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An adaptive neural control scheme is proposed for a class of generic hypersonic flight vehicles.Themain advantages of the proposed
scheme include the following: (1) a new constraint variable is defined to generate the virtual control that forces the tracking error to
fall within prescribed boundaries; (2) RBF NNs are employed to compensate for complex and uncertain terms to solve the problem
of controller complexity; (3) only one parameter needs to be updated online at each design step, which significantly reduces the
computational burden. It is proved that all signals of the closed-loop system are uniformly ultimately bounded. Simulation results
are presented to illustrate the effectiveness of the proposed scheme.

1. Introduction

During the past decades, hypersonic flight vehicles (HFVs)
have received a great deal of attention. They may represent
more cost-efficient and reliable access to space routine and
are especially suitable for prompt global response, as well
as offering worldwide air superiority because of the high
speed and endurance [1–5]. In this paper a nonlinear generic
model of HFVs is adopted, which has been widely used by
various researchers [6–8]. The dynamics of HFVs are highly
nonlinear with strong couplings between the propulsive and
aerodynamic effects. The requirements of flight stability and
high speed response make the onboard flight control of
HFVs quite difficult [9, 10]. Besides, modeling inaccuracy
can result in strong adverse effects on the performance of
HFVs control systems. Thus, the controller design for HFVs
is challenging and must guarantee closed-loop stability and
desired performance [11].

Recently, feedback control strategy based on nonlinear
control theory has been used for HFVs, such as sliding
mode control [3], minimax linear quadratic regulator control
[12, 13], genetic algorithm [14], and sequential loop closure
controller design [15]. In [16], the adaptive backstepping

method was used to design controller for the HFVs model,
while fuzzy logic and neural networks were used to approx-
imate the unknown system dynamics in [17–19]. Adaptive
dynamic surface control schemes were proposed by [20, 21]
to avoid the derivatives of nonlinear functions.The nonlinear
dynamic inversion method was used to design a robust
controller. In [3, 14], feedback linearization techniques were
applied to design nonlinear controllers for the longitudinal
motion of a hypersonic aircraft containing aerodynamic
uncertain parameters. This approach leads to a complicated
high-order Lie derivatives and is hard to perform a robustness
analysis when considering uncertainties. In [22], a neural
network controller for a nonlinear flight dynamic system was
designed by using the adaptationmechanism to deal with the
effects of aerodynamic modeling errors.

In the control design for HFVs, an important issue is
tracking performance. Traditionally, the controller for HFVs
guarantees the tracking error convergence to a residual set.
Moreover, the transient behavior such as overshoot, under-
shoot, and convergence rate are difficult to be established
analytically. In [23–25], a prescribed performance scheme is
proposed for one-class nonlinear systems; this approach is
to construct a prescribed performance function that converts
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the tracking error into a new variable. Therefore the tracking
performance can be characterized by a prescribed constraint
function. Besides, the prescribed performance approach with
new definition is applied in a class of uncertain strict-
feedback systems [26], strict-feedback time-delay systems
[27], and MIMO systems [28], respectively.

A drawback of adaptive NNs [22] or FLSs [29, 30]
schemes is that the number of adaptation laws generally
depends on the neural network nodes or the fuzzy rules.That
is, with an increase of the nodes or the rules, the parameters to
be estimated may be greatly increased. To solve this problem,
we propose a newmethod by estimating the norm of the NNs
weights rather than estimating every itemof theweight vector
[31–33].

In this paper, we separate the longitudinal model of
HFVs into two parts: the velocity subsystem and the altitude
subsystem. Velocity and altitude controllers are designed
separately. For the velocity subsystem, a dynamic inversion
controller with radial basis function neural networks (RBF
NNs) is proposed to track a desired velocity trajectory. The
altitude subsystem is transformed into a strict-feedback form.
Then an adaptive backstepping controller is designed to track
a desired altitude trajectory. The main contribution of this
paper is described as follows:

(1) We introduce a performance function, and a new
error constraint variable is used as a virtual tracking
error variable to ensure the prescribed transient
performance. By extending the prescribed tracking
performance technique proposed in [23, 24] to HFVs,
it is shown that the tracking errors can converge
to predefined arbitrarily small residue sets with pre-
scribed convergence rate and maximum overshoot.

(2) RBF NNs are employed to compensate for complex
and uncertain terms to solve the problemof controller
complexity. By using the minimal learning technique
[31–33], only one parameter needs to be updated
online at each design step regardless of theNNs input-
output dimension and the number of NNs nodes.
As a result, the number of adaptation laws, which
generally depends on the neural network nodes, and
the computational burden are greatly reduced.

(3) With the bounded of the virtual control gain 𝑔
𝑖
(⋅),

the singularity problem by the estimation of 𝑔
𝑖
(⋅)

is avoided without any effort, and both low and up
bounded will not appear in the control law and will
be used only for analysis; they can be unknown.

The rest of this paper is organized as follows. In Section 2,
the nonlinear longitudinal dynamic model of HFVs is pre-
sented. The controllers design and the stability analysis are
given in Section 3. The simulation results are illustrated in
Section 4, followed by conclusions of this paper in Section 5.

