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Bagley-Torvik equation appears in viscoelasticity problems where fractional derivatives seem to play an important role concerning
empirical data.There are several works treating this equation by using numerical methods and analytic formulations. However, the
analytical solutions presented in the literature consider particular cases of boundary and initial conditions, with inhomogeneous
termoften expressed in polynomial form.Here, by using Laplace transformmethodology, the general inhomogeneous case is solved
without restrictions in boundary and initial conditions. The generalized Mittag-Leffler functions with three parameters are used
and the solutions presented are expressed in terms of Wiman’s functions and their derivatives.

1. Introduction

Bagley-Torvik equations (BTE) firstly appeared in their sem-
inal work [1] where they proposed to model viscoelastic
behavior of geological strata, metals, and glasses by using
fractional differential equations, showing that this approach
is effective in describing structures containing elastic and
viscoelastic components.

Initially, in [2], inhomogeneous BTE was studied with
an analytical solution being proposed. Since then, there
were several works to solve BTE, starting with numerical
procedures for a reformulated BTE as a system of functional
differential equations of order 1/2 [3–5].

Following a numerical way for solving BTE, a general-
ization of Taylor’s and Bessel’s collocation method [6, 7] and
the use of evolutionary computation [8] provided acceptable
solutions from engineering point of view.

Approximation techniques were successfully applied to
BTE mainly by using enhanced homotopic perturbation
methods [9, 10], fractional iteration techniques [11], and cubic
polynomial spline functions [12].

Analytical exact solutions for BTE were obtained in [13]
for the particular initial condition 𝑢(0) = 𝑢(0) = 0, con-
sidering the boundary condition given by 𝑢(0) = 𝑢(1) = 1.
Besides, by using a modified generalized Laguerre spectral

method for fractional differential equations, BTE was solved
in [14] for some specific conditions.

The aim of this work is to provide an analytical solution
for the most generic case of inhomogeneous BTE in terms
of the derivatives of Wiman’s functions [2] considering that
three-parameter generalized Mittag-Leffler function, intro-
duced in [15], can be better explored.

The approach presented here consists of using the Laplace
transform of Prabhakar’s function, in order to solve the most
general BTE, carrying out a subsequent transformation of the
achieved solution in terms of the Mittag-Leffler functions.

In the next section, the BTE solution by using the referred
to method is presented, followed by a section with the solu-
tion expressed by using Wiman’s functions and their deriva-
tives, motivated by the fact that Wiman’s functions can be
implemented in computational software like𝑀𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑎©,
easing the solution of BTE in practical applications.

2. Laplace Transformation Solution of BTE:
Mittag-Leffler Functions

Themost general inhomogeneous BTE [1] is given by

𝐴D
2
𝑢 (𝑥) + 𝐵D

3/2
𝑢 (𝑥) + 𝐶𝑢 (𝑥) = 𝜙 (𝑥) , (1)
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which, by using operational notation, can be expressed as

[𝐴D
2
+ 𝐵D

3/2
+ 𝐶] 𝑢 (𝑥) = 𝜙 (𝑥) . (2)

Here the domain of 𝜙(𝑥) is considered to be the
time; consequently it is assumed that 𝑡 ∈ [0,∞). The
Riemann-Liouville fractional integral is adopted and, there-
fore, Caputo’s fractional derivative 𝑐𝐷]

0
can be simply denoted

byD [16, 17].
The method to be used to solve BTE is the traditional

Laplace transform that, due to the fractional nature of the
exponents, results from Prabhakar functions, that is, three-
parameter Mittag-Leffler generalized functions [2, 15].

Considering Caputo’s fractional derivative [18], the
Laplace transform of the fractional exponent term is

L {D
3/2
𝑢 (𝑥)} = 𝑠

3/2
𝑈 (𝑠) − 𝑠

1/2
𝑢 (0) − 𝑠

−1/2
𝑢


(0) , (3)

implying that the Laplace transform of the BTE is written as

𝑈 (𝑠) (𝐴𝑠
2
+ 𝐵𝑠
3/2
+ 𝐶)

= (𝐴𝑠 + 𝐵𝑠
1/2
) 𝑢 (0) + (𝐵𝑠

−1/2
+ 𝐴) 𝑢



(0) + Φ (𝑠) .

