feedback controller, and
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dynamic output feedback controller. Under these controllers,
the closed-loop systems are quadratically stable and passive.
Contingent failures are possible for a real system, which
may cause performance of the system to be degraded and
even hazard [30].The work [17] applies passivity-based fault-
tolerant synchronization control to chaotic neural networks
against actuator faults by using the semi-Markov jumpmodel
approach. The work [27] investigates the problem of robust
reliable passive control for a class of uncertain stochastic
switched time-delay systems with actuator failures. Sufficient
condition for the stochastic switched time-delay systems to
be passive and exponentially stable under switching state
feedback controller is derived. The work [29] designs a state
feedback controller such that, for all possible actuator failures,
the closed-loop singular system is exponentially stable and
passive.

Up to now, little attention has been paid to passive control
problem for switched singular systems. This motivates us to
investigate this problem. Furthermore, considering the oper-
ational cost and the reliability of systems and the simplicity
of implementation, output feedback is always adopted to
stabilize a system.Thus, we study passive control of switched
singular systems through output feedback.

In this paper, by introducing instrumental matrix vari-
able, the nonlinear inequality including Lyapunov inverse
matrix and controller gain matrix is decoupled, which
makes the design of output feedback passive controllers
for continuous-time switched singular systems easy. Based
on multiple Lyapunov functions and variable substitution
techniques, a new and simple sufficient condition is presented
in terms of LMI, by solving which static output feedback
passive controller can be designed. The novelty of the con-
ditions proposed in this paper lies in the following aspect.
Decomposition of Lyapunov matrix and its inverse matrix is
not required. Moreover, the Lyapunov inverse matrix is not
fixed to a special structure.

The rest of this paper is organized as follows. Problem
statement and preliminaries are given in Section 2. Output
feedback passive control is studied in Section 3. In Section 4,
an example shows the efficiency of main results in the paper.
Section 5 concludes this paper.

2. Problem Statement and Preliminaries

Consider the following switched singular system:

𝐸
𝑐𝑖
�̇� (𝑡) = 𝐴

𝑐𝑖
𝑥 (𝑡) + 𝐵

𝑐𝑖
𝑢 (𝑡) + 𝐺

𝑐𝑖
𝜔 (𝑡)

𝑧 (𝑡) = 𝐻
𝑐𝑖
𝑥 (𝑡) + 𝐷

𝑐𝑖
𝜔 (𝑡)

𝑦 (𝑡) = 𝐶
𝑐𝑖
𝑥 (𝑡) ,

(1)

where 𝑖 ∈ 𝜒 = {1, 2, . . . , 𝑚} is the switching signal. 𝑥(𝑡) ∈ 𝑅
𝑛

is the state vector, 𝑢(𝑡) ∈ 𝑅
𝑚 is the control input vector,

𝜔(𝑡) ∈ 𝐿
𝑟

2
[0,∞) is the external disturbance vector, 𝑧(𝑡) ∈

𝑅
𝑟 is the control input vector, and 𝑦(𝑡) ∈ 𝑅

𝑝 is the mea-
sured controlled output vector. 𝐸

𝑐𝑖
, 𝐴
𝑐𝑖
, 𝐵
𝑐𝑖
, 𝐶
𝑐𝑖
, 𝐷
𝑐𝑖
, 𝐺
𝑐𝑖
, 𝐻
𝑐𝑖

are constant matrices with appropriate dimensions. 𝐸
𝑐𝑖

∈

𝑅
𝑛×𝑛 and rank 𝐸

𝑐𝑖
= 𝑟
𝑖
≤ 𝑛. Without loss of generality, we

assume that 𝐶
𝑐𝑖
is full row rank.

Let us consider the following static output feedback
controller:

𝑢 (𝑡) = 𝐾
𝑖
𝑦 (𝑡) , (2)

where𝐾
𝑖
is the controller gain matrix to be designed.

Then, the resulting closed-loop system can be described
as

𝐸
𝑐𝑖
�̇� (𝑡) = (𝐴

𝑐𝑖
+ 𝐵
𝑐𝑖
𝐾
𝑖
𝐶
𝑐𝑖
) 𝑥 (𝑡) + 𝐺

𝑐𝑖
𝜔 (𝑡)

𝑧 (𝑡) = 𝐻
𝑐𝑖
𝑥 (𝑡) + 𝐷

𝑐𝑖
𝜔 (𝑡)

𝑦 (𝑡) = 𝐶
𝑐𝑖
𝑥 (𝑡) .

(3)

We are now considering the output feedback passive
control problem for system (3). In this paper, we aim to
design output feedback passive controller such that system (3)
simultaneously satisfies the following two requirements.

(i) System (3) with 𝜔(𝑡) = 0 is stable.

