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This paper considers spectrally efficient differential frequency hopping (DFH) system design. Relying on time-frequency diversity
over large spectrum and high speed frequency hopping, DFH systems are robust against hostile jamming interference. However,
the spectral efficiency of conventional DFH systems is very low due to only using the frequency of each channel. To improve the
system capacity, in this paper, we propose an innovative high order differential frequency hopping (HODFH) scheme. Unlike in
traditional DFH where the message is carried by the frequency relationship between the adjacent hops using one order differential
coding, in HODFH, the message is carried by the frequency and phase relationship using two-order or higher order differential
coding. As a result, system efficiency is increased significantly since the additional information transmission is achieved by the
higher order differential coding at no extra cost on either bandwidth or power. Quantitative performance analysis on the proposed
scheme demonstrates that transmission through the frequency and phase relationship using two-order or higher order differential
coding essentially introduces another dimension to the signal space, and the corresponding coding gain can increase the system
efficiency.

1. Introduction

As one of the two basicmodulation techniques used in spread
spectrum communications, frequency hopping (FH) was
originally designed to be inherently secure and reliable under
adverse battle conditions for military applications. However,
there are three major bottlenecks: low data rate, narrow
bandwidth frequency hopping, and a low hopping rate when
using frequency hopping in the high frequency (HF) band.
Currently, the data rate of the existing HF frequency hopping
radio is limited to 2400 bps or less, the reliable data rate
is 1200 bps, the highest hopping rate is only tens of hops
per sec, and the antijamming capability is weak. Under
current conditions, it is difficult to achieve high-capacity
communications with HF communications technology when
there are harsh electromagnetic environments.

In the 1990s, the Sanders Company, from the United
States of America, pioneered an enhanced hopping spread
spectrum radio (CorrelatedHopping Enhanced Spread Spec-
trum), referred to as CHESS Radio [1, 2]. It was based on

the differential frequency hopping system and was a good
solution to improve the data rate and anti-tracking-jamming
abilities, among other issues. Its hopping rate is 5000 hops
per sec and the frequency hopping bandwidth is 2MHz;
these were breakthroughs compared to conventional HF
communication systems. However, the conventional DFH
system has low spectral efficiency over large bandwidth.
Typically, conventional DFH systems require large band-
width, which is proportional to the requirement on the
frequency number. Along with the ever increasing demand
on inherently secure high data rate wireless communications,
new techniques that are more efficient and reliable have to
be developed. In literature [3], a FH system called modulated
differential frequency hopping was proposed, in this system,
some information was used to produce a pseudo-random
carrier frequency slot (as in the DFH technology), and others
were changed into narrowband modulated waveforms (as
in the conventional FH technology). The message-driven
frequency hopping (MDFH) scheme proposed in literature
[4] possesses higher spectral efficiency than conventional FH
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communication system. In literature [5], based on the idea of
MDFH, a new scheme was proposed to improve the ability
of anti-fixed-frequency interference. In literature [6, 7], the
antijamming performance of the MDFH was analyzed in
depth.

In this paper, we propose an innovative high order
differential frequency hopping (HODFH) scheme. The basic
idea is that the frequencies and the phases of the signal
are numbered and then using the two-order or higher
order differential coding to code the message and the signal
number. The message is parsed into several parts; each part
will be transmitted by different order differential coding.
In other words, the serial message stream is converted into
parallel data stream transmitted by each order differential
coding.At the receiver, the transmitting frequency is captured
using a filter bank as in the FSK receiver rather than using
the frequency synthesizer. As a result, the frequency can be
blindly detected at each hop. This relaxes the burden of strict
frequency synchronization at the receiver. And the phase is
estimated as in the PSK receiver. Then the frequency and the
phase are used to decode the message. The system spectral
efficiency is significantly improved, because the high order
differential coding and the phases do not require extra cost
on bandwidth and power.

In this paper, in-depth performance analysis is con-
ducted based on both theoretical derivation and simulation
examples. Our analysis demonstrates that phases essentially
add another dimension to the signal space, and the high
order differential coding can increase the system spectral
efficiency.

2. The Concept of High Order Differential
Frequency Hopping

2.1. Transmitter Design. Unlike the conventional DFH sys-
tems in which only the frequencies are coded by the one-
order coding, the HODFH systems code the frequencies
and their phases by high order coding. That is to say, in
the conventional DFH system, only the carrier frequencies
carry the message; however, in the HODFH system, not only
frequencies but also the phases carry the information. In a
HODFH system, we add several phases to the frequencies;
therefore, the signal number is significantly increased almost
without increase in bandwidth.

Let 𝑁
𝑐

be the total number of frequencies, with
{𝑓1, 𝑓2, . . . , 𝑓𝑁

𝑐

} being the set of all frequencies. Let𝑀
𝑘
be the

number of initial phases where the frequency is 𝑓
𝑘
in each

hop, with {𝜙1, 𝜙2, . . . , 𝜙𝑀
𝑘

} being the set of all phases. Define
𝑠(𝑓

𝑛,𝑖
, 𝜙

𝑛,𝑗
) as the combinated signal of these frequencies and

phases in the 𝑛th hop; it is clear that there are 𝑁
𝑠
= ∑

𝑁
𝑐

𝑛=1 𝑀𝑘

signals. The set S, with {𝑠1, 𝑠2, . . . , 𝑠𝑁
𝑠

} being its elements, is
the set of all the combinated signals.