2. Problem Formulation and Preliminaries

2.1. Longitudinal Model of HFVs. The model considered in
this paper is taken from the NASA Langley Research Center

[2, 3]. Cruising at a Mach number of 15 and at an altitude of
110000 ft, the longitudinal hypersonic flight model is given by

�̇� =
𝑇 (𝑉, 𝛽) cos𝛼 − 𝐷 (𝑉, 𝛼)

𝑚
−
𝜇 sin 𝛾
𝑟2

,

ℎ̇ = 𝑉 sin 𝛾,

̇𝛾 =
𝐿 (𝑉, 𝛼) + 𝑇 (𝑉, 𝛽) sin𝛼

𝑚𝑉
−
(𝜇 − 𝑉

2
𝑟) cos 𝛾
𝑉𝑟2

,

�̇� = 𝑞 − ̇𝛾,

̇𝑞 =
𝑀
𝑦𝑦
(𝑉, 𝛼, 𝑞, 𝛿

𝐸
)

𝐼
𝑦𝑦

,

(1)

where 𝑉 is the velocity, 𝛾 the flight path angle, ℎ the altitude,
𝛼 the attack angle, 𝑞 the pitch rate, 𝛿

𝐸
the elevator deflection,

and 𝛽 the throttle setting. 𝑇(𝑉, 𝛽), 𝐷(𝑉, 𝛼), 𝐿(𝑉, 𝛼), and
𝑀
𝑦𝑦
(𝑉, 𝛼, 𝑞, 𝛿

𝐸
) represent the thrust, drag, lift-force, and

pitching moment, respectively, which can be expressed as

𝑇 (𝑉, 𝛽) =
𝜌𝑉

2
𝑆𝐶
𝑇

2
,

𝐿 (𝑉, 𝛼) =
𝜌𝑉

2
𝑆𝐶
𝐿

2
,

𝐷 (𝑉, 𝛼) =
𝜌𝑉

2
𝑆𝐶
𝐷

2
,

𝑀
𝑦𝑦
=
1
2
𝜌𝑉

2
𝑆𝑐 [𝐶
𝑀 (𝛼) +𝐶𝑀 (𝛿𝐸) +𝐶𝑀 (𝑞)] ,

(2)

with

𝐶
𝐿
= 0.6203𝛼,

𝐶
𝐷
= 0.6450𝛼2 + 0.0043378𝛼+ 0.003772,

𝐶
𝑇
=
{

{

{

0.02576𝛽 if 𝛽 < 1

0.0224 + 0.00336𝛽 if 𝛽 > 1,

𝑟 = ℎ +𝑅
𝐸
,

𝐶
𝑀 (𝛼) = − 0.035𝛼

2
+ 0.036617 (1+Δ𝐶

𝑀𝛼
) 𝛼

+ 5.3261× 10−6,

𝐶
𝑀
(𝑞) = (

𝑐

2𝑉
)𝑞 (−6.796𝛼2 + 0.3015𝛼− 0.2289) ,

𝐶
𝑀
(𝛿
𝐸
) = 𝑐
𝑒
(𝛿
𝐸
−𝛼) .

(3)

The nominal values of inertial and aerodynamic parame-
ters are given in Table 1. Besides, at trimmed cruise condition,
𝑉 = 15060 ft/s, ℎ = 11000 ft, 𝛾 = 0 rad, 𝛼 = 0.0315, and
𝑞 = 0 rad/s.

The engine dynamics can be modeled by a second-order
system:

̈𝛽 = − 2𝜉𝜔
𝑛
̇𝛽 − 𝜔

2
𝑛
𝛽+𝜔

2
𝑛
𝛽
𝑐
. (4)
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Table 1: Parameters of the HFV.

Symbol Parameter Value
𝑐 Mean aerodynamic chord 80 ft
𝐼
𝑦𝑦

Moment of inertia 7 × 106 slug⋅ft2

𝑆 Reference area 3603 ft2

𝜌 Air density 0.24325 × 10−4 slugs⋅ft−3

𝑚 Mass of aircraft 9375 slug
𝑅
𝐸

Radius of the earth 20903500 ft
𝜇 Gravitational constant 1.39 × 1016 ft3/s2

Therefore, by selecting the commanded value 𝛽
𝑐
as the

new control input, theHFV is composed of five state variables
𝑋 = [𝑉, ℎ, 𝛾, 𝛼, 𝑞]

𝑇 and two control inputs 𝑈 = [𝛽
𝑐
, 𝛿
𝐸
]
𝑇,

while the outputs to be controlled are selected as 𝑌 =

[𝑉, ℎ]
𝑇.The design objective is such that the outputs track the

desired altitude and velocity commands 𝑌
𝑑
= [𝑉
𝑑
, ℎ
𝑑
]
𝑇 with

prescribed tracking performance.
From (1), it can be inferred that the main contribution

in the change of flight vehicle velocity is from the throttle
setting𝛽

𝑐
.The altitude change is relatedmainly to the elevator

deflection 𝛿
𝐸
. Thus, it is reasonable to divide the system into

two loops: the velocity loop and the altitude loop.
Note that the thrust term 𝑇 sin𝛼 is generally much

smaller than the lift 𝐿, velocity 𝑉 is high, and the flight path
angle 𝛾 is typically very small during the trimmed cruise
condition, which justify the following approximation.

Assumption 1 (see [7, 19]). The thrust term 𝑇 sin𝛼 ≈ 0, and
the term 𝑉 sin 𝛾 ≈ 𝑉𝛾.

Defining that 𝜃 denotes the pitch angle, we have 𝜃 = 𝛼+𝛾.
Then, we define state variables as 𝑥 = [𝑥1, 𝑥2, 𝑥3, 𝑥4]

𝑇, with
𝑥1 = ℎ, 𝑥2 = 𝛾, 𝑥3 = 𝜃, and 𝑥4 = 𝑞. For simplicity, let 𝑥

𝑖
=

[𝑥1, . . . , 𝑥𝑖]
𝑇, so the altitude subsystem can be written as

�̇�1 = 𝑓1 (𝑥1) + 𝑔1 (𝑥1) 𝑥2,

�̇�2 = 𝑓2 (𝑥2) + 𝑔2 (𝑥2) 𝑥3,

�̇�3 = 𝑓3 (𝑥3) + 𝑔3 (𝑥3) 𝑥4,

�̇�4 = 𝑓4 (𝑥4) + 𝑔4 (𝑥4) 𝛿𝐸,

𝑦 = 𝑥1,

(5)

where

𝑓1 (𝑥1) = 0,

𝑓3 (𝑥3) = 0,

𝑓2 (𝑥2) = −
𝜌𝑉

2
𝑆

2𝑚𝑉
0.6203𝑥2 −

(𝜇 − 𝑉
2
𝑟)

𝑉𝑟2
cos𝑥2,

𝑓4 (𝑥4) =
𝑐𝜌𝑉

2
𝑆

2𝐼
𝑦𝑦

(𝐶
𝑀
(𝑥3 −𝑥2) +𝐶𝑀 (𝑥4)

− 0.0292 (𝑥3 −𝑥2)) ,

𝑔1 (𝑥1) = 𝑉,

𝑔2 (𝑥2) =
𝜌𝑉

2
𝑆

2𝑚𝑉
0.6203,

𝑔3 (𝑥3) = 1,

𝑔4 (𝑥4) =
𝑐
𝑒
𝑐𝜌𝑉

2
𝑆

2𝐼
𝑦𝑦

.