(ii) For a give scalar 𝜂 > 0, the dissipation inequality

∫

𝑇

0

(𝜔
𝑇

𝑧 − 𝜂𝜔
𝑇

𝜔) 𝑑𝑡 ≥ 0, ∀𝑇 > 0, (4)

holds for all trajectories with zero initial condition. In this
case, the closed-loop switched singular system (3) is said to
be stable and passive with dissipation rate 𝜂.

To obtain the main results of this paper, the following
transformation is introduced.

Since 𝐶
𝑐𝑖

is full row rank, there exists a nonsingular
matrix𝑇

𝑖
such that𝐶

𝑐𝑖
𝑇
−1

𝑖
= [𝐼
𝑝

0]. Using the nonsingular𝑇
𝑖

as a similarity transformation for system (3), the closed-loop
system (3) is equivalent to the following system:

𝐸
𝑖
�̇� (𝑡) = 𝐴

𝑖
𝑥 (𝑡) + 𝐺

𝑖
𝜔 (𝑡)

𝑧 (𝑡) = 𝐻
𝑖
𝑥 (𝑡) + 𝐷

𝑖
𝜔 (𝑡)

𝑦 (𝑡) = 𝐶
𝑖
𝑥 (𝑡) ,

(5)

where 𝐸
𝑖

= 𝑇
𝑖
𝐸
𝑐𝑖
𝑇
−1

𝑖
, 𝐴
𝑖

= 𝑇
𝑖
𝐴
𝑐𝑖
𝑇
−1

𝑖
, 𝐵
𝑖

= 𝑇
𝑖
𝐵
𝑐𝑖
, 𝐶
𝑖

=

𝐶
𝑐𝑖
𝑇
−1

𝑖
= [𝐼
𝑝

0], 𝐺
𝑖
= 𝑇
𝑖
𝐺
𝑐𝑖
, 𝐻
𝑖
= 𝐻
𝑐𝑖
𝑇
−1

𝑖
, 𝐷
𝑖
= 𝐷
𝑐𝑖
, and

𝐴
𝑖
= 𝐴
𝑖
+ 𝐵
𝑖
𝐾
𝑖
𝐶
𝑖
.

3. Output Feedback Passive Control

The following theorem provides a sufficient condition under
which system (5) is stable and passive with dissipation rate 𝜂.

Theorem 1. If there exist simultaneously nonnegative real
number 𝛽

𝑖𝑗
, 𝜂 and matrices 𝑋

𝑖
> 0, 𝑋

𝑗
> 0 and matrices 𝐾

𝑖

such that for any 𝑖, 𝑗 ∈ 𝜒, 𝑖 ̸= 𝑗,

𝑋
𝑇

𝑖
𝐸
𝑇

𝑖
= 𝐸
𝑖
𝑋
𝑖
≥ 0 (6)
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and inequality

[
[

[

𝑋
𝑇

𝑖
𝐴
𝑇

𝑖
+ 𝐴
𝑖
𝑋
𝑖
+

𝑚

∑

𝑗=1

𝛽
𝑖𝑗
(𝐸
𝑇

𝑖
𝑋
𝑖
− 𝐸
𝑇

𝑗
𝑋
𝑗
) 𝐺

𝑖
− 𝑋
𝑇

𝑖
𝐻
𝑇

𝑖

𝐺
𝑇

𝑖
− 𝐻
𝑖
𝑋
𝑖

2𝜂𝐼 − 𝐷
𝑖
− 𝐷
𝑇

𝑖

]
]

]

< 0

(7)

hold, system (5) is stable and passive with dissipation rate 𝜂

under static output feedback 𝑢(𝑡) = 𝐾
𝑖
𝑦(𝑡) via switching signal

𝑖 = argmax {𝑥𝑇 (𝑡) 𝐸𝑇
𝑖
𝑋
𝑖
𝑥 (𝑡) , 𝑖 ∈ 𝜒} . (8)

Proof. When 𝛽
𝑖𝑗
is simultaneously nonnegative, for 𝑥 ∈

𝑅
𝑛

/{𝑥 | ∏
𝑚

𝑖=1
𝐸
𝑖
𝑥 = 0}, there must exist a 𝑖 ∈ 𝜒 = {1, . . . , 𝑚},

such that for any 𝑗 ̸= 𝑖, 𝑗 ∈ 𝜒, 𝑥𝑇(𝐸𝑇
𝑖
𝑋
𝑖
− 𝐸
𝑇

𝑗
𝑋
𝑗
)𝑥 ≥ 0 holds.

Then ∑
𝑚

𝑗=1
𝑥
𝑇

(𝐸
𝑇

𝑖
𝑋
𝑖
− 𝐸
𝑇

𝑗
𝑋
𝑗
)𝑥 ≥ 0 holds. Let

Ω
𝑖
= {𝑥 ∈ 𝑅

𝑛

| 𝑥
𝑇

(𝐸
𝑇

𝑖
𝑋
𝑖
− 𝐸
𝑇

𝑗
𝑋
𝑗
) 𝑥 ≥ 0,

𝑚

∏

𝑖=1

𝐸
𝑖
𝑥 ̸= 0, 𝑗 ̸= 𝑖, 𝑗 ∈ 𝜒} .