Let 𝑁
𝑜
be the order of the HODFH system; we start by

reshaping the one-dimensional set 𝑆 into𝑁
𝑜
-dimensional set

S
𝐷1×𝐷2×⋅⋅⋅×𝐷𝑁𝑜

, where the subscript denotes element number
of each dimension, and 𝐷1 × 𝐷2 × ⋅ ⋅ ⋅ × 𝐷

𝑁
𝑜

≤ 𝑁
𝑠
;

denote 𝑠
𝑑1 ,𝑑2 ,...,𝑑𝑁𝑜

as the element of the set S
𝐷1×𝐷2×⋅⋅⋅×𝐷𝑁𝑜

.
We assume that 𝐷1 × 𝐷2 × ⋅ ⋅ ⋅ × 𝐷

𝑁
𝑜

= 𝑁
𝑠
. Divide the

1st order bits 2nd order bits · · ·

· · ·Xn,1 Xn,2

Xn

Xn,N𝑜

Noth order bits

Figure 1: The 𝑛th block of the information data.

data stream into blocks of length 𝐿 ≜ ∑
𝑁
𝑜

𝑖=1 𝐵𝑖, where 𝐵
𝑖
(≤

log2𝐷𝑖
) is the number of bits that is transmitted through the

𝑖th order differential coding. Denote the 𝑛th block by 𝑋
𝑛
.

The block 𝑋
𝑛
can be grouped into 𝑁

𝑜
vectors, denoted by

[𝑋
𝑛,1, 𝑋𝑛,2, . . . , 𝑋𝑛,𝑁

𝑜

], where 𝑋
𝑛,𝑖

denotes the 𝑖th order bits,
as shown in Figure 1. We will transmit𝑋

𝑛
within one hop.

The transmitter block diagram of the proposed HODFH
scheme is illustrated in Figure 2. Each input data block,
𝑋
𝑛
, is fed into a serial-to-parallel (S/P) converter, where

the data bits are split into 𝑁
𝑜
parallel data streams. Denote

the signals in the 𝑛th and (𝑛 − 1)th hop by 𝑠
𝑛

𝑑
𝑛

1 ,𝑑
𝑛

2 ,...,𝑑
𝑛

𝑁𝑜

and
𝑠
𝑛−1
𝑑
𝑛−1
1 ,𝑑
𝑛−1
2 ,...,𝑑

𝑛−1
𝑁𝑜

. The index of the 𝑠
𝑛

𝑑
𝑛

1 ,𝑑
𝑛

2 ,...,𝑑
𝑛

𝑁𝑜

is obtained by 𝑁
𝑜
-

order differential coding the index of the 𝑠
𝑛−1
𝑑
𝑛−1
1 ,𝑑
𝑛−1
2 ,...,𝑑

𝑛−1
𝑁𝑜

and
information data block 𝑋

𝑛
. The differential processing is

called a function𝐺 and expressed by the following equations:

𝑑
𝑛

1 = 𝐺1 (𝑑
𝑛−1
1 , 𝑑

𝑛−1
2 , . . . , 𝑑

𝑛−1
𝑁
𝑜

, 𝑋
𝑛,1)

𝑑
𝑛

𝑚
= 𝐺

𝑚
(𝑑

𝑛

𝑚−1, 𝑋𝑛,𝑚
) , when 𝑚 = 2, . . . , 𝑁

𝑜
.

(1)

Using the index vectors to select the combinated signal,
the signal transmitted over the channel is 𝑠𝑛

𝑑
𝑛

1 ,𝑑
𝑛

2 ,...,𝑑
𝑛

𝑁𝑜

.
Recall that 𝑠(𝑓

𝑛,𝑖
, 𝜙

𝑛,𝑗
) is the combination of the frequency

and phase. The transmitted signal in the 𝑛th hop can be
expressed as

𝑠
𝑛

𝑑
𝑛

1 ,𝑑
𝑛

2 ,...,𝑑
𝑛

𝑁𝑜

= 𝑠 (𝑓
𝑛,𝑖
, 𝜙

𝑛,𝑗
) = 𝐴 cos (2𝜋𝑓

𝑛,𝑖
𝑡 + 𝜙

𝑛,𝑗
)

0 ≤ 𝑡 < 𝑇
ℎ
,

(2)

where𝐴 is the signal amplitude,𝑓
𝑛,𝑖
is the center frequency of

the 𝑛th hop,𝜙
𝑛,𝑗

is the possible phases of the 𝑛th hop, and𝑇
ℎ
is

the hop duration. The passband waveform of the transmitted
signal may be expressed as

𝑠 (𝑡) = √
2
𝑇
ℎ

Re{
∞

∑

𝑛=−∞

𝑒
−𝑗2𝜋(𝑓

𝑛,𝑖
+𝜙
𝑛,𝑗
)𝑡

𝑔 (𝑡 − 𝑛𝑇
ℎ
)} , (3)

where 𝑔(𝑡) is the signal pulse-shaping filter.

2.2. Receiver Design. The receiver block diagram of the pro-
posed HODFH scheme is illustrated in Figure 3. Recall that
there are 𝑁

𝑐
frequencies {𝑓1, 𝑓2, . . . , 𝑓𝑁

𝑐

} that are extended
out 𝑁

𝑠
signals. First, we must detect which frequency is

transmitted. For this purpose, a bank of 𝑁
𝑐
bandpass filters

(BPF), each centered at 𝑓
𝑖
(𝑖 = 1, 2, . . . , 𝑁

𝑐
), with the same

channel bandwidth as the transmitter, is deployed at the
receiver front end. Since only one frequency band is occupied
at any given hop, we simply measure the outputs of bandpass
filters at each possible signaling frequency. The actual carrier
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Figure 2: The transmitter block diagram of the proposed HODFH scheme.

frequency at a certain hopping period can be detected by
selecting the one that captures the strongest signal. As a result,
blind detection of the carrier frequency is achieved at the
receiver.

