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The use of linear slide system has been augmented in recent times due to features granted to supplement electromechanical systems;
new technologies have allowed the manufacture of these systems with low coefficients of friction and offer a variety of types of
sliding. In this paper, we present a comparison between the performance indexes of two techniques of control applying optimal
control LQR (Linear Quadratic Regulator) acronym for STIs in English and the technique of differential flatness controller. The
use of linear slide bolt of potency takes into account the dynamics of the DC motor; the Euler-Lagrange formalism was used
to establish the mathematical model of the slide. Cosimulation via the MATLAB/Simulink-ADAMS virtual prototype package,
including realistic measurement disturbances, is used to compare the performance indexes between the LQR controller versus
differential flatness controller for the position tracking of linear guide system.

1. Introduction

The linear slides have been used in different electromechan-
ical systems as actuators; these have great advantages, espe-
cially those consisting of screws-and-nuts; some advantages
are as follows: the effect of gravity at the beginning of the
movement introduces no disturbance of change of position
by not overcoming the power screw, the degree of accuracy in
positioning is very high, it is possible to track both soft paths
laws of classic and modern control, and the force developed
by using this type of device is very high usually requiring
actuators (DC motor) of lower power than those requiring
other types of systems. Blanco Ortega et al. [1] proposed a
rehabilitation ankle device based on an 𝑋𝑌 table which uses
two linear slidings, one on each axis, through a Generalized
Proportional Integral (GPI) controller. Valdivia et al. [2]
proposed a rehabilitation ankle TobiBot, which covers only

the movements of dorsiflexion/plantarflexion, and a degree
of freedom; it is controlled by an outline of PID control, to
perform the movements, and uses a linear slide based on a
power screw. Blanco Ortega et al. [3, 4] in turn presented a
rehabilitation of the design and construction of an ankle reha-
bilitation based on a parallel robot of 3 degrees of freedom,
which provides themovements of dorsiflexion/plantarflexion
and inversion/eversion made by the ankle and uses a PID
control technique to perform rehabilitation anklemovements
by using three linear power sliding screws. Blanco Ortega
et al. [3, 4] have presented an ankle rehabilitation machine,
using a linear slide to effect movements dorsiflexion/ankle
plantarflexion; the control technique using a PIDwas smooth
trajectory tracking.

As can be seen, linear slides have been widely used
as actuators in various robotic devices from a simple 𝑋𝑌
table. Various control techniques have been implemented for
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accurate position with smooth tracking paths. The present
work proposes control technique for differential flatness,
compared with optimal control, showing both its advantages
and disadvantages over the other, considering the control
technique for differential flatness as an option with highly
acceptable results in tracking soft paths, and highlighting
also the lack of optimization for optimum control trajectories
mechanical tracking systems of this type; the randomness
of the matrix appears when weighing matrixes 𝑅 and 𝑄.
Control technique by feedback employed in this work is
based on the concept of differential flatness, which come
from differential plan systems (Fliess et al. [5]). This was
made known fifteen years ago in France by professor Fliess
and his collaborators. Differential flatness has had important
uses within the areas of robotics, control processes, aerospace
systems, optimization systems, trajectory planning in linear
and nonlinear aspects, and systems of infinite dimensions
described in partially controlled differential equations with
border conditions (Fliess et al. [5, 6]; Linares-Flores and Sira-
Ramı́rez [7]; and Sira-Ramı́rez and Agrawal [8]). Thoun-
thong et al. [9] suggest the use of a differential based on
flatness of a fuel cell system and a hybrid supercapacitors
source achieving robustness, stability, and efficiency of the
controlled system controller. Jörgl and Gattringer [10] pro-
posed the control of a conveyor belt using a control law based
on differential flatness reducing the trajectory tracking error
compared with traditional drivers, flatness theory has been
used in a variety of nonlinear systems in various engineering
disciplines, Thounthong and Pierfederici [11], such as the
inverted pendulum control and aircraft vertical rise and fall,
Fliess et al. [12]. Danzer et al. [13] proposed driver in such a
control system of the pressure of a cathode and oxygen excess
of a chemical system. Gensior et al. [14] used a control of
tracking of a DC voltage boost converter. Song et al. [15] have
shown that based on flatness control is robust and provides
improved performance monitoring transience compared to a
traditional method of linear control (PI). A nonlinear system
is flat if there is a set of independent variables (differentially
equal in number to the number of entries) so that all the state
variables 𝑥 and input variables 𝑢 can be expressed in terms
of those output by Syed et al. [16], Rabbani et al. [17], and
Agrawal et al. [18].