(9)

Clearly,⋃𝑚
𝑖=1

Ω
𝑖
= 𝑅
𝑛

/{𝑥 | ∏
𝑚

𝑖=1
𝐸
𝑖
𝑥 = 0}.

Construct Ω
1

= Ω
1
, . . . , Ω

𝑖
= Ω
𝑖
− ⋃
𝑖−1

𝑗=1
Ω
𝑗
, . . . , Ω

𝑚
=

Ω
𝑚
− ⋃
𝑚−1

𝑗=1
Ω
𝑗
. Obviously, ⋃𝑚

𝑖=1
Ω
𝑖
= 𝑅
𝑛

/{𝑥 | ∏
𝑚

𝑖=1
𝐸
𝑖
𝑥 = 0}

andΩ
𝑖
⋂Ω
𝑗
= 𝜙, 𝑖 ̸= 𝑗, hold.

Design switching signal as

𝑖 = argmax {𝑥𝑇 (𝑡) 𝐸𝑇
𝑖
𝑋
𝑖
𝑥 (𝑡) , 𝑖 ∈ 𝜒} . (10)

When 𝑥 ∈ Ω
𝑖
, choose Lyapunov function as

𝑉 (𝑥 (𝑡)) = 𝑥
𝑇

(𝑡) 𝐸
𝑇

𝑖
𝑋
−1

𝑖
𝑥 (𝑡) . (11)

Premultiplying 𝑋
−𝑇

𝑖
and postmultiplying 𝑋

−1

𝑖
to 𝑋
𝑇

𝑖
𝐸
𝑇

𝑖
=

𝐸
𝑖
𝑋
𝑖
in (6), respectively, one gets 𝐸

𝑇

𝑖
𝑋
−1

𝑖
= 𝑋
−𝑇

𝑖
𝐸
𝑖
. Then,

the derivation of Lyapunov function𝑉(𝑥(𝑡)) along the closed-
loop system (5) is

�̇� (𝑥 (𝑡)) = �̇�
𝑇

(𝑡) 𝐸
𝑇

𝑖
𝑋
−1

𝑖
𝑥 (𝑡) + 𝑥

𝑇

(𝑡) 𝐸
𝑇

𝑖
𝑋
−1

𝑖
�̇� (𝑡)

= [𝐴
𝑖
𝑥 (𝑡) + 𝐺

𝑖
𝜔 (𝑡)]

𝑇

𝑋
−1

𝑖
𝑥 (𝑡)

+ 𝑥
𝑇

(𝑡) 𝑋
−𝑇

𝑖
[𝐴
𝑖
𝑥 (𝑡) + 𝐺

𝑖
𝜔 (𝑡)] .

(12)

Therefore

�̇� (𝑥 (𝑡)) − 2𝜔
𝑇

(𝑡) 𝑧 (𝑡) + 2𝜂𝜔
𝑇

(𝑡) 𝜔 (𝑡)

= [𝐴
𝑖
𝑥 (𝑡) + 𝐺

𝑖
𝜔 (𝑡)]

𝑇

𝑋
−1

𝑖
𝑥 (𝑡)

+ 𝑥
𝑇

(𝑡) 𝑋
−𝑇

𝑖
[𝐴
𝑖
𝑥 (𝑡) + 𝐺

𝑖
𝜔 (𝑡)]

− 2𝜔
𝑇

(𝑡) [𝐻
𝑖
𝑥 (𝑡) + 𝐷

𝑖
𝜔 (𝑡)] + 2𝜂𝜔

𝑇

(𝑡) 𝜔 (𝑡)

= [

𝑥(𝑡)

𝜔(𝑡)
]

𝑇

[

[

𝐴
𝑇

𝑖
𝑋
−1

𝑖
+ 𝑋
−𝑇

𝑖
𝐴
𝑖

𝑋
−𝑇

𝑖
𝐺
𝑖
− 𝐻
𝑇

𝑖

𝐺
𝑇

𝑖
𝑋
−1

𝑖
− 𝐻
𝑖

2𝜂𝐼 − 𝐷
𝑖
− 𝐷
𝑇

𝑖

]

]

[

𝑥 (𝑡)

𝜔 (𝑡)
]

= 𝜁
𝑇

(𝑡) Ξ
𝑖
𝜁 (𝑡) ,

(13)

where 𝜁(𝑡) = [
𝑥(𝑡)