More specifically, the received signal is a convolution of
the transmitted signal 𝑠(𝑡)with the channel impulse response,
and it can be expressed as

𝑟 (𝑡) = ∫

+∞

−∞

ℎ (𝜏) 𝑠 (𝑡 − 𝜏) 𝑑𝜏 + 𝑛 (𝑡) , (4)

where ℎ(𝜏) is the channel impulse response and 𝑛(𝑡) denotes
additive white Gaussian noise (AWGN). Accordingly, the
outputs of bandpass filters are given by

𝑧
𝑖
(𝑡) = ∫

+∞

−∞

𝑞
𝑖
(𝜏) 𝑟 (𝑡 − 𝜏) 𝑑𝜏, for 𝑖 = 1, . . . , 𝑁

𝑐
, (5)

where 𝑞
𝑖
(𝑡) is the ideal bandpass filter centered at frequency

𝑓
𝑖
. If the channel is ideal, that is, ℎ(𝑡) = 𝛿(𝑡), then

𝑧
𝑖
(𝑡) = ∫

+∞

−∞

𝑞
𝑖
(𝜏) 𝑠 (𝑡 − 𝜏) 𝑑𝜏 + 𝑢

𝑖
(𝑡) ,

for 𝑖 = 1, . . . , 𝑁
𝑐
,

(6)

where 𝑢
𝑖
(𝑡) = ∫

+∞

−∞

𝑞
𝑖
(𝜏)𝑛(𝑡−𝜏) is the filtered version ofWGN.

If the signal-to-noise ratio is sufficiently high, and there is no
strong jamming, as in most communication systems, there
is one and only one significantly strong signal among the
outputs of the filter bank. Suppose that the 𝑙th filter captures
this distinctive signal during the 𝑛th hop; then the estimated
hopping frequency 𝑓

𝑛,𝑖
= 𝑓

𝑙
. The same procedures can be

carried out to determine the carrier frequency at each hop.
Next, the estimated hopping frequency𝑓

𝑛,𝑖
is used to con-

trol NCO.The output signal multiplied by the received signal
and NCO is used to estimate the phase of the transmitted
signal. Denote the estimated phase as 𝜙

𝑛,𝑗
.

Then, the estimated hopping frequency 𝑓
𝑛,i and the esti-

mated phase 𝜙
𝑛,𝑗

are used to estimate the transmitted signal.
Denote the estimated signal as 𝑠

𝑛

̂
𝑑
𝑛

1 ,
̂
𝑑
𝑛

2 ,...,
̂
𝑑
𝑛

𝑁𝑜

. The estimated

index {𝑑
𝑛

1 , . . . , 𝑑
𝑛

𝑁
𝑜

} at the 𝑛th hop and the estimated index
{𝑑
𝑛−1
1 , . . . , 𝑑

𝑛−1
𝑁
𝑜

} at the (𝑛 − 1)th hop are fed into the function
𝐺
−1
𝑚

(1 ≤ 𝑚 ≤ 𝑁
𝑜
), the inverse function of 𝐺

𝑚
, to recover the

information data blocks.This processing can be expressed by
the following equations:

𝑋
𝑛,1 = 𝐺

−1
1 (𝑑

𝑛−1
1 , 𝑑

𝑛−1
2 , . . . , 𝑑

𝑛−1
𝑁
𝑜

, 𝑑
𝑛

1) ,

𝑋
𝑛,𝑚

= 𝐺
−1
𝑚

(𝑑
𝑛

𝑚−1, 𝑑
𝑛

𝑚
) , when 𝑚 = 2, . . . , 𝑁

𝑜
.

(7)

It then follows that the estimate of the 𝑛th block 𝑋
𝑛
can

be obtained as𝑋
𝑛
= [𝑋

𝑛,1, 𝑋𝑛,2, . . . , 𝑋𝑛,𝑁
𝑜

].

3. Bit Error Probability for HODFH

In HODFH system, the input bit stream is carried by hopping
frequency and its phase. So, firstly, we analyze hopping
frequency symbol error probability and phase symbol error
probability, respectively, and then deduce the bit error rate
(BER) of the HODFH.

3.1. Symbol Error Probability. Firstly, we analyze the hopping
frequency symbol error probability. Based on the receiver
design in HODFH, analysis of the hopping frequency symbol
error probability is analogous to that of noncoherent FSK
demodulation. For noncoherent detection of 𝑀

𝐹
-ary FSK

signals, the probability of symbol error is given by [8, eqn.
(5-4-46), page 310]:

𝑝
𝑠,FSK (

𝜀
𝑠

𝑁0
)

=

𝑀
𝐹
−1

∑

𝑛=1
(−1)𝑛+1 (

𝑀
𝐹
− 1

𝑛
)

1
𝑛 + 1

exp [−
𝑛𝜀
𝑠

(𝑛 + 1)𝑁0
] ,

(8)

where 𝜀
𝑠
/𝑁0 is the SNR per symbol. For a HODFH system

with 𝑁
𝑐
frequencies, 𝑀

𝐹
= 𝑁

𝑐
. Let 𝑝

(𝐹)

𝑠,HODFH denote the
probability of the hopping frequency symbol detection error
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Figure 3: The receiver block diagram of the proposed HODFH scheme.

(corresponding to the symbol error in FSK) in HODFH; then
we have

𝑝
(𝐹)

𝑠,HODFH (
𝜀
𝐹

𝑠

𝑁0
)

=

𝑁
𝑐
−1

∑

𝑛=1
(−1)𝑛+1 (

𝑁
𝑐
− 1
𝑛

)
1

𝑛 + 1
exp[−

𝑛𝜀
𝐹

𝑠

(𝑛 + 1)𝑁0
] ,

(9)

where 𝜀
𝐹

𝑠
/𝑁0 is the SNR of hopping frequency per symbol.