In order to make a comparison between the performance
index of different controllers, this paper also presents an
optimal control law applied to the same linear slide (Figure 1);
optimal control theory focuses on the design of controllers
to perform their objective and concurrently satisfy physical
constraints to optimize predetermined performance criteria
(Hassani and Lee [19]). With the new trend of seeking a high-
performance, sustainable manufacturing, pollution aware-
ness and finding ways for greater energy efficiency, greater
emphasis on the optimal design of control systems is made.
The optimality design criteria may include minimum fuel,
low energy, minimum time (Lewis [20]). Because of this the
focus in recent years has been directed to the use of various
techniques of optimal control; Yu and Hwang [21] have
presented an LQR (Linear Quadratic Regulator) approach for
determining a control law PID optimal in order to control the
speed of a DCmotor; this contribution proposes a systematic
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Figure 1: Linear slide system.

approach to design a speed control of a DC motor based on
an identification model and LQR design with a nonlinear
increase with feedforward compensator. Ruderman et al. [22]
propose a methodical approach LQR state feedback control
of a DC motor. Likewise LQR optimal control has been used
in conjunction with other control techniques such as that of
Prasad et al. [23] who proposed a control system high non-
linearity such as the inverted pendulum. It is presented with a
linearized dynamics using a PID controller LQR bringing out
results in a robust control scheme for optimal system control.

The contributions of this paper are as follows: (1) the
design of an LQR position tracking controller; (2) the design
of a differential flatness position tracking controller; these
tracking controllers are compared on the performance index
of position tracking error. Thus, we conclude that the two
controllers have a high capacity for the position tracking of
the linear guide system. This paper is organized as follows.
Section 2 presents the mathematical model of linear slide
system. In this section, we obtained the mathematical model
via Euler-Lagrange formalism and incorporate the dynamic
of DC motor to model. The position control based on linear
quadratic regulator is presented in Section 3. In Section 4, we
present the design of tracking controller based on differential
flatness. In Section 5, the simulations results are obtained
through the MATLAB/Simulink-ADAMS virtual prototype
package, and we compare the performance indexes of the
position tracking error of both controllers. In Section 6, the
results are shown in the experiment using a physical slider
and data acquisition card, using the LabView software with a
graphical interface. Finally, in Section 7, we give the conclu-
sions of all of the work.

2. Mathematical Model of Linear Slide

The linear slide control in this work is formed with a motor
coupled CD to a power screw through a gearbox speed, screw,
and rotating, linearly moving mass 𝑚, as shown in Figures 1
and 2.

Motor mathematical model of linear guide system was
obtained by applying the Euler-Lagrange formalism. It con-
siders the dynamics of the DC motor. The generalized
coordinates are 𝑞 and 𝜃.

Consider Figure 2 and the notation shown in Notation.
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Figure 2: Schematic diagram of a linear slide system-DC motor.

2.1. Electric Motor. Considering Figure 2, the coenergy by
storage of effort is given by (1), the coenergy storage of effort
by (2), and the energy dissipation by (3).

Coenergy by Storage of Effort. Consider

𝑇
∗

=
1

2
𝐿 ̇𝑞
2

. (1)

The Storage of Energy Flow. Consider

𝑈 = 0. (2)

Energy Dissipation. Consider

𝐺 =
1

2
𝑅 ̇𝑞
2

. (3)

2.2. Linear Slide. The kinetic energy of the system of linear
slide is given by (4) and the dissipated energy is represented
by (7).