𝜔(𝑡)
], Ξ
𝑖

= [
𝐴

𝑇

𝑖
𝑋
−1

𝑖
+𝑋
−𝑇

𝑖
𝐴𝑖 𝑋

−𝑇

𝑖
𝐺𝑖−𝐻

𝑇

𝑖

𝐺
𝑇

𝑖
𝑋
−1

𝑖
−𝐻𝑖 2𝜂𝐼−𝐷𝑖−𝐷

𝑇

𝑖

]. Pre-

and postmultiplying Ξ
𝑖
by [𝑋𝑇𝑖 0
0 𝐼

] and [
𝑋𝑖 0

0 𝐼
], respectively, we

obtain

[
𝑋
𝑇

𝑖
0

0 𝐼

]Ξ
𝑖
[

𝑋
𝑖
0

0 𝐼
] = Φ

𝑖
, (14)

whereΦ
𝑖
= [
𝑋
𝑇

𝑖
𝐴

𝑇

𝑖
+𝐴𝑖𝑋𝑖 𝐺𝑖−𝑋

𝑇

𝑖
𝐻
𝑇

𝑖

𝐺
𝑇

𝑖
−𝐻𝑖𝑋𝑖 2𝜂𝐼−𝐷𝑖−𝐷

𝑇

𝑖

]. Then, Ξ
𝑖
< 0 is equivalent

to Φ
𝑖
< 0. Next, we prove thatΦ

𝑖
< 0 holds.

Suppose that (7) holds. Inequality (7) can be rewritten as

Φ
𝑖
+
[
[

[

𝑚

∑

𝑗=1

𝛽
𝑖𝑗
(𝐸
𝑇

𝑖
𝑋
𝑖
− 𝐸
𝑇

𝑗
𝑋
𝑗
) 0

0 0

]
]

]

< 0. (15)

According to switching signal (8), Φ
𝑖
< 0 when (15) holds,

and by (13), we get that the following inequality holds:

�̇� (𝑥 (𝑡)) − 2𝜔
𝑇

(𝑡) 𝑧 (𝑡) + 2𝜂𝜔
𝑇

(𝑡) 𝜔 (𝑡) ≤ 0. (16)

Taking the integral on the two sides of (16) from 0 to 𝑇, we
obtain

∫

𝑇

0

[�̇� (𝑥 (𝑡)) − 2𝜔
𝑇

(𝑡) 𝑧 (𝑡) + 2𝜂𝜔
𝑇

(𝑡) 𝜔 (𝑡)] 𝑑𝑡 ≤ 0. (17)

To get the result, we introduce

𝑆 (𝑇) = ∫

𝑇

0

[−2𝜔
𝑇

(𝑡) 𝑧 (𝑡) + 2𝜂𝜔
𝑇

(𝑡) 𝜔 (𝑡)] 𝑑𝑡, (18)

where 𝑇 > 0. Noting the zero initial condition, it can be
shown that, for any 𝑇 > 0,

𝑆 (𝑇) ≤ ∫

𝑇

0

[�̇� (𝑥 (𝑡)) − 2𝜔
𝑇

(𝑡) 𝑧 (𝑡) + 2𝜂𝜔
𝑇

(𝑡) 𝜔 (𝑡)] 𝑑𝑡.

(19)
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It follows from (19) that 𝑆(𝑇) ≤ 0, and hence

∫

𝑇

0

[−2𝜔
𝑇

(𝑡) 𝑧 (𝑡) + 2𝜂𝜔
𝑇

(𝑡) 𝜔 (𝑡)] 𝑑𝑡 ≤ 0 (20)

is satisfied for any 𝑇 > 0. The system is passive with
dissipation 𝜂.

Next, we prove the stability of system (5) with 𝜔(𝑡) = 0.
Following the similar procedures as used above, we have

�̇� (𝑥 (𝑡)) = 𝑥
𝑇

(𝑡) (𝐴
𝑇

𝑖
𝑋
−1

𝑖
+ 𝑋
−𝑇

𝑖
𝐴
𝑖
) 𝑥 (𝑡) . (21)

Note that (7) implies𝐴𝑇
𝑖
𝑋
−1

𝑖
+𝑋
−𝑇

𝑖
𝐴
𝑖
< 0. Therefore, we have

�̇�(𝑥(𝑡)) < 0 when (7) holds. According to Lyapunov theory,
system (5) is stable. This completes the proof.

Condition (7) inTheorem 1 is not linearmatrix inequality,
which cannot be solved by MATLAB.The controller gains𝐾

𝑖

are also difficult to be computed from these conditions. In
order to solve output feedback passive controller, we induce
the following important lemma.

Lemma 2. For any 𝑖, 𝑗 ∈ 𝜒, inequality (7) holds if there exists
an instrumental matrix 𝑌

𝑖
such that

[
[
[

[

Ψ
𝑖

𝑋
𝑇

𝑖
− 𝑌
𝑖
+ 𝐴
𝑖
𝑌
𝑇

𝑖
𝐺
𝑖
− 𝑋
𝑇

𝑖
𝐻
𝑇

𝑖

𝑋
𝑖
− 𝑌
𝑇

𝑖
+ 𝑌
𝑖
𝐴
𝑇

𝑖
−𝑌
𝑖
− 𝑌
𝑇

𝑖
0

𝐺
𝑇

𝑖
− 𝐻
𝑖
𝑋
𝑖

0 2𝜂𝐼 − 𝐷
𝑖
− 𝐷
𝑇

𝑖

]
]
]

]

< 0,

(22)

where Ψ
𝑖
= 𝑌
𝑖
𝐴
𝑇

𝑖
+ 𝐴
𝑖
𝑌
𝑇

𝑖
+ ∑
𝑚

𝑗=1
𝛽
𝑖𝑗
(𝐸
𝑇

𝑖
𝑋
𝑖
− 𝐸
𝑇

𝑗
𝑋
𝑗
).