Next, we focus on the phase symbol error probability.The
phase symbol error probability can be calculated in a similar
manner as that of the 𝑀

𝑃
-ary PSK. The probability of phase

symbol error probability is given by [8, eqn. (5-2-56) & (5-2-
55), page 268]:

𝑝
𝑠,PSK (

𝜀
𝑠

𝑁0
) = 1−∫

𝜋/𝑀
𝑃

−𝜋/𝑀
𝑃

𝑝
Θ
𝑟

(Θ
𝑟
) 𝑑Θ

𝑟
, (10)

𝑝
Θ
𝑟

(Θ
𝑟
) =

1
2𝜋

exp(−
𝜀
𝑠

𝑁0
sin2Θ

𝑟
)

⋅ ∫

∞

0
𝑉 exp

[
[
[

[

−

(𝑉 − √2 (𝜀
𝑠
/𝑁0) cosΘ𝑟

)

2

2
]
]
]

]

𝑑𝑉.

(11)

For a HODFH system, signal phase detection is imple-
mented at the condition that the hopping frequency is
detected correctly, for which the probability is (1−𝑝

(𝐹)

𝑠,HODFH);
the probability of phase symbol error can be calculated as that
of the𝑀

𝑃
-ary PSK. Let 𝑝(𝑃)

𝑠,HODFH denote the probability of the
phase symbol detection error (corresponding to the symbol
error in PSK). Recall that there are𝑀

𝑘
possible phases in each

hopping frequency; we have

𝑝
(𝑃)

𝑠,HODFH (
𝜀
𝑃

𝑠

𝑁0
) = 1−∫

𝜋/𝑀
𝑘

−𝜋/𝑀
𝑘

𝑝
Θ
𝑟

(Θ
𝑟
) 𝑑Θ

𝑟
, (12)

where 𝜀
𝑃

𝑠
/𝑁0 is the SNR of phase per symbol and it will be

substituted in (11) when we calculate 𝑝
(𝑃)

𝑠,HODFH.
Only when the hopping frequency and the phase are

detected correctly, the transmitted signal can be estimated
correctly. Since, in a HODFH system, the transmitted signal
carries the frequency and phase information, the SNR of the

hopping frequency per symbol is the same as the SNR of
the phase; that is, 𝜀𝐹

𝑠
/𝑁0 = 𝜀

𝑃

𝑠
/𝑁0. We denote the SNR per

symbol by 𝜀
𝑠
/𝑁0. The overall symbol error probability of the

HODFH scheme is calculated as the combination of 𝑝(𝐹)
𝑠,HODFH

and 𝑝
(𝑃)

𝑠,HODFH, defined as 𝑝
𝑠,HODFH, which can be found in

𝑝
𝑠,HODFH (

𝜀
𝑠

𝑁0
)

= 1

−(1−𝑝
(𝐹)

𝑠,HODFH (
𝜀
𝑠

𝑁0
))(1−𝑝

(𝑃)

𝑠,HODFH (
𝜀
𝑠

𝑁0
))

= 𝑝
(𝐹)

𝑠,HODFH (
𝜀
𝑠

𝑁0
)+𝑝

(𝑃)

𝑠,HODFH (
𝜀
𝑠

𝑁0
)

−𝑝
(𝐹)

𝑠,HODFH (
𝜀
𝑠

𝑁0
) ⋅ 𝑝

(𝑃)

𝑠,HODFH (
𝜀
𝑠

𝑁0
) .

(13)

3.2. Bit Error Probability. It is reasonable to assume that the
probability of the index 𝑑

𝑛

𝑖
{1 ≤ 𝑖 ≤ 𝑁

𝑜
} estimated incorrectly

is inversely proportionate to the number of elements at the 𝑖th
dimensionality, when the symbol error occurs. Let 𝑝Index,𝑖 be
the error probability of the 𝑖th dimensional index; we have

𝑝Index,𝑖 (
𝜀
𝑠

𝑁0
) =

𝐷
𝑖
− 1

𝐷
𝑖

𝑝
𝑠,HODFH (

𝜀
𝑠

𝑁0
) . (14)

For the first order bits 𝑋
𝑛,1, it is only decided by

{𝑑
𝑛−1
1 , . . . , 𝑑

𝑛−1
𝑁
𝑜

} and 𝑑
𝑛

1 . The correct probability of
𝑑
𝑛−1
1 , . . . , 𝑑

𝑛−1
𝑁
𝑜

is equal to the symbol correct probability
(1 − 𝑝

𝑠,HODFH). Recall that there are 𝐵1 bits at the first order.
The BER of the first order bits, denoted as 𝑝

𝑏1,HODFH, is
obtained:

𝑝
𝑏1,HODFH (

𝜀
𝑠

𝑁0
) =

2𝐵1−1

2𝐵1 − 1
(1

−(1−𝑝Index,1 (
𝜀
𝑠

𝑁0
))(1−𝑝

𝑠,HODFH (
𝜀
𝑠

𝑁0
)))

=
2𝐵1−1

2𝐵1 − 1
(
2𝐷1 − 1

𝐷1
𝑝
𝑠,HODFH (

𝜀
𝑠

𝑁0
)

−
𝐷1 − 1
𝐷1

(𝑝
𝑠,HODFH (

𝜀
𝑠

𝑁0
))

2
) .