Kinetic Energy. Consider

𝐾 =
1

2
𝐼 ̇𝜃
2

2
+
1

2
𝑚𝑥̇
2

. (4)

Knowing that 𝑥 = 𝑝𝜃
2
, 𝑥̇ = 𝑝 ̇𝜃

2
, and 𝑥̈ = 𝑝 ̈𝜃

2
and substituting

in (4), the following equation is obtained, with kinetic energy
remaining in function of the angular velocity of the power
screw (see Figure 2):

𝐾 =
1

2
𝐼 ̇𝜃
2

2
+
1

2
𝑚 (𝑝 ̇𝜃

2
)
2

. (5)

Dissipated Energy. Consider

𝐷 =
1

2
𝑏
2

̇𝜃
2

2
. (6)

From (1) until (5) is represented total system in the kinetic
energy and the following equation is obtained:

𝐾
𝑇
=
1

2
𝐿 ̇𝑞
2

+
1

2
𝐼 ̇𝜃
2

2
+
1

2
𝑚 (𝑝 ̇𝜃

2
)
2

, (7)

where 𝐿 is the Lagrangian and is given by

𝐿 =
1

2
𝐿 ̇𝑞
2

+
1

2
𝐼 ̇𝜃
2

2
+
1

2
𝑚 (𝑝 ̇𝜃

2
)
2

. (8)

For the generalized coordinate 𝑞,

𝜕𝐿

𝜕 ̇𝑞
= 𝐿 ̇𝑞,

𝑑

𝑑𝑡

𝜕𝐿

𝜕 ̇𝑞
= 𝐿 ̈𝑞,

𝜕𝐿

𝜕𝑞
= 0,

𝜕𝐷

𝜕 ̇𝑞
= 𝑅 ̇𝑞,

(9)

where

𝐿 ̈𝑞 + 𝑅 ̇𝑞 = 𝑉 (𝑡) − 𝑒. (10)

Considering that 𝑒 = 𝑘
𝑏

̇𝜃
1
and ̇𝜃

1
= 𝑛 ̇𝜃

2
as well as

̇𝜃
2
= 𝑥̇/𝑝 and replacing them in (10), the following equation

is obtained:

𝐿 ̈𝑞 + 𝑅 ̇𝑞 = 𝑉 (𝑡) − 𝑘
𝑏
(
𝑛

𝑝
) 𝑥̇. (11)

Knowing that

𝑞 = ∫

𝑡

0

𝑖 𝑑𝑡, (12)

the following equation is obtained:

𝐿
𝑑𝑖

𝑑𝑡
+ 𝑅𝑖 = 𝑉 (𝑡) − 𝑘

𝑏
(
𝑛

𝑝
) 𝑥̇. (13)

For the generalized coordinate 𝜃
2
,

𝜕𝐿

𝜕 ̇𝜃
2

= 𝐼 ̇𝜃
2
+ 𝑚𝑝 ̇𝜃

2
,

𝑑

𝑑𝑡

𝜕𝐿

𝜕 ̇𝜃
2

= 𝐼 ̈𝜃
2
+ 𝑚𝑝 ̈𝜃

2
,

𝜕𝐿

𝜕𝜃
2

= 0,

𝜕𝐷

𝜕 ̇𝜃
2

= 𝑏
2

̇𝜃
2
.

(14)
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Equation of Euler-Lagrange formalism is

𝑑

𝑑𝑡

𝜕𝐿

𝜕 ̇𝑞
𝑖

−
𝜕𝐿

𝜕𝑞
𝑖

+
𝜕𝐷

𝜕 ̇𝑞
𝑖

= 𝜏, to 𝑖 = 1, 2, . . . , 𝑛. (15)

The mathematical model of the linear slide taking into
account the dynamics of the DC motor is defined by

𝐿
𝑑𝑖

𝑑𝑡
+ 𝑅𝑖 = 𝑉 (𝑡) − 𝑘

𝑏
(
𝑛

𝑝
) 𝑥̇, (16)

(
𝐼

𝑝
+ 𝑚𝑝) 𝑥̈ +

𝑏
2

𝑝
𝑥̇ = 𝑛𝑘

𝑓
𝑖 − 𝑃. (17)

3. Optimal Control

3.1. Considering Acceleration State Variable. Based on the
mathematical model (16) and (17), 𝑖 is derived and from (17)
it is clear that

𝑖 = (
𝛼

𝑛𝑘
𝑓

) 𝑥̈ + (
𝑏
2

𝑝𝑛𝑘
𝑓

) 𝑥̇,

𝑑𝑖

𝑑𝑡
= (

𝛼

𝑛𝑘
𝑓

)
...
𝑥 + (

𝑏
2

𝑝𝑛𝑘
𝑓

) 𝑥̈.