Proof. Let Λ
𝑖
= [ 𝐼 𝐴𝑖 0
0 0 𝐼

]; then Λ
𝑖
is full row rank. By setting

Ψ
𝑖
= 𝑌
𝑖
𝐴
𝑇

𝑖
+ 𝐴
𝑖
𝑌
𝑇

𝑖
+ ∑
𝑚

𝑗=1
𝛽
𝑖𝑗
(𝐸
𝑇

𝑖
𝑋
𝑖
− 𝐸
𝑇

𝑗
𝑋
𝑗
), the result of

Lemma 2 can be evidently derived from the fact that

Λ
𝑖
⋅

[
[
[

[

Ψ
𝑖

𝑋
𝑇

𝑖
− 𝑌
𝑖
+ 𝐴
𝑖
𝑌
𝑇

𝑖
𝐺
𝑖
− 𝑋
𝑇

𝑖
𝐻
𝑇

𝑖

𝑋
𝑖
− 𝑌
𝑇

𝑖
+ 𝑌
𝑖
𝐴
𝑇

𝑖
−𝑌
𝑖
− 𝑌
𝑇

𝑖
0

𝐺
𝑇

𝑖
− 𝐻
𝑖
𝑋
𝑖

0 2𝜂𝐼 − 𝐷
𝑖
− 𝐷
𝑇

𝑖

]
]
]

]

⋅ Λ
𝑇

𝑖

=
[
[

[

𝑋
𝑇

𝑖
𝐴
𝑇

𝑖
+ 𝐴
𝑖
𝑋
𝑖
+

𝑚

∑

𝑗=1

𝛽
𝑖𝑗
(𝐸
𝑇

𝑖
𝑋
𝑖
− 𝐸
𝑇

𝑗
𝑋
𝑗
) 𝐺

𝑖
− 𝑋
𝑇

𝑖
𝐻
𝑇

𝑖

𝐺
𝑇

𝑖
− 𝐻
𝑖
𝑋
𝑖

2𝜂𝐼 − 𝐷
𝑖
− 𝐷
𝑇

𝑖

]
]

]

.

(23)

Remark 3. The instrumental matrix variable 𝑌
𝑖
is introduced

to decouple Lyapunov inverse matrix 𝑋
𝑖
and controller gain

matrix𝐾
𝑖
, whichmakes the design of output feedback passive

controllers feasible, and, at the same time,𝑋
𝑖
and𝑋

−1

𝑖
do not

require decomposition or fixing to a certain structure.

Based on the above lemma, an LMI condition is pre-
sented, under which system (5) is stable and passive in the
following theorem.

Theorem 4. If there exist simultaneously nonnegative real
number 𝛽

𝑖𝑗
, 𝜂 and matrices 𝑍

𝑖
> 0, 𝑍

𝑗
> 0, 𝑌

𝑖
,𝑊
𝑖
, 𝑈
𝑖
, 𝑈
𝑗
such

that for any 𝑖, 𝑗 ∈ 𝜒, 𝑖 ̸= 𝑗,

[
[
[

[

Θ
𝑖11

Θ
𝑖12

Θ
𝑖13

Θ
𝑇

𝑖12
−𝑌
𝑖
− 𝑌
𝑇

𝑖
0

Θ
𝑇

𝑖13
0 2𝜂𝐼 − 𝐷

𝑖
− 𝐷
𝑇

𝑖

]
]
]

]

< 0, (24)

whereΘ
𝑖11

= 𝑌
𝑖
𝐴
𝑇

𝑖
+𝐴
𝑖
𝑌
𝑇

𝑖
+𝐵
𝑖
𝑊
𝑖
+𝑊
𝑇

𝑖
𝐵
𝑇

𝑖
+∑
𝑚

𝑗=1
𝛽
𝑖𝑗
(𝐸
𝑇

𝑖
𝑍
𝑖
𝐸
𝑇

𝑖
+

𝐸
𝑇

𝑖
𝐿
𝑖
𝑈
𝑖
− 𝐸
𝑇

𝑗
𝑍
𝑗
𝐸
𝑇

𝑗
− 𝐸
𝑇

𝑗
𝐿
𝑗
𝑈
𝑗
), Θ
𝑖12

= 𝐸
𝑖
𝑍
𝑇

𝑖
+ 𝑈
𝑇

𝑖
𝐿
𝑇

𝑖
− 𝑌
𝑖
+

𝐴
𝑖
𝑌
𝑇

𝑖
+𝐵
𝑖
𝑊
𝑖
,Θ
𝑖13

= 𝐺
𝑖
−𝐸
𝑖
𝑍
𝑇

𝑖
𝐻
𝑇

𝑖
−𝑈
𝑇

𝑖
𝐿
𝑇

𝑖
𝐻
𝑇

𝑖
, 𝑌
𝑖
= [
𝑌𝑖11 𝑌𝑖12

0 𝑌𝑖22

],
and 𝑊

𝑖
= [𝑊
𝑖1

0], then, system (5) is stable and passive with
dissipation rate 𝜂 under static output feedback