(6)

Since the values of the inertial and the aerodynamic
parameters are uncertain, the aforementioned 𝑓

𝑖
(𝑥
𝑖
) and

𝑔
𝑖
(𝑥
𝑖
), 𝑖 = 1, 2, 3, 4, are unknown smooth functions. More-

over, it is easy to check that 𝑔
𝑖
(𝑥
𝑖
) are always strictly positive.

With these observations in mind, we have the following
assumption.

Assumption 2. There exist positive constants 𝑏
𝑖
and 𝑑

𝑖
such

that 0 < 𝑏
𝑖
≤ |𝑔
𝑖
(𝑥
𝑖
)| ≤ 𝑑

𝑖
.

Remark 3. It is worth noting that, in the proposed scheme,
both 𝑏

𝑖
and 𝑑

𝑖
will not appear in the control law and will be

used only for analysis; they can be unknown.

Assumption 4. 𝑉
𝑑
and its first derivative are known and

bounded, while ℎ
𝑑
and its first four derivatives are continuous

and bounded.

2.2. Description of RBF NNs. In this paper, RBF NNs will be
employed to approximate unknown functions. Mathemati-
cally, an RBF NN can be expressed as

𝐹 (𝜉) = 𝑊
𝑇
𝜓 (𝜉) , (7)

where 𝐹 ∈ R and 𝜉 ∈ R𝑛 are the NN outputs and input,
𝑊 ∈ R𝑛 is the weight vector, and 𝜓(𝜉) = [𝜓1(𝜉), . . . , 𝜓𝑁(𝜉)]

𝑇

is the basis function vector with 𝜓
𝑖
(𝜉) commonly chosen as

the Gaussian functions:

𝜓
𝑖 (𝜉) =

1
√2𝜋𝜙

exp(−
𝜉 − 𝜉𝑖


2

2𝜙2
) ,

𝜙 > 0, 𝑖 = 0, . . . , 𝑁,

(8)

where 𝜉
𝑖
∈ R𝑛 and 𝜙 ∈ R are constants called the center and

width of the basis function, respectively.

Lemma 5 (see [17]). Given any continuous function 𝐹(𝜉) :
Ω
𝜉
→ R withΩ

𝜉
⊂ R𝑛 a compact set and any constant 𝜖 > 0,

by appropriately choosing 𝜙 and 𝜉
𝑖
, 𝑖 = 1, . . . , 𝑁, for some

sufficiently large integer 𝑁, there exists an RBF NN𝑊∗𝑇𝜓(𝜉)
such that

𝐹 (𝜉) = 𝑊
∗𝑇
𝜓 (𝜉) +Δ (𝜉) ,

Δ (𝜉)
 ≤ 𝜖, ∀𝜉 ∈ Ω𝜉, (9)

where𝑊∗ is the optimal weight vector defined as

𝑊
∗
= arg min

𝑊∈R𝑛
{sup
𝜉∈Ω
𝜉


Ψ (𝜉) − 𝑊

𝑇
𝜓 (𝜉)


} , (10)

and Δ(𝜉) denotes the approximation error.
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3. Adaptive Neural Controller Design

3.1. Performance and Error Transformation Functions. Let the
tracking error be defined as

𝑒 = 𝑦−𝑦
𝑑
, (11)

where 𝑦
𝑑
is the desired trajectory. Similar to [23, 24], the

mathematical expression of the prescribed tracking perfor-
mance is given by

− 𝜅𝜀 (𝑡) < 𝑒 (𝑡) < 𝜏𝜀 (𝑡) , (12)

where 𝜅 and 𝜏 are given positive constants and the smooth
function is given by

𝜀 (𝑡) = (𝜀0 − 𝜀∞) exp (−𝑙𝑡) + 𝜀∞, (13)

in which 𝜀0 is the initial value of 𝜀(𝑡), 𝜀∞ represents the value
of 𝜀(𝑡) at the steady state, and 𝑙 is the decreasing rate of 𝜀(𝑡).
Then, introduce the following error transformation:

𝑆 (𝑧) =
𝑒 (𝑡)

𝜀 (𝑡)
, (14)

where 𝑧 is the transformed error and 𝑆(𝑧) is a smooth,
strictly increasing, and thus invertible function possessing
the following properties:

lim
𝑧→−∞

𝑆 (𝑧) = − 𝜅,

lim
𝑧→+∞

𝑆 (𝑧) = 𝜏.

(15)

Note that if 𝑧 is kept bounded, we have −𝜅 < 𝑆(𝑧) < 𝜏,
and thus (12) holds. The inverse transformation of 𝑆(𝑧) can
be written as

𝑧 = 𝑆
−1
(
𝑒 (𝑡)

𝜀 (𝑡)
) := Θ(

𝑒 (𝑡)

𝜀 (𝑡)
) . (16)

In this paper, we choose

𝑧 = Θ(
𝑒 (𝑡)

𝜀 (𝑡)
) = ln(𝜅 + 𝑒 (𝑡) /𝜀 (𝑡)

𝜏 − 𝑒 (𝑡) /𝜀 (𝑡)
) . (17)

Differentiating (17) yields

�̇� = 𝜂 ̇𝑦 − 𝜂𝜐, (18)

where 𝜂 = (𝜕Θ/𝜕(𝑒/𝜀))(1/𝜀) and 𝜐 = ̇𝑦
𝑑
+ 𝑒 ̇𝜀/𝜀. From the

properties of the transformation, it is clear that 𝜂 and 𝜐 are
bounded and 0 < 𝜂0 ≤ 𝜂.