(4)

Defining 𝐵/𝐴 = 𝜆 and 𝐶/𝐴 = 𝜇 and considering the
binomial development,

(1 +

𝜆𝑠
3/2

𝑠
2
+ 𝜇

)

−1

= (1 +

𝐵𝑠
3/2

𝐴𝑠
2
+ 𝐶

)

−1

=

∞

∑

𝑘=0

(−1)
𝑘 𝜆
𝑘
𝑠
3𝑘/2

(𝑠
2
+ 𝜇)
𝑘
,

(5)

the Laplace transform of BTE’s solution is

𝑈 (𝑠) =

∞

∑

𝑘=0

(−1)
𝑘
𝜆
𝑘 𝑠
3𝑘/2

(𝑠
2
+ 𝜇)
𝑘+1
[(𝑠 + 𝜆𝑠

1/2
) 𝑢 (0)

+ (𝜆𝑠
−1/2
+ 1) 𝑢



(0) +

1

𝐴

Φ (𝑠)] .

(6)

In order to invert the Laplace transform to obtain the
general BTE’s solution,𝑈(𝑠) is rewritten expanding the sums:

𝑈 (𝑠) = 𝑢 (0)

∞

∑

𝑘=0

(−1)
𝑘
𝜆
𝑘 𝑠
3𝑘/2+1

(𝑠
2
+ 𝜇)
𝑘+1

+ 𝑢 (0)

∞

∑

𝑘=0

(−1)
𝑘
𝜆
𝑘+1 𝑠
3𝑘/2+1/2

(𝑠
2
+ 𝜇)
𝑘+1

+ 𝑢


(0)

∞

∑

𝑘=0

(−1)
𝑘
𝜆
𝑘+1 𝑠
3𝑘/2−1/2

(𝑠
2
+ 𝜇)
𝑘+1

+ 𝑢


(0)

∞

∑

𝑘=0

(−1)
𝑘
𝜆
𝑘 𝑠
3𝑘/2

(𝑠
2
+ 𝜇)
𝑘+1

+

1

𝐴

Φ (𝑠)

∞

∑

𝑘=0

(−1)
𝑘
𝜆
𝑘 𝑠
3𝑘/2

(𝑠
2
+ 𝜇)
𝑘+1
.

(7)

As shown in [2, 15], it is possible to define three-parameter
Mittag-Leffler general functions as

𝐸
𝛾

𝛼,𝛽
(𝑡) fl

∞

∑

𝑘=0

(𝛾)
𝑘
(𝑡
𝑘
)

Γ (𝛼𝑘 + 𝛽) 𝑘!

,

(𝛼, 𝛽, 𝛾 ∈ C, R (𝛼) ,R (𝛽) ,R (𝛾) > 0) ,

(8)

with (𝜇)
𝑘
= Γ(𝜇 + 𝑘)/Γ(𝜇) being the Pochhammer symbol.

When 𝛾 = 1, these functions are called Wiman’s functions.
Here, the main fact to be used is related to the inverse of

the Laplace transform of the main terms that appear in (7),
given by

L
−1
{

𝑠
𝛼𝛾−𝛽

(𝑠
𝛼
+ 𝜆)
𝛾
} = 𝑥

𝛽−1
𝐸
𝛾

𝛼,𝛽
(−𝜆𝑥
𝛼
) . (9)

Consequently, the first four terms of (7) can be inverted
and written as

L
−1
{

𝑠
3𝑘/2+1

(𝑠
2
+ 𝜇)
𝑘+1
} = 𝑥

(1/2)𝑘
𝐸
𝑘+1

2,(1/2)(𝑘+2)
(−𝜇𝑥
2
) ,

L
−1
{

𝑠
3𝑘/2+1/2

(𝑠
2
+ 𝜇)
𝑘+1
} = 𝑥

(1/2)(𝑘+1)
𝐸
𝑘+1

2,(1/2)(𝑘+3)
(−𝜇𝑥
2
) ,

L
−1
{

𝑠
3𝑘/2−1/2

(𝑠
2
+ 𝜇)
𝑘+1
} = 𝑥

(1/2)(𝑘+3)
𝐸
𝑘+1

2,(1/2)(𝑘+5)
(−𝜇𝑥
2
) ,

L
−1
{

𝑠
3𝑘/2

(𝑠
2
+ 𝜇)
𝑘+1
} = 𝑥

(1/2)(𝑘+2)
𝐸
𝑘+1

2,(1/2)(𝑘+4)
(−𝜇𝑥
2
) .

