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The MOSFET is an important power electronic transistor widely used in electrical systems. Its reliability has an effect on the
performance of systems. In this paper, the failure models and mechanisms of MOSFET: are briefly analyzed. The on-resistance (R,,)
is the key failure precursor parameter representing the degree of degradation. Based on the experimental data, a nonlinear dual-
exponential degradation model for MOSFETs is obtained. Then, we present an approach for MOSFET degradation state prediction
using a strong tract filter based on the obtained degradation model. Lastly, the proposed algorithm is shown to perform effectively

on experimental data. Thus, it can provide early warning and enhance the reliability of electrical systems.

1. Introduction

Electrical systems are being used in nearly every field, and the
reliability of systems is of greater concern than ever. Electrical
systems are often subjected to abrupt operating conditions or
aging, which can lead to shortened lifetimes or the failure
of systems that result in enormous losses or casualties. The
metal-oxide-semiconductor field-effect transistor (MOS-
FET) is a critical component widely used in electrical systems.
Over 34% of failures of electrical systems are due to power
failure, and a majority of these are due to MOSFET failure.
Thus, more people are paying attention to how to improve
MOSEFET reliability.

In order to improve the performance of MOSFETSs, many
researchers are producing technical papers [1-3]. Unfortu-
nately, these methods do not take into account the effect
of environmental impacts and operation profiles. Condition
based maintenance (CBM) has the advantage of timely detec-
tion of problems. It takes corresponding measurements to
make some effectively prevent failures before they occur.
Real-time MOSEFET state detection and degradation predic-
tion is an important topic for researchers.

There are many approaches to MOSFET state detection
and degradation prediction that can be divided into two
categories: physics-of-failure (PoF) methods and data-driven

methods. PoF utilizes knowledge of a power electronic
device’s life cycle loading and failure mechanisms to perform
reliability design and assessment. PoF-based prognostics
requires knowledge of the actual application conditions and
failure models. It is difficult to get a PoF model for a complex
system. On the other hand, data-driven methods have been
widely used due to their flexibility in application. Data-driven
methods can predict the degradation state of a device by
collecting data under actual conditions.

Extracting data from failure precursor parameter is the
first task in degradation prediction. The ring signal has been
used as a precursor feature to predict the health state of com-
ponents [4]. This paper analyses the degradation of MOSFETs
by characterizing source oscillator signals [5]. This degrada-
tion characteristic was extracted using an online nonintrusive
method based on the Volterra series to estimate the health
state [6]. However, it requires a long time to collect degrada-
tion process data at room temperature. Therefore, many stud-
ies use external stresses, such as thermal stress, local current
overstress, and electrical overstress, to age devices so as to
find other indicators of failure [7-9].

Many experiments have shown that an increase in junc-
tion temperature will lead to die-attach degradation; this
degradation can be estimated by the increase of on-resistance
[10]. Celaya et al. [10] developed an accelerated aging system
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TaBLE 1: Typical failure modes [12].

Environmental factors and electrical stress

Elements of the package

Humidity Ambient temperature Power cycle Electrical stress
Shell ] U — U
Chip ] X, T, Z J, AD, AN, AM AR L LK MX, T
Adhesive layer I, K U A, CERL —
Lead interconnect J,E M A,C, B QERLM I, M, X

A: brittle fracture failure; C: plastic failure; AN: secondary breakdown; E: gum-oft; AM: overheating stress breakdown; B: medium yield; Q: elastic deformation;
X: EOS/ESD; J: corrosion; K: crystal which is too large; M: penetration and diffusion; L: increased fatigue crack depth; R: fatigue cracks; T: electromigration;

Z: metallic material migration; U: oxide layer failure; AD: TDDB breakdown.

TaBLE 2: Power MOSFET parameter drift failure mode and main failure mechanism [13].