Remark 6. From (12) and (13), one can see that 𝜏𝜀(0) and
−𝜅𝜀(0) serve as the upper bound of the overshoot and the
lower bound of the undershoot of 𝑒(𝑡), respectively, the
decreasing rate of 𝜀(𝑡) introduces a lower bound of the
convergence rate of 𝑒(𝑡), and max{𝜅𝜀

∞
, 𝜏𝜀
∞
} represents the

maximum allowable size of the steady-state value of 𝑒(𝑡).
Note that 𝜀(0), 𝜏, and 𝜅 should be properly chosen such that
−𝜅𝜀(0) < 𝑒(0) < 𝜏𝜀(0).

3.2. Attitude Controller Design via Backstepping. After the
error transformation (18), the altitude subsystem (5) is equiv-
alent to

�̇�1 = 𝜂1𝑔1 (𝑥1) 𝑥2 − 𝜂1𝜐1,

�̇�2 = 𝑓2 (𝑥2) + 𝜂2𝑔2 (𝑥2) 𝑥3,

�̇�3 = 𝜂3𝑔3 (𝑥3) 𝑥4,

�̇�4 = 𝜂4𝑔4 (𝑥4) 𝛿𝐸 +𝑓4 (𝑥4) ,

𝑦 = 𝑥1,

(19)

where 0 < 𝜂10 ≤ 𝜂1 and 𝜂
𝑘
= 𝜂
𝑘0 = 1, 𝑘 = 2, 3, 4. The

stabilization of the transformed system (19) is sufficient to
guarantee the prescribed tracking performance of system (5).

Based on the backstepping approach, a trajectory tracking
controller is designed for the dynamics model given in (19).
The design procedure contains 4 steps, and the actual control
law will be deduced at the last step. For convenience, let 𝐹

𝑖
(𝜉
𝑖
)

and Ω
𝜉
𝑖

denote the unknown function to be estimated by
RBF NNs and the corresponding compact set in the 𝑖th step,
respectively. Then by using Lemma 5, we have

𝐹
𝑖
(𝜉
𝑖
) = 𝑊

∗𝑇

𝑖
𝜓
𝑖
(𝜉
𝑖
) +Δ
𝑖
(𝜉
𝑖
) ,

Δ 𝑖 (𝜉𝑖)
 ≤ 𝜖𝑖,

(20)

where 𝜓
𝑖
(𝜉
𝑖
) and 𝜉

𝑖
denote the vector valued function and the

RBF NN input in the step with proper dimensions that are
given below.

Step 1. Let 𝑧1 given by (19) be the first error variable. Define
𝑧2 = 𝑥2 − 𝑢1, where 𝑢1 is the first virtual control signal. Then
the derivative of 𝑧1 can be expressed as

�̇�1 = 𝜂1𝑔1 (𝑥1) (𝑧2 +𝑢1) −
1
2
𝑧1 +𝐹1 (𝜉1) , (21)

where 𝐹1(𝜉1) = (1/2)𝑧1 − 𝜂1𝜐1 and 𝜉1 := [𝑥1, ℎ𝑑, ℎ̇𝑑, 𝜀1]
𝑇
⊂

R4. Since 𝐹1(𝜉1) is unknown, we employ an RBF NN to
approximate it on a compact set Ω

𝜉1
⊂ R4. By properly

choosing the basis function vectors we have

𝐹1 (𝜉1) = 𝑊
∗𝑇

1 𝜓1 (𝜉1) +Δ 1 (𝜉1) ,
Δ 1 (𝜉1)

 ≤ 𝜖1, (22)

where 𝜖1 is a positive constant. With respect to the unknown
optimal weight vector in (22), define

𝜗1 =

𝑊
∗

1

2

𝜂10𝑏1
. (23)

Besides, let 𝜗1 be the estimation of 𝜗1 and 𝜗1 := 𝜗1 − 𝜗1.
Consider the first Lyapunov function

𝐿1 =
1
2
𝑧
2
1 +
𝜂10𝑏1
2𝜆1

𝜗
2
1 . (24)

Taking the time derivation of (24) yields

�̇�1 = 𝑧1𝜂1𝑔1 (𝑥1) 𝑧2 + 𝑧1𝜂1𝑔1 (𝑥1) 𝑢1 −
1
2
𝑧
2
1

+ 𝑧1𝑊
∗𝑇

1 𝜓1 (𝜉1) + 𝑧1Δ 1 (𝜉1) +
𝜂10𝑏1
𝜆1
𝜗1
̇̂
𝜗1.

(25)
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Using Young’s inequality and (23), it can be verified that

𝑧1𝑊
∗𝑇

1 𝜓1 (𝜉1) ≤
1
2
𝑧
2
1
𝑊
∗

1

2
𝜓
𝑇

1 (𝜉1) 𝜓1 (𝜉1) +
1
2

≤
𝜂10𝑏1
2
𝜗1𝑧

2
1𝜓
𝑇

1 (𝜉1) 𝜓1 (𝜉1) +
1
2
,

𝑧1Δ 1 (𝜉1) ≤
1
2
𝑧
2
1 +

1
2
𝜖
2
1 .