(10)

The inhomogeneous term is calculated by using convolu-
tion:

L
−1
{

Φ (𝑠) 𝑠
3𝑘/2

(𝑠
2
+ 𝜇)
𝑘+1
}

= 𝜙 (𝑥) ∗ [𝑥
(1/2)(𝑘+2)

𝐸
𝑘+1

2,(1/2)(𝑘+4)
(−𝜇𝑥
2
)] ,

(11)

and, consequently, the general solution of BTE is given by

𝑢 (𝑥) = 𝑢 (0)

∞

∑

𝑘=0

(−𝜆)
𝑘
𝑥
𝑘/2
𝐸
𝑘+1

2,(1/2)(𝑘+2)
(−𝜇𝑥
2
) + 𝑢 (0)

⋅

∞

∑

𝑘=0

(−𝜆)
𝑘
𝑥
(1/2)(𝑘+1)

𝐸
𝑘+1

2,(1/2)(𝑘+3)
(−𝜇𝑥
2
) + 𝑢


(0)

⋅

∞

∑

𝑘=0

(−𝜆)
𝑘
𝑥
(1/2)(𝑘+2)

𝐸
𝑘+1

2,(1/2)(𝑘+4)
(−𝜇𝑥
2
) + 𝑢


(0)

⋅

∞

∑

𝑘=0

(−𝜆)
𝑘
𝑥
(1/2)(𝑘+3)

𝐸
𝑘+1

2,(1/2)(𝑘+5)
(−𝜇𝑥
2
) +

1

𝐴

⋅

∞

∑

𝑘=0

(−𝜆)
𝑘

⋅ ∫

𝑥

0

𝜙 (𝑥 − 𝜉) 𝜉
(1/2)(𝑘+2)

𝐸
𝑘+1

2,(1/2)(𝑘+4)
(−𝜇𝜉
2
) 𝑑𝜉.

(12)
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In order to simplify the BTE general solution expressed
by (12), a factor 𝜌(𝑠) can be defined:

𝜌 (𝑠) fl
1

2

{1 − (−1)
[4/𝑠]
} , (13)

with [𝑘] ≡ int(𝑘). Therefore the BTE solution is expressed as

𝑢 (𝑥) =

∞

∑

𝑘=0

(−

𝐵

𝐴

)

𝑘

{

4

∑

𝑠=1

𝐷
𝜌(𝑠)
𝑢 (𝑥)|
𝑥=0

⋅ 𝑥
(1/2)(𝑘+𝑠−1)

𝐸
𝑘+1

2,(1/2)(𝑘+𝑠+1)
(−

𝐶𝑥
2

𝐴

) +

1

𝐴

⋅ ∫

𝑥

0

𝜙 (𝑥 − 𝜉)

⋅ 𝜉
(1/2)(𝑘+2)

𝐸
𝑘+1

2,(1/2)(𝑘+4)
(−

𝐶

𝐴

𝜉
2
)𝑑𝜉} .

(14)

Operator 𝐷𝜌(𝑠) represents the integer order classical
derivative, that is,𝐷𝜌 ≡ (𝑑/𝑑𝑥)𝜌, with the property𝐷0𝑢(𝑥) ≡
𝑢(𝑥).

Expression (14) is a general analytical solution of BTE in
terms of three-parameter Mittag-Leffler functions, 𝐸𝛾

𝛼,𝛽
(𝑥).

However, the solution established in [2] for the special case
with 𝑢(0) = 𝑢(0) = 0 is given by using Wiman’s functions
derivatives, that is, two-parameter Mittag-Leffler functions.

As Wiman’s functions and derivatives are part of several
software packages, as𝑀𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑎©, for instance, and three-
parameter Mittag-Leffler are not, the results will be modified
to be compatible with this fact, easing the practical approach
of the problem.