Failure mode Failure mechanism

Threshold voltage
shift

Channel resistance
drift
Transconductance fall

Gate breakdown

Noise coeflicient
increases

Ohmic contact

. Thermoelectric migration
degradation &

Radiation; metallization electromigration

Hot carrier injection effect; ionizing radiation-induced valence bond breakage of gate silicon dioxide,
producing positive space charge; PBTT effect

Hot carrier injection effect; channel layer breakdown leading to a negative drift of channel resistance

Channel carrier mobility decreases due to interface scattering; ray radiation; hot carrier injection effect

Time-dependent dielectric breakdown (TDDB); electrostatic discharge; electromagnetic pulse or surge
voltage; iron leakage; chemical reaction of aluminum and silica

for gate-controlled power transistors and collected degrada-
tion data from MOSFETs and employed an extended Kalman
filter method for the prediction of the remaining life of power
MOSFETs. These studies have made important contributions
to MOSFET technology [9, 11]. Based on the above research
and taking advantage of on-resistance data, this paper pre-
sents a degradation prediction method for MOSFETs based
on a strong track filter.

This paper is organized into four sections. In Section 2,
the failure modes and failure mechanisms of MOSFETs are
introduced and analyzed. Then, a degradation model based
on experimental data and a degradation estimation method
using a strong track filter are obtained. Section 3 presents
and discusses the results. Finally, conclusions are drawn in
Section 4.

2. Methods

2.1. Degradation Mechanism of MOSFETs. During the life
cycle of a MOSFET, it will be subject to various complex
loading conditions, including temperature, humidity, and
vibration. MOSFET failure modes are divided into two kinds:
package structural failure and parameter drift failure. These
are shown in Tables 1 and 2, respectively.

Temperature is known to have a significant impact on
the performance of power electronic devices. About 55% of
the failures are due to high temperatures and temperature
cycling. Although there are many failure models, MOSFET
failure is mainly due to temperature. Temperature is an
important factor that critically affects the life of MOSFETs.
Thus, we consider the failure parameters under temperature.

2.2. Model of Degradation of MOSFET. The on-resistance of
a MOSFET is a key characteristic parameter to indicate the
degree of degradation. The degradation data used in this
paper derives from [10]. We fit the curves for the MOSFETs
using MATLAB, as shown in Figure 1. In Figurel, A and B
are the fitting curves. From the fitting, we found that the
degradation process of the MOSFET can be expressed as a
nonlinear dual-exponential model, as shown in

b

R=ae" + cedt, (1)

where R is the increase of on-resistance due to aging, ¢ is
the aging time, and a, b, ¢, and d are the model parameters,
respectively.

To demonstrate the effectiveness of the model, two
groups’ degradation data (#14 and #36) were used, as dis-
cussed in Section 3.

2.3. Strong Track Filter. A large class of nonlinear discrete-
time systems can be represented by the state equation and
observation equation as follows:

xi=f (“H’XH) +&i,
(2)
v =9g(x;) + s

where x is the discrete-time variable; x € R” is the state
vector; u € R” is the input vector; y € R™ is the output vector.

The nonlinear function f : R x R* — R", g: R"x R"
has first-order continuous partial derivatives on states where
& . ~ (0,Q, ) is the Gaussian noise with zero mean and
standard deviation Q;_; and #; ~ (0, R;) is the Gaussian noise
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FIGURE 1: Degradation data and fitting curves of a MOSFET.

with zero mean and standard deviation R;. x, ~ (a,, B) is
the Gaussian noise with a, mean and standard deviation P,,.
X = {xg, %1, %5, ..., x;_;} is the data until ¢;.

Here, the estimation value, x;, and the estimation variance
are expressed: X; = E[x, | Xy;] and Py; = Var(x; | Xp,),
respectively.

So, the state prediction equation is given by the following
expression:

p (x| Xo,) = Jp(xixi—l)P(xi—l | Xos)dx; .y (3)
The STF was firstly proposed by Zhou et al. in [14]. The algo-

rithm based on the extended Kalman filter is a suboptimal
fading factor A(k + 1) that can be described as follows [14].
(1) Initialization. Consider

550 = aO,PO,oc,ﬂ, (4)

where o and [ are the softening factor and the forgetting
factor, respectively.
Let a = 1.1, 3 = 0.95.