(18)

Substituting in (16), one has

𝐿(
𝛼

𝑛𝑘
𝑓

)
...
𝑥 + (

𝑏
2

𝑝𝑛𝑘
𝑓

) 𝑥̈ + 𝑅(
𝛼

𝑛𝑘
𝑓

) 𝑥̈ + (
𝑏
2

𝑝𝑛𝑘
𝑓

) 𝑥̇

= 𝑉 (𝑡) − 𝐾
𝑏
(
𝑛

𝑝
) 𝑥̇.

(19)

Fixing the equation, one gets

𝐿(
𝛼

𝑛𝑘
𝑓

)
...
𝑥 + (

𝑏
2

𝑝𝑛𝑘
𝑓

+
𝑅𝛼

𝑛𝑘
𝑓

) 𝑥̈ + (
𝑏
2

𝑝𝑛𝑘
𝑓

+
𝑘
𝑏
𝑛

𝑝
) 𝑥̇

= 𝑢.

(20)

The state variables are

𝑥̇
1
= 𝑥
2
,

𝑥̇
2
= 𝑥
3
,

𝑥̇
3
= −(

𝑛𝑘
𝑓

𝐿𝛼
)(

𝑏
2

𝑝𝑛𝑘
𝑓

+
𝑘
𝑏
𝑛

𝑝
) 𝑥̇

− (

𝑛𝑘
𝑓

𝐿𝛼
)(

𝑏
2

𝑝𝑛𝑘
𝑓

+
𝑅𝛼

𝑛𝑘
𝑓

) 𝑥̈ +

𝑛𝑘
𝑓

𝐿𝛼
𝑢.

(21)

Placing the state variables in the matrix form, one gets

𝑥̇ = 𝐴𝑥 + 𝐵𝑢,

𝑦 = 𝐶𝑥,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑥̇
1

𝑥̇
2

𝑥̇
3

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

0 1 0

0 0 1

0 −(

𝑛𝑘
𝑓

𝐿𝛼
)(

𝑏
2

𝑝𝑛𝑘
𝑓

+
𝑘
𝑏
𝑛

𝑝
) −(

𝑛𝑘
𝑓

𝐿𝛼
)(

𝑏
2

𝑝𝑛𝑘
𝑓

+
𝑅𝛼

𝑛𝑘
𝑓

)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑥
1

𝑥
2

𝑥
3

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

0

0

𝑛𝑘
𝑓

𝐿𝛼

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑢,

𝑦 = (1 0 0)(

𝑥
1

𝑥
2

𝑥
3

).

(22)

In control systems, often we want to select the control vector
𝑢(𝑡) such that a given performance index is minimized. A
quadratic performance index, where the integration limits are
0 to∞, so that

𝐽 = ∫

∞

0

𝐿 (𝑥, 𝑢) 𝑑𝑡, (23)

where 𝐿(𝑥, 𝑢) is a quadratic function or a Hermitian function
of 𝑥 and 𝑢, produces linear control laws; that is to say,

𝑢 = −𝐾𝑥 (𝑡) . (24)

For weight matrixes for semipositive definite 𝑄 and 𝑅, the
optimal control system is based on minimizing the perfor-
mance index. This requires numerically solving the Riccati
algebraic equation:

𝐴
𝑇

𝑃 + 𝑃𝐴 − 𝑃𝐵𝑅
−1

𝐵
𝑇

𝑃 + 𝑄 = 0 (25)

for a symmetric positive definite matrix 𝑃.
Finally, gains are calculated as

𝐾 = 𝑅
−1

𝐵
𝑇

𝑃. (26)
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In the present case, 𝑢 is given by

𝑢 = −𝑘
1
𝑥
1
− 𝑘
2
𝑥
2
− 𝑘
3
𝑥
3
. (27)

The state weighting matrix is proposed as

𝑄 = 𝐶
𝑇

𝐶,

𝑄 = (

1

0

0

)(1 0 0) = (

1 0 0

0 0 0

0 0 0

)

(28)

whichmeets nonnegative definite. As for the scalar weighting
for the control input, it is chosen as

𝑅 = 0.01,

𝑅 = 1𝑒 − 10.