(26)

Thus, (25) can be rewritten as

�̇�1 ≤ 𝑧1𝜂1𝑔1 (𝑥1) 𝑧2 + 𝑧1𝜂1𝑔1 (𝑥1) 𝑢1

+
𝜂10𝑏1
2
𝜗1𝑧

2
1𝜓
𝑇

1 (𝜉1) 𝜓1 (𝜉1) +
1
2
+
1
2
𝜖
2
1

+
𝜂10𝑏1
𝜆1
𝜗1 (

̇̂
𝜗1 −

𝜆1
2
𝑧
2
1𝜓
𝑇

1 (𝜉1) 𝜓1 (𝜉1)) ,

(27)

which suggests that we choose the first virtual control signal
𝑢1 as

𝑢1 = − 𝑐1𝑧1 −
1
2
𝜗1𝑧1𝜓

𝑇

1 (𝜉1) 𝜓1 (𝜉1) . (28)

Let

̇̂
𝜗1 =

𝜆1
2
𝑧
2
1𝜓
𝑇

1 (𝜉1) 𝜓1 (𝜉1) − 𝜆1𝜎1𝜗1, 𝜗1 (0) ≥ 0, (29)

where 𝑐1, 𝜆1, and 𝜎1 are positive design parameters. Then
substituting (28) and (29) into (27), we get

�̇�1 ≤ − 𝜂10𝑏1𝑐1𝑧
2
1 + 𝑧1𝜂1𝑔1 (𝑥1) 𝑧2 − 𝜂10𝑏1𝜎1𝜗1𝜗1 +

1

2

+
1

2
𝜖
2
1 .

(30)

Step i (𝑖 = 2, 3). Define 𝑧
𝑖+1 = 𝑥𝑖+1 − 𝑢𝑖, where 𝑢𝑖 is the 𝑖th

virtual control signal. Then the time derivation of 𝑧
𝑖
is

�̇�
𝑖
= 𝜂
𝑖
𝑔
𝑖
(𝑥
𝑖
) 𝑧
𝑖+1 + 𝜂𝑖𝑔𝑖 (𝑥𝑖) 𝑢𝑖 − 𝜂𝑖−1𝑔𝑖−1 (𝑥𝑖−1) 𝑧𝑖−1

−
1
2
𝑧
𝑖
+𝐹
𝑖
(𝜉
𝑖
) ,

(31)

where 𝐹
𝑖
(𝜉
𝑖
) = 𝑓
𝑖
(𝑥
𝑖
) + 𝜂
𝑖−1𝑔𝑖−1(𝑥𝑖−1)𝑧𝑖−1 + (1/2)𝑧𝑖 − �̇�𝑖−1 and

𝜉
𝑖
= [𝑥
𝑖
, ℎ
𝑑
, . . . , ℎ

(𝑖)

𝑑
, 𝜗1, . . . , 𝜗𝑖, 𝜀1]

𝑇
∈ Ω
𝜉
𝑖

. Consider the 𝑖th
Lyapunov function

𝐿
𝑖
= 𝐿
𝑖−1 +

1
2
𝑧
2
𝑖
+
𝜂
𝑖0𝑏𝑖
2𝜆
𝑖

𝜗
2
𝑖
, (32)

where 𝜆
𝑖
is a positive design parameter, 𝜗

𝑖
= 𝜗
𝑖
− 𝜗
𝑖
with 𝜗

𝑖
=

‖𝑊
∗

𝑖
‖
2
/𝜂
𝑖0𝑏𝑖. By taking the time derivation of (32), we have

�̇�
𝑖
= �̇�
𝑖−1 − 𝜂𝑖−1𝑔𝑖−1 (𝑥𝑖−1) 𝑧𝑖−1𝑧𝑖 + 𝑧𝑖𝜂𝑖𝑔𝑖 (𝑥𝑖) 𝑧𝑖

+ 𝑧
𝑖
𝜂
𝑖
𝑔
𝑖
(𝑥
𝑖
) 𝑢
𝑖
−
1
2
𝑧
2
𝑖
+ 𝑧
𝑖
𝐹
𝑖
(𝜉
𝑖
) +
𝜂
𝑖0𝑏𝑖
𝜆
𝑖

𝜗
𝑖

̇̂
𝜗
𝑖
.

(33)

Similar to (26), we have

�̇�
𝑖
≤ �̇�
𝑖−1 − 𝜂𝑖−1𝑔𝑖−1 (𝑥𝑖−1) 𝑧𝑖−1𝑧𝑖 + 𝑧𝑖𝜂𝑖𝑔𝑖 (𝑥𝑖) 𝑧𝑖+1

+ 𝑧
𝑖
𝜂
𝑖
𝑔
𝑖
(𝑥
𝑖
) 𝑢
𝑖
+
𝜂
𝑖0𝑏𝑖
2
𝜗
𝑖
𝑧
2
𝑖
𝜓
𝑇

𝑖
(𝜉
𝑖
) 𝜓
𝑖
(𝜉
𝑖
)

+
𝜂
𝑖0𝑏𝑖
𝜆
𝑖

𝜗
𝑖
(
̇̂
𝜗
𝑖
−
𝜆
𝑖

2
𝑧
2
𝑖
𝜓
𝑇

𝑖
(𝜉
𝑖
) 𝜓
𝑖
(𝜉
𝑖
)) +

1
2
+
1
2
𝜖
2
𝑖
.

(34)

Choose the 𝑖th virtual control signal

𝑢
𝑖
= − 𝑐
𝑖
𝑧
𝑖
−
1
2
𝜗
𝑖
𝑧
𝑖
𝜓
𝑇

𝑖
(𝜉
𝑖
) 𝜓
𝑖
(𝜉
𝑖
) , (35)

where 𝜗
𝑖
is updated by

̇̂
𝜗
𝑖
=
𝜆
𝑖

2
𝑧
2
𝑖
𝜓
𝑇

𝑖
(𝜉
𝑖
) 𝜓
𝑖
(𝜉
𝑖
) − 𝜆
𝑖
𝜎
𝑖
𝜗
𝑖
, 𝜗
𝑖 (0) ≥ 0, (36)

with 𝑐
𝑖
, 𝜆
𝑖
, and 𝜎

𝑖
being positive design parameters. Substitut-

ing (35), (36), and (30) into (34), we get

�̇�
𝑖
≤ −

𝑖

∑

𝑘=1
𝜂
𝑘0𝑏𝑘𝑐𝑘𝑧

2
𝑘
+ 𝑧
𝑖
𝜂
𝑖
𝑔
𝑖
(𝑥
𝑖
) 𝑧
𝑖+1 −

𝑖

∑

𝑘=1
𝜂
𝑘0𝑏𝑘𝜎𝑘𝜗𝑘𝜗𝑘

+

𝑖

∑

𝑘=1

1
2
(1+ 𝜖2

𝑘
) .