3. BTE Solution via Wiman’s
Functions and Derivatives

Here, the solution of BTE expressed by (14) is modified, in
order to be written in terms of Wiman’s functions and their
derivatives.The explicit forms of these functions are given by

𝐸
(𝑘)

𝜆,𝜇
(𝑦) ≡

𝑑
𝑘

𝑑𝑦
𝑘
𝐸
𝜆,𝜇
(𝑦) =

∞

∑

𝑗=0

(𝑗 + 𝑘)!𝑦
𝑗

𝑗!Γ (𝜆𝑗 + 𝜆𝑘 + 𝜇)

,

(𝑘 = 0, 1, 2, . . .) .

(15)

For the sake of clearness, the work will be divided into
two parts: homogeneous solution terms and inhomogeneous
solution term.

3.1. Homogeneous Solution Terms. Taking the homogeneous
part of (14), denoted by ℎ(𝑥),

ℎ (𝑥) =

∞

∑

𝑘=0

(−

𝐵

𝐴

)

𝑘

⋅

4

∑

𝑠=1

𝐷
𝜌(𝑠)
𝑢 (𝑥)|
𝑥=0
𝑥
(1/2)(𝑘+𝑠−1)

𝐸
𝑘+1

2,(1/2)(𝑘+𝑠+1)

⋅ (−

𝐶𝑥
2

𝐴

) =

∞

∑

𝑘=0

(−

𝐵

𝐴

)

𝑘

⋅

4

∑

𝑠=1

𝐷
𝜌(𝑠)
𝑢 (𝑥)|
𝑥=0
𝑥
(1/2)(𝑘+𝑠−1)

⋅

∞

∑

𝑟=0

(𝑘 + 𝑟)! (−1)
𝑟
(𝐶/𝐴)

𝑟
𝑥
2𝑟

𝑘!Γ (2𝑟 + 𝑘/2 + 𝑠/2 + 1/2)

.

(16)

If the 𝑟 and 𝑘 sums are uniformly convergent,

ℎ (𝑥) =

∞

∑

𝑟=0

(−1)
𝑟

𝑟!

(

𝐶

𝐴

)

𝑟 4

∑

𝑠=1

𝐷
𝜌(𝑠)
𝑢 (𝑥)|
𝑥=0
𝑥
2𝑟+(1/2)(𝑠−1)

,

∞

∑

𝑘=0

(𝑘 + 𝑟)!

𝑘!Γ [𝑟/2 + 𝑘/2 + (1/2) (3𝑟 + 𝑠 + 1)]

(−

𝐵√𝑥

𝐴

)

𝑘

.

(17)

Observing that the last sum can be written as the 𝑟th
derivative of Wiman’s function, the homogeneous part of the
solution is

ℎ (𝑥) =

∞

∑

𝑟=0

(−1)
𝑟

𝑟!

(

𝐶

𝐴

)

𝑟 4

∑

𝑠=1

𝐷
𝜌(𝑠)
𝑢 (𝑥)|
𝑥=0

⋅ 𝑥
2𝑟+(1/2)(𝑠−1)

𝐸
(𝑟)

1/2,(1/2)(3𝑟+𝑠+1)
(−

𝐵√𝑥

𝐴

) .

(18)

3.2. Inhomogeneous Solution Term. Calling the inhomoge-
neous term of the BTE solution 𝜓(𝑥), its expression is

𝜓 (𝑥) =

∞

∑

𝑘=0

(−

𝐵

𝐴

)

𝑘
1

𝐴

⋅ ∫

𝑥

0

𝜙 (𝑥 − 𝜉) 𝜉
(1/2)(𝑘+2)

𝐸
𝑘+1

2,(1/2)(𝑘+4)
(−

𝐶

𝐴

𝜉
2
)𝑑𝜉

=

∞

∑

𝑘=0

(−

𝐵

𝐴

)

𝑘
1

𝐴

∫

𝑥

0

𝜙 (𝑥 − 𝜉) 𝜉
𝑘/2+1

⋅

∞

∑

𝑟=0

(−1)
𝑟
(𝑘 + 1)

𝑟

𝑟!Γ (2𝑟 + 𝑘/2 + 2)

(

𝐶

𝐴

𝜉
2
)

𝑟

𝑑𝜉.