(29)

3.2. Considering State Variable Motor Current CD. By repre-
senting mathematical model equations (16) and (17) in state
space, one gets

𝑥̇
1
= 𝑥
2
,

𝛼𝑥̇
2
= −

𝑏
2

𝑝
𝑥
2
+ 𝑛𝑘
𝑓
𝑥
3
,

𝐿𝑥̇
3
= −𝑅𝑥

3
− (

𝑛𝑘
𝑏

𝑝
)𝑥
2
+ 𝑢 (𝑡) ,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑥̇
1

𝑥̇
2

𝑥̇
3

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

0 1 0

0 −
𝑏
2

𝛼𝑝

𝑛𝑘
𝑓

𝛼

0 −
𝑛𝑘
𝑏

𝐿𝑝
−
𝑅

𝐿

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑥
1

𝑥
2

𝑥
3

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

0

0

1

𝐿

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑢,

𝐶 =
󵄨󵄨󵄨󵄨
1 0 0

󵄨󵄨󵄨󵄨 ,

𝐷 = |0| ,

𝑄 = (

1

0

0

)(1 0 0) = (

1 0 0

0 0 0

0 0 0

)

(30)

with

𝑅 = 0.01 (31)

for the first case and

𝑅 = 1𝑒 − 10 (32)

for the second case.

3.3. LQR Optimal Control in Virtual Prototype. A test was
performed using a virtual prototype of the linear slide,
Figure 3, in room ADAMS MSC together with Matlab-
Simulink in order to test the effectiveness of optimal control
LQR; the results of this experiment can be seen in Section 5.

Left bracket

Mass Right bracket

Power screw

Linear guides

Figure 3: Virtual prototype of the linear slide.

4. Control Based on Differential Flatness

This third-order linear system (30), where its Kalman con-
trollability matrix is calculated by the following expression:
𝐶 = [𝐵, 𝐴𝐵, 𝐴

2

𝐵], is given as

𝐶 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

0 0

𝑛𝑘
𝑓

𝛼

0

𝑛𝑘
𝑓

𝛼
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𝑅𝑛𝑘
𝑓

𝐿𝛼
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𝑛𝑏
2
𝑘
𝑓

𝑝𝛼2

1 −
𝑅

𝐿

𝑅
2

𝐿2
−

𝑛
2

𝑘
𝑏
𝑘
𝑓

𝐿𝑝𝛼

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

det𝐶 = −

𝑛
2

𝑘
2

𝑓

𝛼2
̸= 0. (33)

Since the determinant is nonzero, then the system is control-
lable and, therefore, is differentially flat (Sira-Ramı́rez and
Agrawal [8]). The flat output of a linear system input output
(I/O) is obtained bymultiplying the inversematrix of control-
lability by the state vector 𝑥, associated with the system. Col-
umn vector obtained by multiplying the last line is chosen to
obtain the flat output (Linares-Flores and Sira-Ramı́rez [7]).
In particular for reducingmotor-drive CD, flat output system
𝐹 is calculated as

𝐹 =
󵄨󵄨󵄨󵄨
0 0 1

󵄨󵄨󵄨󵄨 𝐶
−1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
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1

𝑥
2

𝑥
3

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,

𝐹 =
󵄨󵄨󵄨󵄨
0 0 1

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
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󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
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𝛼
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𝑓

𝑥
1
.

(34)
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Table 1: Parameter values for simulation.