𝐾
𝑖
= 𝑊
𝑖1
𝑌
−𝑇

𝑖11
(25)

via switching signal

𝑖 = argmax {𝑥𝑇 (𝑡) 𝐸𝑇
𝑖
(𝑍
𝑖
𝐸
𝑇

𝑖
+ 𝐿
𝑖
𝑈
𝑖
) 𝑥 (𝑡) , 𝑖 ∈ 𝜒} . (26)

Proof. Since𝐶
𝑖
= [𝐼
𝑝

0] in𝐴
𝑖
= 𝐴
𝑖
+𝐵
𝑖
𝐾
𝑖
𝐶
𝑖
, then𝐵

𝑖
𝐾
𝑖
𝐶
𝑖
𝑌
𝑇

𝑖
=

𝐵
𝑖
[𝐾
𝑖

0]𝑌
𝑇

𝑖
. Letting 𝑌

𝑖
= [
𝑌𝑖11 𝑌𝑖12

0 𝑌𝑖22

], one gets 𝑌𝑇
𝑖

= [
𝑌
𝑇

𝑖11
0

𝑌
𝑇

𝑖12
𝑌
𝑇

𝑖22

].
Thus, 𝐵

𝑖
[𝐾
𝑖

0]𝑌
𝑇

𝑖
= 𝐵
𝑖
[𝐾
𝑖
𝑌
𝑇

𝑖11
0]. Let 𝑊

𝑖
= [𝑊
𝑖1

0], 𝑊
𝑖1

=

𝐾
𝑖
𝑌
𝑇

𝑖11
. A static output feedback gain is denoted by 𝐾

𝑖
=

𝑊
𝑖1
𝑌
−𝑇

𝑖11
.

By making use of the existent methods (e.g., [31, 32]), we
introduce the matrix 𝐿

𝑖
∈ 𝑅
𝑛×(𝑛−𝑟𝑖) with rank 𝐿

𝑖
= 𝑛 − 𝑟

𝑖
sat-

isfying 𝐸
𝑖
𝐿
𝑖
= 0. By setting 𝑋

𝑖
= 𝑍
𝑖
𝐸
𝑇

𝑖
+ 𝐿
𝑖
𝑈
𝑖
, one obtains

that 𝑋−𝑇
𝑖

𝐸
𝑇

𝑖
= 𝐸
𝑖
𝑋
𝑖
≥ 0 holds when 𝑍

𝑖
> 0. Then, accord-

ing to Lemma 2, inequality (6) and (7) can be rewritten as
inequality (24). Inequality (24) is a linear matrix inequality.
This completes the proof.

Remark 5. If 𝛽
𝑖𝑗
is nonpositive simultaneously, Theorem 4

also holds through choosing the switching signal as 𝑖 =

argmin{𝑥𝑇(𝑡)𝐸𝑇
𝑖
(𝑍
𝑖
𝐸
𝑇

𝑖
+ 𝐿
𝑖
𝑈
𝑖
)𝑥(𝑡), 𝑖 ∈ 𝜒}.

Remark 6. When switched singular system reduces to a single
singular system (i.e., no switching), Theorem 4 also holds by
setting 𝐴

𝑖
= 𝐴, 𝐵

𝑖
= 𝐵, 𝐺

𝑖
= 𝐺, and so forth. This will

be illustrated in Corollary 7. When switched singular system
reduces to a normal switched system (i.e., 𝐸

𝑐𝑖
= 𝐼), the

method introduced in this paper is also available, and, at the
same time, Theorem 4 is rewritten as Corollary 8.