(2) Calculation of the Attenuation Factor. Consider

Yz (t), i=1,
Vo(t) = pVo (tiy) + Y2 (t) . 1 ©)

1+p R
Y(t) =i = Y1 = Vi (t; = t;1) (6)
B(t;) =V, (t;) -Q(t; - ti—l)z - ao’ (ti=tih), ()
C(t;) = Py (8 - ti—1)27 (8)

_ B(t)
Vo = m’ )
Ve v =1,

V() = {1, v < 1. (10)

(3) State Estimation. Consider
Py =v(t)Pi i +Q
2 2
Ki=(t; =t ) Py +0 (4 —tiy),

1

Vi = P + Py (G = tiny) K (0= yia = P (8= 14))

(11)
where K; is the filter gain.
(4) Measurement Update. Consider
2 -1
Pili = Pili—l - Pili—l (ti - ti—l) Ki Pili—l' (12)

2.4. Degradation Prediction of MOSFET Based on Strong
Track Filter. According to the above analysis, the MOSFET
degradation process can be expressed as follows.

The System Transition. Consider

a = a;_y + 0,

b =b_, + 6,
(13)
G=¢_,+0,
d,=d;,_{ +0,.
Measurement Function. Consider
R, = ae® + e 4y, (14)

Now the parameters must be determined. According to the
STE the algorithm can be described as in Figure 2. The pro-
cess includes training, prediction, and evaluation. Training
involves using real data to determine parameters. The initial
parameters are selected according to the calculation results
of (8) and (9). We chose three parameters (coefficient of
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FIGURE 2: Degradation of MOSFET prediction process.

determination (R-square), root mean square error (RMSE),
and sum square error (SSE)) to evaluate the results. The root
mean square error (RMSE) is defined as

RMSE = li (R-R,) (15)
T 1 1 N

The coefficient of determination is defined as

~ —\2
R2=M (16)

>(R-R)"

where R; denotes the observed values of the dependent
variable. R is the mean, and R, is the fitted value, respectively.
R, SSE,, and SMSE,, are given by real requirement. When R-
square, RMSE, and SSE meet the requirement, the training
is over. Then, according to the measurement function and
threshold, we can estimate the MOSFET degradation trend
and the remaining useful life. At last, we evaluate the results
by comparing the prediction and real data.

3. Results and Discussion

Figure 3 shows the prognostic results of MOSFET #14 under
the degradation model proposed. Using the data (before
118 h) as training data and based on the model and the present
method, we got the prediction function. In order to evaluate
the prediction, we calculated the three important statistical
indicators: R-square, SSE, and RMSE. The results are shown
in Table 1. From the results, the SSE and RMSE values are
0.0002868 and 0.002349, respectively. The R-square value is
0.9696 (Table 3). From the results, it can be seen that the
model and method were effective.
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FIGURE 3: Comparison of experimental and predicted results of
MOSEET #14.
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FiGURE 4: Comparison of experimental and predicted results of
MOSFET #36.

TABLE 3: The evaluation of predicted results.

MOSFET R-square RMSE SSE
#14 0.9696 0.002349 0.0002868
#36 0.9919 0.001326 0.0002023

Figure 4 shows the prognostic results of MOSFET #36
under the degradation model proposed. We used the data
(before 150 h) as the training data and proposed the method
under the degradation model to compute the prediction
function parameters. Then, taking advantage of the function
and the defined failure threshold, we can get the degradation
trend. The R-square, SSE, and RMSE are 0.9919, 0.0002023,
and 0.001326, respectively, and are shown in Table 1. From the
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results, one can see good agreement between the real data and
the computed data.

4. Conclusions

MOSEFETs play a critical role in the reliability of power elec-
tronics. Investigating the degradation method of MOSFETs
is the first step in realizing prognostics and health man-
agement for power electronics systems. According to the
precursor failures by experiment data, a degradation model
of a MOSFET has been obtained, and the method to estimate
the degradation of the MOSFET has been proposed using a
strong track filter. The results show that the model is consis-
tent with the real degradation trend. The prediction revealed
that the method is more efficient. With the aim of comparing
the prediction and real data, the coefficient of determination
(R-square), sum square error (SSE), and root mean square
error (RMSE) were calculated to evaluate the model and
method. From the results, lower SSE and RMSE values and
higher R-square values indicate that the model and method
are effective.
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