Parameter Value
𝑛 = speed ratio 0.19
𝑃 = force opposite to the movement of𝑚 0.01N
𝑏
2
= coefficient of viscous friction 2

𝑝 = pitch of the screw thread power 0.00196m
𝑚 = mass to be displaced 10 kg
𝐽 = moment of inertia 0.0000014 kgm2

𝑉 = voltage 12 volts
𝑘
𝑏
= constant emf 0.022 (Vs)/rad

𝑅 = resistance of DC motor 5.3 ohm
𝐿 = motor inductance 0.00058 henries
𝐾
𝑓
= constant torque 90 (N-m)/A

Hence, we have chosen 𝑥
1
as the flat output. This flat output

provides the following differential parametrization of the
system variables:

𝑥
1
= 𝐹,

𝑥
2
= 𝐹̇,

𝑥
3
= (

𝛼

𝑛𝑘
𝑓

) 𝐹̈ + (
𝑏
2

𝑛𝑘
𝑓
𝑝
) 𝐹̇ +

𝑃

𝑛𝑘
𝑓
𝑝
,

(35)

and the control input:

𝑢 = [
𝐿𝛼

𝑛𝑘
𝑓

]

...
𝐹 + [

𝐿𝑏
2

𝑛𝑘
𝑓
𝑝
+
𝑅𝛼

𝑛𝑘
𝑓

] 𝐹̈

+ [
𝑅𝑏
2

𝑛𝑘
𝑓
𝑝
+
𝑛𝑘
𝑏

𝑝
] 𝐹̇ +

𝑅𝑃

𝑛𝑘
𝑓
𝑝
.

(36)

Considering (36) and in order to verify the stability of the
system, applying the Laplace transform, the following holds:

𝑢 = [
𝐿𝛼

𝑛𝑘
𝑓

] 𝑠
3

+ [
𝐿𝑏
2

𝑛𝑘
𝑓
𝑝
+
𝑅𝛼

𝑛𝑘
𝑓

] 𝑠
2

+ [
𝑅𝑏
2

𝑛𝑘
𝑓
𝑝
+
𝑛𝑘
𝑏

𝑝
] 𝑠 +

𝑅𝑃

𝑛𝑘
𝑓
𝑝
.

(37)

Taking into account the values of Table 1, the system
transfer function is

𝐹 (𝑠)

𝑢 (𝑠)

=
1

6.8854 ∗ 10−7𝑠3 + 4.0902 ∗ 10−2𝑠2 + 318.40𝑠
.

(38)

Plotting the locus of roots verifies that the system is stable
when these are in the left half of the complex plane (Figure 4).

Hence, we have the fact that all state variables and the
control input are in terms of 𝐹 and its successive derivatives,
where it denotes the position of themass as 𝑥.The differential
parametrization above allows obtaining the equilibrium for
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Figure 4: Roots locus.

the system in terms of the equilibriumvalues of the flat output
and the disturbance inputs. Thus,

𝑥
1
= 𝐹
𝑑
,

𝑥
2
= 0,

𝑥
3
=

𝑃

𝑛𝑘
𝑓
𝑝
,

𝑢 =
𝑅𝑃

𝑛𝑘
𝑓
𝑝
.

(39)

From (36), we design the average controller based on dif-
ferential flatness property. Thus, we replace the higher-order
derivative of the flat output by a virtual controller (see Slotine
and Li [24]) resulting in the following:

...
𝐹 = Vaux = −𝑘2𝐹̈ − 𝑘1𝐹̇ − 𝑘0 (𝐹 − 𝐹𝑑) . (40)

For the tracking controller design, we use a nominal desired
linear displacement profile 𝐹

𝑑
that exhibits a rather smooth

start for the motor linear slide system. This is specified using
an interpolating Bézier polynomial of 10th order where the
initial linear displacement is set to be 𝐹ini = 0m valid until
𝑡ini = 15 sec and the final desired value of the angular velocity
is specified as𝐹fin = 0.5mto be reached at 𝑡fin = 45 sec; that is,
we used