Corollary 7. If there exist a real number 𝜂 > 0 and matrices
𝑍 > 0, 𝑌,𝑊,𝑈 such that

[
[
[

[

Θ
11

Θ
12

Θ
13

Θ
𝑇

12
−𝑌 − 𝑌

𝑇

0

Θ
𝑇

13
0 2𝜂𝐼 − 𝐷 − 𝐷

𝑇

]
]
]

]

< 0, (27)

whereΘ
11

= 𝑌𝐴
𝑇

+𝐴𝑌
𝑇

+𝐵𝑊+𝑊
𝑇

𝐵
𝑇,Θ
12

= 𝐸𝑍
𝑇

+𝑈
𝑇

𝐿
𝑇

−

𝑌+𝐴𝑌
𝑇

+𝐵𝑊,Θ
13

= 𝐺−𝐸𝑍
𝑇

𝐻
𝑇

−𝑈
𝑇

𝐿
𝑇

𝐻
𝑇, 𝑌 = [

𝑌11 𝑌12

0 𝑌22

],
and 𝑊 = [𝑊

1
0], then, the corresponding singular system is
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feedback

𝐾 = 𝑊
1
𝑌
−𝑇

11
. (28)

Corollary 8. If there exist simultaneously nonnegative real
number 𝛽

𝑖𝑗
, 𝜂 and matrices 𝑋

𝑖
> 0, 𝑋

𝑗
> 0, 𝑌

𝑖
,𝑊
𝑖
such that

for any 𝑖, 𝑗 ∈ 𝜒, 𝑖 ̸= 𝑗,

[
[
[

[

Θ
𝑖11

Θ
𝑖12

Θ
𝑖13

Θ
𝑇

𝑖12
−𝑌
𝑖
− 𝑌
𝑇

𝑖
0

Θ
𝑇

𝑖13
0 2𝜂𝐼 − 𝐷

𝑖
− 𝐷
𝑇

𝑖

]
]
]

]

< 0, (29)

whereΘ
𝑖11

= 𝑌
𝑖
𝐴
𝑇

𝑖
+𝐴
𝑖
𝑌
𝑇

𝑖
+𝐵
𝑖
𝑊
𝑖
+𝑊
𝑇

𝑖
𝐵
𝑇

𝑖
+∑
𝑚

𝑗=1
𝛽
𝑖𝑗
(𝑋
𝑖
−𝑋
𝑗
),

Θ
𝑖12

= 𝑋
𝑇

𝑖
− 𝑌
𝑖
+ 𝐴
𝑖
𝑌
𝑇

𝑖
+ 𝐵
𝑖
𝑊
𝑖
, Θ
𝑖13

= 𝐺
𝑖
− 𝑋
𝑇

𝑖
𝐻
𝑇

𝑖
, 𝑌
𝑖
=

[
𝑌𝑖11 𝑌𝑖12

0 𝑌𝑖22

], and𝑊
𝑖
= [𝑊
𝑖1

0], then, the corresponding switched
system is stable and passive with dissipation rate 𝜂 under static
output feedback

𝐾
𝑖
= 𝑊
𝑖1
𝑌
−𝑇

𝑖11
(30)

via switching signal

𝑖 = argmax {𝑥𝑇 (𝑡) 𝑋
𝑖
𝑥 (𝑡) , 𝑖 ∈ 𝜒} . (31)

4. Example

Consider the switched singular system composed of two
subsystems

𝐸
𝑐𝑖
�̇� (𝑡) = 𝐴

𝑐𝑖
𝑥 (𝑡) + 𝐵

𝑐𝑖
𝑢 (𝑡) + 𝐺

𝑐𝑖
𝜔 (𝑡)

𝑧 (𝑡) = 𝐻
𝑐𝑖
𝑥 (𝑡) + 𝐷

𝑐𝑖
𝜔 (𝑡)

𝑦 (𝑡) = 𝐶
𝑐𝑖
𝑥 (𝑡)

𝑖 = 1, 2,

(32)

where

𝐸
𝑐1

= [

1 0

0 0
] , 𝐸

𝑐2
= [

1 0

0 0
] ,

𝐴
𝑐1

= [

5 −2

10 −15
] , 𝐴

𝑐2
= [

−6 −1

−1 1.5
] ,

𝐵
𝑐1

= [

−3

2.5
] , 𝐵

𝑐2
= [

−4

2
] ,

𝐶
𝑐1

= [2 1] , 𝐶
𝑐2

= [−1 2] ,

𝐺
𝑐1

= [

0

1
] , 𝐺

𝑐2
= [

0

1
] ,

𝐷
𝑐1

= 2, 𝐷
𝑐2

= 1,

𝐻
𝑐1

= [1 1] , 𝐻
𝑐2

= [1 2] .

(33)

Choose similarity transformation matrices as

𝑇
1
= [

2 1

−1 −1
] , 𝑇

2
= [

−1 2

1 −1
] . (34)

Then, we get an equivalent state-space description of the
above system:

𝐸
𝑖
�̇� (𝑡) = 𝐴

𝑖
𝑥 (𝑡) + 𝐵

𝑖
𝑢 (𝑡) + 𝐺

𝑖
𝜔 (𝑡)

𝑧 (𝑡) = 𝐻
𝑖
𝑥 (𝑡) + 𝐷

𝑖
𝜔 (𝑡)