(15)
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For the𝑚th order bits𝑋
𝑛,𝑚

(2 ≤ 𝑚 ≤ 𝑁
𝑜
), it is decided by

𝑑
𝑛

𝑚−1 and 𝑑
𝑛

𝑚
. Only the 𝑑

𝑛

𝑚−1 and 𝑑
𝑛

𝑚
are estimated correctly;

the information bits can be recovered correctly. Assume that
the error probability of 𝑑

𝑛

𝑚−1 and 𝑑
𝑛

𝑚
is independent. This

is insured by the processing of reshaping the 1-dimensional
set 𝑆 into 𝑁

𝑜
-dimensional set S

𝐷1×𝐷2×⋅⋅⋅×𝐷𝑁𝑜
. Let 𝑝𝑖,𝑗Index be the

correct probability of the 𝑖th and the 𝑗th dimensional index
simultaneity; we have

𝑝
𝑖,𝑗

Index (
𝜀
𝑠

𝑁0
) = (1−𝑝Index,𝑖 (

𝜀
𝑠

𝑁0
))

⋅ (1−𝑝Index,𝑗 (
𝜀
𝑠

𝑁0
))

= (1−
𝐷
𝑖
− 1

𝐷
𝑖

𝑝
𝑠,HODFH (

𝜀
𝑠

𝑁0
))

⋅ (1−

𝐷
𝑗
− 1

𝐷
𝑗

𝑝
𝑠,HODFH (

𝜀
𝑠

𝑁0
)) = 1−

𝐷
𝑗
− 1

𝐷
𝑗

⋅ 𝑝
𝑠,HODFH (

𝜀
𝑠

𝑁0
)−

𝐷
𝑖
− 1

𝐷
𝑖

𝑝
𝑠,HODFH (

𝜀
𝑠

𝑁0
)

+

(𝐷
𝑖
− 1) (𝐷

𝑗
− 1)

𝐷
𝑖
𝐷
𝑗

(𝑝
𝑠,HODFH (

𝜀
𝑠

𝑁0
))

2
.

(16)

Recall that there are 𝐵
𝑚
bits at the𝑚th order. The BER of

the𝑚th order bits, denoted as 𝑝
𝑏𝑚,HODFH, is obtained:

𝑝
𝑏𝑚,HODFH =

2𝐵𝑚−1

2𝐵𝑚 − 1
(1−𝑝

𝑚−1,𝑚
Index )

=
2𝐵𝑚−1

2𝐵𝑚 − 1
(
𝐷
𝑚−1 − 1
𝐷
𝑚−1

𝑝
𝑠,HODFH (

𝜀
𝑠

𝑁0
)

+
𝐷
𝑚

− 1
𝐷
𝑚

𝑝
𝑠,HODFH (

𝜀
𝑠

𝑁0
)

−
(𝐷

𝑚−1 − 1) (𝐷
𝑚

− 1)
𝐷
𝑚−1𝐷𝑚

(𝑝
𝑠,HODFH (

𝜀
𝑠

𝑁0
))

2
) .

(17)

Therefore, the total BER of a HODFH system, denoted as
𝑝
𝑏,HODFH, can be obtained as

𝑝
𝑏,HODFH (

𝜀
𝑠

𝑁0
)

= (
𝐵1

∑
𝑁
𝑜

𝑛=1 𝐵𝑛
) ⋅ 𝑝

𝑏1,HODFH (
𝜀
𝑠

𝑁0
)

+

𝑁
𝑜

∑

𝑚=2
(

𝐵
𝑚

∑
𝑁
𝑜

𝑛=1 𝐵𝑛
) ⋅ 𝑝

𝑏𝑚,HODFH (
𝜀
𝑠

𝑁0
) .

(18)

Since ∑
𝑁
𝑜

𝑛=1 𝐵𝑛 = 𝐿, (18) can be transformed as

𝑝
𝑏,HODFH (

𝜀
𝑠

𝑁0
) =

1
𝐿

(𝐵1𝑝𝑏1,HODFH (
𝜀
𝑠

𝑁0
)

+

𝑁
𝑜

∑

𝑚=2
𝐵
𝑚
𝑝
𝑏𝑚,HODFH (

𝜀
𝑠

𝑁0
)) .

(19)

We assume that one symbol not correctly detected will
incur the 𝑁

𝑜
dimensional index being not correctly esti-

mated. That is to say, 𝑝Index,𝑖 and 𝑝
𝑖,𝑗

Index will satisfy the
following equations:

𝑝Index,𝑖 (
𝜀
𝑠

𝑁0
) = 𝑝

𝑠,HODFH (
𝜀
𝑠

𝑁0
)

𝑝
𝑖,𝑗

Index (
𝜀
𝑠

𝑁0
)

= (1−𝑝
𝑠,HODFH (

𝜀
𝑠

𝑁0
))(1−𝑝

𝑠,HODFH (
𝜀
𝑠

𝑁0
))

= 1− 2𝑝
𝑠,HODFH (

𝜀
𝑠

𝑁0
)+(𝑝

𝑠,HODFH (
𝜀
𝑠

𝑁0
))

2
.

(20)

Substitute (20) into (15) and (17); the uniformof the upper
bound of BER for the first and the𝑚th order bits, denoted as
𝑝
𝑈

𝑏𝑚,HODFH, can be obtained as

𝑝
𝑈

𝑏𝑚,HODFH =
2𝐵𝑚−1

2𝐵𝑚 − 1
(2𝑝

𝑠,HODFH (
𝜀
𝑠

𝑁0
)

−(𝑝
𝑠,HODFH (

𝜀
𝑠

𝑁0
))

2
) , 1 ≤ 𝑚 ≤ 𝑁

𝑜
.

(21)

When the symbol error probability 𝑝
𝑠,HODFH is small

enough, the bit error probability 𝑝
𝑈

𝑏𝑚,HODFH can be approx-
imated as

𝑝
𝑈

𝑏𝑚,HODFH (
𝜀
𝑠

𝑁0
) =

2𝐵𝑚
2𝐵𝑚 − 1

𝑝
𝑠,HODFH (

𝜀
𝑠

𝑁0
) ,

1 ≤ 𝑚 ≤ 𝑁
𝑜
.