𝐹
𝑑
=

{{{{

{{{{

{

𝐹ini, 𝑡 < 𝑡ini,

𝐹ini + (𝐹fin − 𝐹ini) 𝑏𝑥, 𝑡ini ≤ 𝑡 ≤ 𝑡fin,

𝐹fin, 𝑡 > 𝑡fin,

(41)

where 𝑏
𝑥
(𝑡, 𝑡ini, 𝑡fin) is a polynomial function of time, exhibit-

ing a sufficient number of zero derivatives at times 𝑡ini and 𝑡fin,
while also satisfying 𝑏

𝑥
(𝑡ini, 𝑡ini, 𝑡fin) = 0 and 𝑏𝑥(𝑡fin, 𝑡ini, 𝑡fin) =

1. For instance, one such polynomial may be given by

𝑏
𝑥
(𝑡, 𝑡ini, 𝑡fin)

= 𝛽
5

[𝑟
1
− 𝑟
2
𝛽 + 𝑟
3
𝛽
2

− 𝑟
4
𝛽
3

+ 𝑟
5
𝛽
4

− 𝑟
6
𝛽
5

] ,

𝛽 = (
𝑡 − 𝑡ini
𝑡fin − 𝑡ini

) .

(42)
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The differential parametrization of the control input, 𝑢, in
terms of 𝐹

𝑑
shows that the proposed flat output trajectory

tracking task is that of controlling the third derivative of 𝐹
𝑑

by means of Vaux:

Vaux =
...
𝐹
𝑑
− 𝑘
2
(𝐹̈ − 𝐹̈

𝑑
) − 𝑘
1
(𝐹̇ − 𝐹̇

𝑑
) − 𝑘
0
(𝐹 − 𝐹

𝑑
) . (43)

Therefore, the linear displacement-tracking controller is

𝑢 = [
𝐿𝛼

𝑛𝑘
𝑓

] Vaux + [
𝐿𝑏
2

𝑛𝑘
𝑓
𝑝
+
𝑅𝛼

𝑛𝑘
𝑓

] 𝐹̈
𝑑

+ [
𝑅𝑏
2

𝑛𝑘
𝑓
𝑝
+
𝑛𝑘
𝑏

𝑝
] 𝐹̇
𝑑
+

𝑅𝑃

𝑛𝑘
𝑓
𝑝
.

(44)

Under these circumstances, the closed loop system tracking
error, 𝑒 = 𝐹 − 𝐹

𝑑
, satisfies the linear differential equation

𝑒
(3)

+ 𝑘
2
̈𝑒 + 𝑘
1
̇𝑒 + 𝑘
0
𝑒 = 0. (45)

The appropriate choice of the constant coefficients {𝑘
2
, 𝑘
1
, 𝑘
0
},

as coefficients of the third-order Hurwitz polynomial, guar-
antees the asymptotic exponential stability to zero of the
tracking error, 𝑒. One such choice, yielding a characteristic
polynomial of the form (𝑠 + 𝛾)(𝑠

2

+ 2𝜉𝜔
𝑛
𝑠 + 𝜔
2

𝑛
) with 𝛾 > 0,

0 < 𝜉 < 1, and 𝜔
𝑛
> 0, is given by

𝑘
0
= 𝜔
2

𝑛
𝛾,

𝑘
1
= 2𝜉𝜔

𝑛
𝛾 + 𝜔
2

𝑛
,

𝑘
2
= 2𝜉𝜔

𝑛
+ 𝛾.

(46)

The virtual controller, Vaux, achieves a smooth start for the
linear displacement of the system. If we apply an unknown
constant load torque on the system, we have to include a
term of integral action into the virtual control (43). Thus, we
minimize the tracking error near to zero.

5. Simulation Results

These results were obtained using the parameter values of
Table 1.

In Figure 5, one can see the movement of the mass 0.5
meters in 60 seconds following a path originated by a tenth-
order Bézier polynomial; the tracking error can be seen as
zero in the whole path; in this case, the acceleration is taken
as a state variable.

Figure 6 shows the graphs of results taking into account
the current as state variable; considering the matrix 𝑅 = 0.01
and considering the matrix 𝑅 = 1𝑒 − 10, Figure 7, in both
cases the tracking error can be seen as zero in the whole path.