(37)

Step 4. The time derivative of 𝑧4 is

�̇�4 = − 𝜂3𝑔3 (𝑥3) 𝑧3 + 𝜂4𝑔4 (𝑥4) 𝛿𝐸 −
1
2
𝑧4 +𝐹4 (𝜉4) , (38)

where 𝐹4(𝜉4) = 𝑓4(𝑥4) + 𝜂3𝑔3(𝑥3)𝑧3 + (1/2)𝑧4 − �̇�3 and 𝜉4 =
[𝑥4, ℎ𝑑, . . . , ℎ

(4)
𝑑
, 𝜗1, 𝜗2, 𝜗3, 𝜀ℎ]

𝑇
∈ Ω
𝜉4
⊂ R13. Let

𝐿4 = 𝐿3 +
1
2
𝑧
2
4 +
𝜂40𝑏4
2𝜆4

𝜗
2
4 , (39)

where 𝜆4 is a positive design parameter and 𝜗4 = 𝜗4 −𝜗4 with
𝜗4 = ‖𝑊

∗

4 ‖
2
/𝜂40𝑏4. Differentiating (39) we have

�̇�4 = �̇�3 +
𝜂40𝑏4
𝜆4
𝜗4
̇̂
𝜗4 − 𝑧4𝜂3𝑔3 (𝑥3) 𝑧3

+ 𝑧4𝜂4𝑔4 (𝑥4) 𝛿𝐸 −
1
2
𝑧
2
4 + 𝑧4𝐹4 (𝜉4) .

(40)

Similar to (26), (40) can be rewritten as

�̇�4 ≤ �̇�3 − 𝑧4𝜂3𝑔3 (𝑥3) 𝑧3 + 𝑧4𝜂4𝑔4 (𝑥4) 𝛿𝐸

+
𝜂40𝑏4
2
𝜗4𝑧

2
4𝜓
𝑇

4 (𝜉4) 𝜓4 (𝜉4) +
1
2
+
1
2
𝜖
2
4

+
𝜂40𝑏4
𝜆4
𝜗4 (

̇̂
𝜗4 −

𝜆4
2
𝑧
2
4𝜓
𝑇

4 (𝜉4) 𝜓4 (𝜉4)) .

(41)

Choose the control signal

𝛿
𝐸
= − 𝑐4𝑧4 −

1
2
𝜗4𝑧4𝜓

𝑇

4 (𝜉4) 𝜓4 (𝜉4) , (42)
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where 𝜗4 is updated by

̇̂
𝜗4 =

𝜆4
2
𝑧
2
4𝜓
𝑇

4 (𝜉4) 𝜓4 (𝜉4) − 𝜆4𝜎4𝜗4, 𝜗4 (0) ≥ 0, (43)

with 𝑐4, 𝜆4, and 𝜎4 being positive design parameters. Substi-
tuting (42), (43), and (37) into (41), we arrive at

�̇�4 ≤ −
4
∑

𝑘=1
𝑐
𝑘
𝜂
𝑘0𝑏𝑘𝑧

2
𝑘
−

4
∑

𝑘=1
𝜂
𝑘0𝑏𝑘𝜎𝑘𝜗𝑘𝜗𝑘

+

4
∑

𝑘=1
(
1
2
+
1
2
𝜖
2
𝑘
) .

(44)

Remark 7. TheRBFNNs are used to compensate for the com-
plex and uncertain terms to solve the problem of controller
complexity, and the repeated derivation of virtual control
signal 𝑢

𝑖
can be avoided. Compared with the neural based

control [16, 21], in each design step, by using the estimation of
the norm of the NNs weights, only one parameter needs to be
updated online; therefore the design procedure can be greatly
simplified and the computational burden is greatly reduced.
Moreover, the lower bound of the virtual control coefficient
𝜂
𝑖
𝑔
𝑖
is used to avoid the singularity problem without any

additional effort.

Remark 8. Since the approximation ability of RBF NNs is on
a compact set, we can only guarantee the semiglobal stability
of the control scheme.

Theorem9. Consider system (5) under the Assumptions 2 and
4, with the error transformation (17), the virtual control signals
(28) and (35), the control law (42), and the adaptive laws
(29), (36), and (43). Then all closed-loop signals are uniformly
bounded and the prescribed tracking performance (12) can be
guaranteed.

Proof. Using the following facts:

− 𝜗
𝑖
𝜗
𝑖
≤ −

1
2
𝜗
2
𝑖
+
1
2
𝜗
2
𝑖
, 𝑖 = 1, . . . , 4, (45)

we rewrite (44) as

�̇�4 ≤ −
4

∑

𝑘=1
𝑐
𝑘
𝜂
𝑘0𝑏𝑘𝑧

2
𝑘
−

4
∑

𝑘=1

1
2
𝜂
𝑘0𝑏𝑘𝜎𝑘𝜗

2
𝑘
+ 𝜍, (46)

where

𝜍 =

4
∑

𝑘=1

1
2
𝜂
𝑘0𝑏𝑘𝜎𝑘𝜗

2
𝑘
+

4
∑

𝑘=1
(
1
2
+
1
2
𝜖
2
𝑘
) . (47)

Let

ℎ = min {2𝜂
𝑖0𝑏𝑖𝑐𝑖, 𝜆𝑖𝜎𝑖, 𝑖 = 1, . . . , 4} . (48)

Then we have

�̇�4 ≤ − ℎ𝐿4 + 𝜍. (49)

Solving (49) gives

0 ≤ 𝐿4 (𝑡) ≤
𝜍

ℎ
+ (𝐿4 (0) −

𝜍

ℎ
) 𝑒
−ℎ𝑡
, 𝑡 ≥ 0, (50)

which implies that 𝐿4, 𝑧𝑖, 𝜗𝑖, and 𝜗𝑖 are bounded. Since 𝑧1 is
bounded, according to the error transformation of (15), to (17)
we can obtain that−𝜅 < 𝑆(𝑧) < 𝜏; as a result, we have−𝜅𝜀(𝑡) <
𝑒(𝑡) < 𝜏𝜀(𝑡); that is, the prescribed tracking performance is
guaranteed. This completes the proof.