(22)

Substitute (22) into (19); the upper bound of total BER for
the HODFH system is obtained

𝑝
𝑈

𝑏,HODFH (
𝜀
𝑠

𝑁0
) =

1
𝐿

𝑁
𝑜

∑

𝑚=1
𝐵
𝑚
𝑝
𝑈

𝑏𝑚,HODFH (
𝜀
𝑠

𝑁0
)

=
1
𝐿

𝑁
𝑜

∑

𝑚=1
𝐵
𝑚

2𝐵𝑚
2𝐵𝑚 − 1

𝑝
𝑠,HODFH (

𝜀
𝑠

𝑁0
) .

(23)

The lower bound of total BER, denoted as 𝑝
𝐿

𝑏,HODFH,
can be obtained by assuming that the symbol error only
incurs bits error in that hopping. The error probability of
the 𝑖th dimensional index is expressed as (14), and the
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𝑖th dimensional index error only incurs the 𝑖th order bits.
Therefore, the lower bound of total BER is

𝑝
𝐿

𝑏,HODFH (
𝜀
𝑠

𝑁0
)

=
1
𝐿

𝑁
𝑜

∑

𝑚=1
𝐵
𝑚

2𝐵𝑚−1 (𝐷
𝑚

− 1)
(2𝐵𝑚 − 1)𝐷

𝑚

𝑝
𝑠,HODFH (

𝜀
𝑠

𝑁0
) .

(24)

To summarize our discussions above, we have the follow-
ing.

Proposition. In HODFH, the total BER, 𝑝
𝑏,HODFH(𝜀𝑠/𝑁0), is

bounded by

1
𝐿

𝑁
𝑜

∑

𝑚=1
𝐵
𝑚

2𝐵𝑚−1 (𝐷
𝑚

− 1)
(2𝐵𝑚 − 1)𝐷

𝑚

𝑝
𝑠,HODFH (

𝜀
𝑠

𝑁0
)

≤ 𝑝
𝑏,HODFH (

𝜀
𝑠

𝑁0
)

≤
1
𝐿

𝑁
𝑜

∑

𝑚=1
𝐵
𝑚

2𝐵𝑚
2𝐵𝑚 − 1

𝑝
𝑠,HODFH (

𝜀
𝑠

𝑁0
) .

(25)

3.3. Further Discussions about Bit Error Probability. Recall
that there are 𝑁

𝑐
available frequencies {𝑓1, 𝑓2, . . . , 𝑓𝑁

𝑐

} for
the HODFH system, and they distribute in broad band. It
only occupies narrow band, centered at 𝑓

𝑖
(𝑖 = 1, 2, . . . , 𝑁

𝑐
),

available frequencies at any given moment. The SNR usually
is unequal at each narrow band. In this occasion, the symbol
error probability of the frequency and phase cannot be simply
calculated by (9) and (12). The symbol correct decision
probability𝑝

𝑐,𝑓
𝑖

of the frequency𝑓
𝑖
can be deduced by [8, eqn.

(5-4-41), page 309]. Because the random variables 𝑅
𝑖
(𝑖 =

1, 2, . . . , 𝑁
𝑐
) are statistically independent and identically dis-

tributed and we assume that the signals centered at the 𝑁
𝑐

available frequencies 𝑓1, 𝑓2, . . . , 𝑓𝑁
𝑐

have equal energy and
different noise, the probability 𝑝

𝑐,𝑓
𝑖

can be expressed as

𝑝
𝑐,𝑓
𝑖

= ∫

∞

0

𝑁
𝑐

∏

𝑚=1
𝑚 ̸=𝑖

𝑃(𝑅
𝑚
<

𝜎
𝑖

𝜎
𝑚

𝑅
𝑖
| 𝑅

𝑖
=𝑥)𝑝

𝑅
𝑖

(𝑥) 𝑑𝑥, (26)

where 𝜎
2
𝑚

= 1/2𝑁0,𝑚 is the variance of the AWGN at
frequency 𝑓

𝑖
and

𝑃(𝑅
𝑚
<

𝜎
𝑖

𝜎
𝑚

𝑅
𝑖
| 𝑅

𝑖
=𝑥)

= ∫

𝜎
𝑖
𝑥/𝜎
𝑚

0
𝑝
𝑅
𝑚

(𝑟
𝑚
) 𝑑𝑟

𝑚
= 1− 𝑒

−𝜎
2
𝑖
𝑥
2
/2𝜎2
𝑚

= 1− 𝑒
−𝑁0,𝑖𝑥

2
/2𝑁0,𝑚 .

(27)

Substitute (27) into (26); we obtain the general probability

𝑝
𝑐,𝑓
𝑖

= ∫

∞

0

𝑁
𝑐

∏

𝑚=2
𝑚 ̸=𝑖

(1− 𝑒
−𝑁0,𝑖𝑥

2
/2𝑁0,𝑚) 𝑝

𝑅
𝑖

(𝑥) 𝑑𝑥. (28)

We have known that, in a HODFH system, signal phase
detection is implemented at the condition that the hopping
frequency centred at 𝑓

𝑖
is detected correctly, for which the

probability is 𝑝
𝑐,𝑓
𝑖

; the probability of phase symbol error can
be calculated as (10) and (11), but the SNR 𝜀

𝑃

𝑠
/𝑁0 of phase

per symbol will be substituted by 𝜀/𝑁0,𝑖, which is the SNR
at frequency 𝑓

𝑖
. Let 𝑝

(𝑃,𝑖)

𝑠,HODFH denote the probability of the
phase symbol detection error at frequency𝑓

𝑖
. In this occasion,

the overall symbol error probability of the HODFH scheme
is calculated by

𝑝
󸀠

𝑠,HODFH = 1−

𝑁
𝑐

∑

𝑖=1
𝑝
𝑖
⋅ 𝑝

𝑐,𝑓
𝑖

⋅ (1−𝑝
(𝑃,𝑖)

𝑠,HODFH)