(19)

Considering the convergence of the integral and uniform
convergence of the sums, their order can be changed and it
can be written as

𝜓 (𝑥) = ∫

𝑥

0

𝜙 (𝑥 − 𝜉)

∞

∑

𝑟=0

(−1)
𝑟

𝐴𝑟!

(

𝐶

𝐴

)

𝑟

𝜉
2𝑟+1

⋅

∞

∑

𝑘=0

(−1)
𝑘
Γ (𝑘 + 𝑟 + 1) 𝜉

𝑘/2

Γ (𝑘 + 1) Γ (2𝑟 + 𝑘/2 + 2)

(

𝐵

𝐴

)

𝑘

𝑑𝜉

= ∫

𝑥

0

𝜙 (𝑥 − 𝜉)

1

𝐴

∞

∑

𝑟=0

(−1)
𝑟

𝑟!

(

𝐶

𝐴

)

𝑟

𝜉
2𝑟+1

⋅

∞

∑

𝑘=0

(𝑘 + 𝑟)!

𝑘!

(−𝐵√𝜉/𝐴)

𝑘

Γ [(1/2) 𝑟 + (1/2) 𝑘 + ((3/2) 𝑟 + 2)]

𝑑𝜉.

(20)
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It can be noticed that the last sum of (20) can be written as
the 𝑟-order derivative ofWiman’s function and, consequently,

𝜓 (𝑥) = ∫

𝑥

0

𝜙 (𝑥 − 𝜉)

1

𝐴

⋅

∞

∑

𝑟=0

(−1)
𝑟

𝑟!

(

𝐶

𝐴

)

𝑟

𝜉
2𝑟+1
𝐸
(𝑟)

1/2,2+(3/2)𝑟
(−

𝐵

𝐴

√𝜉)𝑑𝜉.

(21)

Then, defining

𝐺 (𝜉) =

1

𝐴

∞

∑

𝑟=0

(−1)
𝑟

𝑟!

(

𝐶

𝐴

)

𝑟

𝜉
2𝑟+1
𝐸
(𝑟)

1/2,2+(3/2)𝑟
(−

𝐵

𝐴

√𝜉) , (22)

it follows that

𝜓 (𝑥) = ∫

𝑥

0

𝜙 (𝑥 − 𝜉) 𝐺 (𝜉) 𝑑𝜉, (23)

according to the BTE analytical solution obtained in [2] for
𝑢(0) = 𝑢


(0) = 0.

3.3. Complete BTE Solution. Considering that 𝑢(𝑥) = ℎ(𝑥) +
𝜓(𝑥), the general analytical solution of BTE, in terms of
Wiman’s function, is

𝑢 (𝑥) =

∞

∑

𝑟=0

(−1)
𝑟

𝑟!

(

𝐶

𝐴

)

𝑟

{

4

∑

𝑠=1

𝐷
𝜌(𝑠)
𝑢 (𝑥)|
𝑥=0

⋅ 𝑥
2𝑟+(1/2)(𝑠−1)

𝐸
(𝑟)

1/2,(1/2)(3𝑟+𝑠+1)
(−

𝐵√𝑥

𝐴

) +

1

𝐴

⋅ ∫

𝑥

0

𝜙 (𝑥 − 𝜉) 𝜉
2𝑟+1
𝐸
(𝑟)

1/2,2+(3/2)𝑟
(−

𝐵

𝐴

√𝜉)𝑑𝜉} ,

(24)

with 𝜌(𝑠) fl (1/2){1 − (−1)
[4/𝑠]
} and 𝐸(𝑟)

𝛼,𝛽
(𝑧) =

(𝑑
𝑟
/𝑑𝑧
𝑟
)𝐸
𝛼,𝛽
(𝑧).

4. Conclusion

A general analytical solution of BTE defined by Caputo’s
fractional derivatives was obtained in terms of Wiman’s
functions and their derivatives.The reasoning was conducted
by using Laplace transform and Mittag-Leffler functions.

The final expression permits the calculations in practical
cases as it is built consideringWiman’s functions that are part
of the most usual numerical packages.
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