𝑦 (𝑡) = 𝐶
𝑖
𝑥 (𝑡) ,

𝑖 = 1, 2,

(35)

where

𝐸
1
= 𝑇
1
𝐸
𝑐1
𝑇
−1

1
= [

2 2

−1 −1
] ,

𝐸
2
= 𝑇
2
𝐸
𝑐2
𝑇
−1

2
= [

−1 −2

1 2
] ,

𝐴
1
= 𝑇
1
𝐴
𝑐1
𝑇
−1

1
= [

39 58

−32 −49
] ,

𝐴
2
= 𝑇
2
𝐴
𝑐2
𝑇
−1

2
= [

8 12

−7.5 −12.5
] ,

𝐵
1
= 𝑇
1
𝐵
𝑐1

= [

−3.5

0.5
] ,

𝐵
2
= 𝑇
2
𝐵
𝑐2

= [

8

−6
] ,

𝐶
1
= 𝐶
𝑐1
𝑇
−1

1
= [

1

0
]

𝑇

,

𝐶
2
= 𝐶
𝑐2
𝑇
−1

2
= [

1

0
]

𝑇

,

𝐷
1
= 𝐷
𝑐1

= 2,

𝐷
2
= 𝐷
𝑐2

= 1,

𝐺
1
= 𝑇
1
𝐺
𝑐1

= [

1

−1
] ,

𝐺
2
= 𝑇
2
𝐺
𝑐2

= [

2

−1
] ,

𝐻
1
= 𝐻
𝑐1
𝑇
−1

1
= [0 −1] ,

𝐻
2
= 𝐻
𝑐2
𝑇
−1

2
= [3 4] .

(36)
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Choose 𝛽
12

= 𝛽
21

= 0.5, 𝐿
1
= [
1

−1
], 𝐿
2
= [
−2

1
]. By solving

linear matrix inequality (24) in Theorem 4, we can obtain

𝑍
1
= [

6.1107 1.6528

1.6528 0.9175
] ,

𝑍
2
= [

2.0404 −1.1790

−1.1790 0.9889
] ,

𝑌
1
= [

0.6280 −0.0791

0 0.0364
] ,

𝑌
2
= [

2.7362 −1.3902

0 0.5073
] ,

𝑊
1
= [10.0425 0] ,

𝑊
2
= [−2.2475 0] ,

𝑋
1
= [

19.9846 −6.8114

0.6831 −3.5225
] ,

𝑋
2
= [

7.5201 −3.3638

−4.4000 2.3218
] ,

𝑋
−1

1
= [

0.0536 −0.1036

0.0104 −0.3040
] ,

𝑋
−1

2
= [

0.8729 1.2647

1.6543 2.8273
] .

(37)

By linear matrix inequality (24), output feedback passive
control gains can be obtained:

𝐾
1
= 15.9905, 𝐾

2
= −0.8214. (38)

The dissipation rate can be obtained:

𝜂 = 0.5. (39)

The corresponding switching signal is chosen as

𝑖 =

{{

{{

{

1, 𝑥 (𝑡) ∈ Ω
1

2, 𝑥 (𝑡) ∈
Ω
2

Ω
1

,

Ω
1
= {𝑥 ∈ 𝑅

𝑛

| 𝑥
𝑇

(𝐸
𝑇

1
𝑋
1
− 𝐸
𝑇

2
𝑋
2
) 𝑥 ≥ 0,

𝐸
1
𝑥 ̸= 0, 𝐸

2
𝑥 ̸= 0}

Ω
2
= {𝑥 ∈ 𝑅

𝑛

| 𝑥
𝑇

(𝐸
𝑇

2
𝑋
2
− 𝐸
𝑇

1
𝑋
1
) 𝑥 ≥ 0,

𝐸
1
𝑥 ̸= 0, 𝐸

2
𝑥 ̸= 0} .

(40)

Under the switching signal, the response curve of the above
system is exhibited in Figure 1, where 𝜔(𝑡) = sin 𝑡𝑒

−0.1𝑡. From
Figure 1, it is obvious that the resulting closed-loop system is
stable.

0 0.05 0.1 0.20.15 0.25
−1

0

1

2

3

4

5

6

7

8

9

t

x

Figure 1: State response of the corresponding closed-loop system.

5. Conclusion

In this paper, the output feedback passive control problem for
a class of switched singular systems is investigated. A novel
method is proposed to solve static output feedback passive
controllers. Sufficient linear matrix inequality condition is
presented by means of introducing instrumental matrix
variable 𝑌

𝑖
and multiple Lyapunov function technique under

designed switching law. An example is given to verify the LMI
condition proposed for the resulting closed-loop system to be
stable and passive with a lower dissipation rate 𝜂. Passivity
is a suitable design approach in network control. How to
extend the results of this paper to network-based control is
an interesting problem.This problemdeserves a further study
and it remains as our future work.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work is supported by the National Natural Science
Foundation of China under Grants nos. 61203001, 61104066,
and 61473140, Liaoning Educational Committee Foundation
under Contract L2014525, and the Natural Science Founda-
tion of Liaoning Province under Grant no. 2014020106.

References
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