= 1−
1
𝑁
𝑐

𝑁
𝑐

∑

𝑖=1
𝑝
𝑐,𝑓
𝑖

⋅ (1−𝑝
(𝑃,𝑖)

𝑠,HODFH) ,

(29)

where the 𝑝
𝑖
(𝑖 = 1, 2, . . . , 𝑁

𝑐
) is the probability that the

signals centered at frequency 𝑓
𝑖
and the 𝑝1, 𝑝2, . . . , 𝑝𝑁

𝑐

all
equal 1/𝑁

𝑐
. Substitute the probability 𝑝

𝑠,HODFH by 𝑝
󸀠

𝑠,HODFH
in (16) and (17); we can calculate the total BER of a HODFH
system by (18) when it works in the occasion that the
𝑁
𝑐
available frequencies {𝑓1, 𝑓2, . . . , 𝑓𝑁

𝑐

} distribute in broad
band and the SNR is not equal at each narrow band centered
at 𝑓

𝑖
.

4. Simulation Results

Without loss of generality, in this paper, the HODFH system
in the AWGN channel with equal SNR at anywhere was
simulated and its bit error rate (BER) performance was
analyzed.

Example 1. BER performance of the HODFH system in
AWGN channel: the performance of BER at the informa-
tion rates of 9600 bps, 19200 bps, and 28800 bps in AWGN
channel was compared. For the information rate of 9600 bps,
𝑁
𝑜
= 2, 𝑁

𝑐
= 128, 𝑀

𝑘
= 2 (𝑘 = 1, . . . , 𝑁

𝑐
), and 𝐵

𝑘
= 1 (𝑘 =

1, . . . , 𝑁
𝑜
). For the information rate of 19200 bps, 𝑁

𝑜
= 2,

𝑁
𝑐
= 64,𝑀

𝑘
= 4 (𝑘 = 1, . . . , 𝑁

𝑐
), and 𝐵

𝑘
= 2 (𝑘 = 1, . . . , 𝑁

𝑜
).

For the information rate of 28800 bps, 𝑁
𝑜

= 2, 𝑁
𝑐

= 64,
𝑀

𝑘
= 4 (𝑘 = 1, . . . , 𝑁

𝑐
), 𝐵1 = 4, and 𝐵2 = 2.

Figure 4 is the BER performance of the HODFH system
in AWGN channel. The requirement for the energy-per-bit
noise rate (𝐸

𝑏
/𝑁0) becomes lower when the information

rate increases. In practice, it is usually possible that only
the energy-per-symbol noise rate (𝐸

𝑠
/𝑁0) can be measured.

According to formula 𝐸
𝑠
/𝑁0 = 𝐸

𝑏
/𝑁0 + 10 log(𝑘) (𝑘 is the

number of bits per symbol), convert 𝐸
𝑏
/𝑁0 to 𝐸

𝑠
/𝑁0, and

then the higher 𝐸
𝑠
/𝑁0 is required for the higher information

rate, which is reasonable.

Example 2. The BER performance of information rate
28800 bps at different number of phases: assume 𝑁

𝑜
= 2 and

𝐵
𝑘
= 3 (𝑘 = 1, . . . , 𝑁

𝑜
). The numbers of available frequencies

𝑁
𝑐
are 64, 32, and 16; the numbers of phases𝑀

𝑘
are 4, 8, and

16, respectively.
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Figure 4: The BER performance at information rates of 9600 bps,
19200 bps, and 28800 bps in AWGN channel.
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Figure 5: The BER performance of information rate 28800 bps at
different number of phases.

As seen in Figure 5, when more phrases are used while
keeping the information rate the same, there is poorer
performance for the HODFH system. It will spend about
6 dB extra 𝐸

𝑏
/𝑁0 to obtain the same BER performance

of 10−3 when the number of phases increases from 8 to
16. Therefore, the number of phases should be kept to a
minimum, if the number of transmission signals has reached
the requirements.

Example 3. TheBERperformance of theHODFH system and
the conventional DFH (CDFH) system: for the information
rate of 9600 bps, the HODFH system has the following
parameters: 𝑁

𝑜
= 2, 𝑁

𝑐
= 128, 𝑀

𝑘
= 2 (𝑘 = 1, . . . , 𝑁

𝑐
), and

0 2 4 6 8 10 12

BE
R

100
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10−2

10−3

10−4

10−5

10−6

Eb/N0 (dB)

9600bps, HODFH, No = 2, Nc = 128, Mk = 2, Bk = 1

19200 bps, HODFH, No = 2, Nc = 64, Mk = 4, Bk = 2

9600bps, CDFH, Nc = 128, BPH = 2

19200 bps, CDFH, Nc = 128, BPH = 4

Figure 6: The BER performance of the HODFH system and the
CDFH system.

𝐵
𝑘
= 1 (𝑘 = 1, . . . , 𝑁

𝑜
); for the information rate of 19200 bps,

it has parameters: 𝑁
𝑜
= 2, 𝑁

𝑐
= 64, 𝑀

𝑘
= 4 (𝑘 = 1, . . . , 𝑁

𝑐
),

and 𝐵
𝑘

= 2 (𝑘 = 1, . . . , 𝑁
𝑜
). The CDFH has the following

parameters: for information rate of 9600 bps, 𝑁
𝑐
= 128 and

BPH = 2; for information rate of 19200 bps, 𝑁
𝑐
= 128 and

BPH = 4.

Figure 6 shows the BER performance comparison of
the HODFH system and the conventional DFH system for
information rates of 9600 bps and 19200 bps. At the same
information rate, the HODFH system has a better BER
performance than the conventional DFH system. The higher
information rate is, the higher gain is obtained by the
HODFH system when compared to the conventional DFH
system.