3.3. Velocity Controller Design via Dynamic Inversion. The
velocity subsystem of (1) can be rewritten as follows:

�̇� = 𝑓
𝑉
(𝑥4, 𝑉) + 𝑔𝑉 (𝑥4, 𝑉) 𝛽𝑐, (51)

where 𝑓
𝑉
(𝑥4, 𝑉) and 𝑔𝑉(𝑥4, 𝑉) are unknown nonlinear func-

tion 𝑔
𝑉
(𝑥4, 𝑉) ≥ 𝑏𝑉 > 0. Then define the velocity tracking

error as 𝑒
𝑉
= 𝑉 − 𝑉

𝑑
. According to (17) and (18) we obtain

�̇�
𝑉
= − 𝜂
𝑉
𝜐
𝑉
+ 𝜂
𝑉
𝑓
𝑉
(𝑥4, 𝑉) + 𝜂𝑉𝑔𝑉 (𝑥4, 𝑉) 𝛽𝑐. (52)

We assume that 0 < 𝜂
𝑉0 ≤ 𝜂𝑉. The transformed system

dynamics of (52) can be rewritten as

�̇�
𝑉
= 𝜂
𝑉
𝑔
𝑉
(𝑥4, 𝑉) 𝛽𝑐 −

1
2
𝑧
𝑉
+𝐹
𝑉
(𝜉
𝑉
) , (53)

where 𝐹
𝑉
(𝜉
𝑉
) = (1/2)𝑧

𝑉
− 𝜂
𝑉
𝜐
𝑉
+ 𝜂
𝑉
𝑓
𝑉
(𝑥4, 𝑉) and 𝜉𝑉 :=

[𝑥4, 𝑉, �̇�𝑑, 𝜀𝑉]
𝑇
∈ Ω
𝜉
𝑉

. Since 𝐹
𝑉
(𝜉
𝑉
) is an unknown nonlinear

function, we use an RBF NN to approximate it:

𝐹
𝑉
(𝜉
𝑉
) = 𝑊

∗𝑇

𝑉
𝜓
𝑉
(𝜉
𝑉
) +Δ
𝑉
(𝜉
𝑉
) ,

Δ𝑉 (𝜉𝑉)
 ≤ 𝜖𝑉.

(54)

The control law and the adaptive update law are designed
as follows:

𝛽
𝑐
= − 𝑐
𝑉
𝑧
𝑉
−
1
2
𝑧
𝑉
𝜗
𝑉
𝜓
𝑇

𝑉
(𝜉
𝑉
) 𝜓
𝑉
(𝜉
𝑉
) ,

̇̂
𝜗
𝑉
=
𝜆
𝑉

2
𝑧
2
𝑉
𝜓
𝑇

𝑉
(𝜉
𝑉
) 𝜓
𝑉
(𝜉
𝑉
) − 𝜆
𝑉
𝜎
𝑉
𝜗
𝑉
,

(55)

where 𝜗
𝑉
is the estimate of 𝜗

𝑉
= ‖𝑊

∗

𝑉
‖
2
/𝜂
𝑉0𝑏𝑉, and 𝑐𝑉,

𝛾
𝑉
, and 𝜎

𝑉
are positive design parameters. Consider the

Lyapunov function

𝐿
𝑉
=
1
2
𝑧
2
𝑉
+
𝜂
𝑉0𝑏𝑉
2𝜆
𝑉

𝜗
2
𝑉
. (56)

Differentiating 𝐿
𝑉
we have

�̇�
𝑉
≤ 𝑧
𝑉
𝜂
𝑉0𝑏𝑉𝛽𝑐 +

𝜂
𝑉0𝑏𝑉
2
𝑧
2
𝑉
𝜗𝜓
𝑇

𝑉
(𝜉1) 𝜓𝑉 (𝜉𝑉)

+
𝜂
𝑉0𝑏𝑉
𝜆
𝑉

𝜗
𝑉
(
̇̂
𝜗
𝑉
−
𝜆
𝑉

2
𝑧
2
𝑉
𝜓
𝑇

𝑉
(𝜉1) 𝜓𝑉 (𝜉𝑉)) +

1
2

+
1
2
𝜖
2
𝑉
.

(57)

Substituting (55) into (57) then

�̇�
𝑉
≤ − 𝑐
𝑉
𝜂
𝑉0𝑏𝑉𝑧

2
𝑉
− 𝜂
𝑉0𝑏𝑉𝜎𝑉𝜗𝑉𝜗𝑉 +

1
2
+
1
2
𝜖
2
𝑉
, (58)
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with inequation

− 𝜗
𝑉
𝜗
𝑉
≤ −

1
2
𝜗
2
𝑉
+
1
2
𝜗
2
, (59)

and then

�̇�
𝑉
≤ − 𝑐
𝑉
𝜂
𝑉0𝑏𝑉𝑧

2
𝑉
−
1
2
𝜂
𝑉0𝑏𝑉𝜎𝑉𝜗

2
𝑉
+
1
2
𝜂
𝑉0𝑏𝑉𝜎𝑉𝜗

2

+
1
2
+
1
2
𝜖
2
𝑉

≤ − 𝜅
𝑉
𝐿
𝑉
+𝜇
𝑉
,

(60)

where

𝜅
𝑉
= min (2𝑐

𝑉
𝜂
𝑉0𝑏𝑉, 𝜆𝑉𝜎𝑉) ,

𝜇
𝑉
=
1
2
𝜂
𝑉0𝑏𝑉𝜎𝑉𝜗

2
+
1
2
+
1
2
𝜖
2
𝑉
.