Figure 8 shows the results of simulation based on dif-
ferential flatness controller observed; it also shows that it is
capable of moving the mass to a position 0.5 meters along a
desired path of a Bézier polynomial of tenth order.

The results of the performance index are as follows: the
two controllers are shown in Figures 9, 10, and 11; the indexes
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Figure 5: Graphics optimal controller response with 𝑅 = 1𝑒 − 10.
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Figure 7: Graphics optimal controller response with 𝑅 = 1𝑒 − 10.

of performance of the optimal controller for two values of the
matrix 𝑅 are shown.

Figure 12 shows the results using a virtual prototype envi-
ronment ADAMS MSC and MATLAB-Simulink; we can see
that the offset for this test was set at 0.7 meters corresponding
to the desired position; a tenth-order Bézier polynomial
was used as desired path.
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Figure 8: Graphics controller response flatness based on difference.
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Figure 9: Performance Index LQRoptimal controller with𝑅 = 0.01.
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Figure 10: Performance Index LQRoptimal controller with𝑅 = 1𝑒−
10.

6. Results with Linear Slide

Experimentation was held using a physical linear slide
(Figure 13); the laws of LQR control are implemented based
on differential flatness with the same parameter values and
gains controllers; the results of the experiment can be seen
in Figures 14, 15, and 16, where it can be seen that in all three
cases the controller is able to zero the position error; it is clear
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Figure 11: Controller performance index based on differential
flatness.
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Figure 12: Graphic of LQR optimal controller results in the virtual
prototype.

that the experiment was carried out with an acquisition card
myRIO data of National Instruments; the measurement units
were centimeters so that they should be taken into account in
the interpretation of Figures 14, 15, and 16.

It is verified by the results the correct operation for
achieving desired trajectories and references.

On the 𝑥-axis is the number of samples; to determine the
time it must be multiplied by the sampling period, that is,
0.1 s.

7. Conclusions

By applying control techniques and optimal LQR and based
on differential flatness it can be seen that the results for
the trajectory tracking are highly achievable in both cases,
with regard to the performance indices of each controller for
the optimal controller; a great disadvantage exists since it is
necessary that the values of the weighting matrix 𝑅 be too
low to achieve a speed of response adapted to the needs of
the plant to controlling; this means that the gains are higher
further input values, such as the voltage that must be adjusted
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Figure 13: Experiment with physical linear slide.
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Figure 14: Controller based on differential flatness.
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Figure 15: Performance Index LQR optimal controller with 𝑅 =

0.01.

by trial and error of saidmatrixwith the purpose of respecting
the voltages of the actuators.

Figures 12 and 13 show that the values of the performance
index are minimizing in the measure that the value of
the weighting matrix, 𝑅, is minor compared to the index
controller performance differential flatness, if it is minor, but
this is not guaranteed to be optimal because the values of
the control force are lower than those required for the good
functioning of DC motors.
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Figure 16: Performance Index LQRoptimal controller with𝑅 = 1𝑒−
10.

In conclusion it follows that the use of control laws differ-
ential flatness is by far better than the use of laws of optimal
control; the concept of optimality, in this particular case, is
lost due to the randomness representing search for the value
of the 𝑅matrix to obtain appropriate response speed without
sacrificing system actuators.

Notation

𝑛: Speed ratio
𝑃: Force opposite to the movement of𝑚
𝑏
2
: Coefficient of viscous friction

𝑝: Pitch of the screw thread power
𝑚: Mass to be displaced
𝐽: Moment of inertia
𝑉: Voltage
𝑘
𝑏
: Constant emf

𝑅: Resistance of DC motor
𝐿: Motor inductance
𝑘tao: Constant torque
𝜃
1
: Angular position of DC motor
̇𝜃
1
: Angular velocity of DC motor

𝜃
2
: Angular position of power screw
̇𝜃
2
: Angular velocity of power screw

𝜏
1
: Torque delivered by the DC motor

𝜏
2
: Torque delivered by the speed reducer

𝑥: Displacement of the mass
𝑥̇: Velocity of the mass
𝐹: Force of displacement of the mass.
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