Example 4. Compare the BER performances of the HODFH
system at three information rates (9600 bps, 19200 bps, and
28800 bps) with the theoretical BER performance of QPSK,
8PSK, 16PSK, 32PSK, and 64PSK. Assume the HODFH
system has the following parameters, respectively. For the
information rate of 9600 bps,𝑁

𝑜
= 2,𝑁

𝑐
= 128,𝑀

𝑘
= 2 (𝑘 =

1, . . . , 𝑁
𝑐
), and 𝐵

𝑘
= 1 (𝑘 = 1, . . . , 𝑁

𝑜
). For the information

rate of 19200 bps, 𝑁
𝑜
= 2, 𝑁

𝑐
= 64, 𝑀

𝑘
= 4 (𝑘 = 1, . . . , 𝑁

𝑐
),

and 𝐵
𝑘

= 2 (𝑘 = 1, . . . , 𝑁
𝑜
). For the information rate of

28800 bps, we have three combinations; the first is 𝑁
𝑜

= 2,
𝑁
𝑐
= 64,𝑀

𝑘
= 4 (𝑘 = 1, . . . , 𝑁

𝑐
), and 𝐵

𝑘
= 3 (𝑘 = 1, . . . , 𝑁

𝑜
),

the second is 𝑁
𝑜
= 2, 𝑁

𝑐
= 32, 𝑀

𝑘
= 8 (𝑘 = 1, . . . , 𝑁

𝑐
), and

𝐵
𝑘

= 3 (𝑘 = 1, . . . , 𝑁
𝑜
), and the third is 𝑁

𝑜
= 2, 𝑁

𝑐
= 16,

𝑀
𝑘
= 16 (𝑘 = 1, . . . , 𝑁

𝑐
), and 𝐵

𝑘
= 3 (𝑘 = 1, . . . , 𝑁

𝑜
).

Figure 7 presents the BER performance of the HODFH
system and the theoretical BER performance of QPSK, 8PSK,
16PSK, 32PSK, and 64PSK. When the information rate is
9600 bps, the HODFH system carries two bits of information
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Figure 7: The BER performance of the HODFH system and
theoretical BER performance of the M-PSK.

per hop (symbol), which is the same as the QPSK; the BER
performance of the HODFH system is worse than the QPSK.
When the information rate is 19200 bps, the HODFH system
carries four bits of information per hop (symbol), which is the
same as the 16PSK, but it has better BERperformance than the
16PSK. When the information rate is 28800 bps, the HODFH
systemcarries six bits of information per hop (symbol), which
is the same as the 64PSK, but its performance is much better
than the 64PSK no matter how many phases are used by
the HODFH system. The BER performance of the HODFH
system is better than theM-PSK when the information rate is
high.The carrier frequencies of theHODFH systems are used
to transmit information; the HODFH systems have higher
information rate without extra cost on power and do not need
extra cost on power, when the numbers of phases adopted by
the HODFH systems and the M-PSK are equal. The HODFH
systems have better BER performance at the same energy-
per-bit noise rate compared to the PSK.

Example 5. Compare the BER performance of information
rate 19200 bps at the occasion that the SNR is equal and
unequal at each narrow band. Assume that the SNRs at𝑁

𝑐
/2

narrow bands are different with the SNRs at the other 𝑁
𝑐
/2

narrow bands. Use SNR
𝑑
to denote the difference among

the 𝑁
𝑐
SNRs. The SNR

𝑑
increases from 2 to 8 by increment

2. Use the average SNR in the broad band as the symbol
signal-to-noise ratio. The HODFH system has the following
parameters: 𝑁

𝑜
= 2, 𝑁

𝑐
= 64, 𝑀

𝑘
= 4 (𝑘 = 1, . . . , 𝑁

𝑐
), and

𝐵
𝑘
= 2 (𝑘 = 1, . . . , 𝑁

𝑜
).
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Figure 8: The BER performance of information rate 19200 bps at
SNR

𝑑
= 2, 4, 6, and 8.

Example 6. Compare the BER performance of information
rate 28800 bps at different number of phases when the SNR
difference SNR

𝑑
= 4 and 6. The SNR is similar as Example 5.

The HODFH system has the following parameters: 𝑁
𝑜
= 2,

𝑁
𝑐
= 64, 𝐵

𝑘
= 3 (𝑘 = 1, . . . , 𝑁

𝑜
), and 𝑀

𝑘
=4, 8, and 16 (𝑘 =

1, . . . , 𝑁
𝑐
).

As seen in Figure 8, the BER performance is worse when
the SNR is unequal at each narrow band, despite the average
SNR of the unequal signal-to-noise ratio broad band being
the same as the SNR of the equal signal-to-noise ratio. As
the difference of the SNRs is increasing, the performance is
degraded.

Figure 9 shows that the BER performance is degraded
when the number of phases used by the HODFH system
increases. This recalls the conclusion in Example 2 that the
number of phases should be kept to a minimum, if the num-
ber of transmission signals has reached the requirements.

5. Summary

In the future, communication will have higher information
rate requirements, and this paper proposed a solution for
this with a novel differential frequency hopping, high order
differential frequency hopping method. This was done by
conumbering the frequencies and their phases, so that the
system information rate was improved without having to
increase the frequency resources. The BER performance of
the HODFH system is better than the conventional DFH
system and M-PSK in the AWGN channel. In this work,
the number of phases can be adjusted to match the channel
conditions to obtain the optimal performance.

Although using phases to expand the signal set can
improve the bandwidth efficiency, their introduction of the
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Figure 9: BER performance of information rate 28800 bps at
different number of phases when SNR

𝑑
= 4 and 6.

phases makes the HODFH system more sensitive to fre-
quency offset and timing errors. That is to say, implementa-
tion of this system is more complex, but it is a price worth
paying for the information rate improvement and increased
performance.
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