(61)

Solving (60) gives

0 ≤ 𝐿
𝑉 (𝑡) ≤

𝜇
𝑉

𝜅
𝑉

+(𝐿
𝑉 (0) −

𝜇
𝑉

𝜅
𝑉

) 𝑒
−𝜅
𝑉
𝑡
, 𝑡 ≥ 0. (62)

It is clear that 𝑧
𝑉
, 𝜗
𝑉
, and 𝜗

𝑉
are bounded. Owning that

𝑧
𝑉
is bounded, together with the error transformation of (11)

into (17), implies that the prescribed tracking performance is
guaranteed.

4. Simulation Results

In this section, the numerical simulation results are presented
to show the performance of the control scheme. Simulation of
the HFV model is conducted for trimmed cruise conditions
of 110000 ft andMach 15.The parameters of simulationmodel
are taken from [16, 21]. The control objective is to track the
step change of 100 ft/s in airspeed and 2000 ft in altitude.
Linear command filters are used to generate the differentiable
commands:

ℎ
𝑑

ℎ
𝑐

=
𝜛
2
𝑛1
𝜛
2
𝑛2

(𝑝 + 𝜛
𝑛1
)
2
(𝑝2 + 2𝜁𝜛

𝑛2
𝑝 + 𝜛2

𝑛2
)

,

𝑉
𝑑

𝑉
𝑐

=
𝜛
2
𝑛1

𝑝2 + 2𝜁𝜛
𝑛1
𝑝 + 𝜛2

𝑛1

,

(63)

where 𝑝 is Laplace operator, 𝜛
𝑛1 = 0.5, 𝜛

𝑛2 = 0.3, and
𝜁
ℎ
= 0.95. ℎ

𝑐
and 𝑉

𝑐
are step commands. The inputs of the

RBFNNs are 𝜉1, 𝜉2, 𝜉3, 𝜉4, and 𝜉𝑉 and the nonlinear functions
are approximated with width 𝜙 = 1. The initial values of the
adaptive laws are 𝜗1(0) = 𝜗2(0) = 𝜗3(0) = 𝜗4(0) = 𝜗𝑉(0) =
0. In addition we choose the design parameters 𝑐1 = 0.04,
𝑐2 = 150, 𝑐3 = 120, 𝑐4 = 100, 𝑐

𝑉
= 0.5, 𝜆1 = 0.1, 𝜆2 = 0.1,

𝜆3 = 0.01, 𝜆4 = 0.01, 𝜆
𝑉
= 10, 𝜎1 = 0.1, 𝜎2 = 0.1, 𝜎3 = 0.1,

𝜎4 = 0.1, and 𝜎
𝑉
= 1. The parameters of performance

functions are given by 𝜀
ℎ0 = 30, 𝜀

ℎ∞
= 5, 𝑙
ℎ
= 0.2, 𝜀

𝑉0 = 20,
𝜀
𝑉∞
= 2, 𝑙
𝑉
= 0.5, and 𝜅 = 𝜏 = 1.The initial states are chosen

as 𝑉 = 15060 ft/s, ℎ = 110000 ft, 𝛾 = 0 rad, 𝜃 = 0.0315 rad,
and 𝑞 = 0 rad/s.
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Figure 1: Velocity tracking.
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Figure 2: The velocity tracking error 𝑒
𝑉
and the prescribed error

bounds.

The simulation results are presented in Figures 1−10. The
responses to 100-ft/s step-velocity and 2000-ft step-aliunde
command in trimmed condition are depicted in Figures 1–3
and Figures 4−6, respectively. From Figures 2 and 5, we see
that the tracking errors performance are guaranteed. Figures
7–10 show the simulation results of altitude tracking with
square wave trajectory. From the results of simulations, the
maximum value of terms 𝑇sin𝛼/(𝑚𝑉) is 3 × 10−5; it is much
smaller than the term 𝐿/(𝑚𝑉) whose minimum value is 1 ×
10−3 and themaximum value of flight path angle 𝛾 is less than
0.012 rad. Therefore, Assumption 1 is reasonable.

5. Conclusion

An adaptive neural control scheme has been proposed for
a class of longitudinal dynamics of a generic hypersonic
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Figure 3: Throttle setting 𝛽.
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Figure 4: The altitude tracking.
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0 20 40 60 80 100 120 140 160 180 200
−30

−20

−10

0

10

20

30

Time (s)

A
lti

tu
de

 tr
ac

ki
ng

 er
ro

r (
ft) 𝜀h(t)

eh

−𝜀h(t)

Figure 8: Altitude tracking error 𝑒
ℎ
and the prescribed error

bounds.



Mathematical Problems in Engineering 9

0 50 100 150 200
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Time (s)

El
ev

at
or

 d
efl

ec
tio

n 
(r

ad
)

Figure 9: Elevator deflection 𝛿
𝐸
.

0 20 40 60 80 100 120 140 160 180 200
−0.02
−0.01

0
0.01
0.02

Fl
ig

ht
 p

at
h 

an
gl

e (
ra

d)

Time (s)

(a)

0 20 40 60 80 100 120 140 160 180 200
−0.05

0
0.05

0.1
0.15

Time (s)

At
ta

ck
 an

gl
e (

ra
d)

(b)

Time (s)
0 20 40 60 80 100 120 140 160 180 200

−0.1
−0.05

0
0.05

0.1

Pi
tc

h 
ra

te
 (r

ad
/s

)

(c)

Figure 10: (a) Path angel 𝛾; (b) attack angel 𝛼; (c) pitch rate 𝑞.

flight vehicle. We have shown that, by using a new con-
straint variable, the prescribed tracking performance can be
achieved. The unknown nonlinear functions associated with
each recursive step of backstepping control were approxi-
mated by using RBF NNs. For each design step, only one
parameter needs to be updated online. Thus the explosion
of the complex problem in backstepping control scheme and
the computational burden can be greatly reduced. Numerical
simulations revealed that the tracking error clearly satisfies
the prescribed performance specification and verified the

proposed design scheme. Currently, we assume that all of the
system states are available and the controller is based on state
feedback. However, some states cannot be obtained in some
circumstances, especially when the sensor fault occurs. As a
result, future workwill be focused on output feedback control
law design.
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