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Correspondence should be addressed to Joaquı́n Alvarez; jqalvar@cicese.mx

Received 31 October 2014; Revised 8 February 2015; Accepted 15 February 2015

Academic Editor: Nazim I. Mahmudov
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A solution to achieve global asymptotic tracking with bounded velocities in an omnidirectional mobile robot is proposed in this
paper. It is motivated by the need of having a useful in-practice motion control scheme, which takes into account the physical
limits of the velocities. To this end, a passive nonlinear controller is designed and combined with a tracking controller in a negative
feedback connection structure. By using Lyapunov theory and passivity tools, global asymptotic tracking with desired bounded
velocities is proved. Simulations and experimental results are provided to show the effectiveness of the proposal.

1. Introduction

Control of mobile robots has received great attention in last
decades. The interest is motivated by the different potential
applications in which these systems are very useful (e.g.,
indoor/outdoor navigation in wide areas). The fundamental
control problems addressed have been regulation and tra-
jectory tracking, and several control techniques have been
proposed to successfully solve them (see, e.g., [1]). Also, the
demands formobile robots with highmobility have increased
in the last years. Since the conventionalmobile robot does not
have high mobility due to its nonholonomic constraint, the
omnidirectional mobile robot (OMR) has attracted the atten-
tion, because of its ability to move simultaneously, and inde-
pendently in an arbitrary direction in the horizontal plane
(translational motion) and with different orientation (rota-
tionalmotion). Hence, theOMR is a kind of holonomic robot
[2]. Because of its Euler-Lagrange dynamics, the recognized

“classical” control techniques for robot manipulators [3] have
been adapted for controlling this kind of mobile robot.
Recently, intensive and notable research has been devoted to
this device (see, e.g., [1, 4–6] and references therein).

To implement the control strategies, a localization system
is required to estimate the actual wheeled mobile robot
positions and velocities [7], which are mainly based on the
odometric data, the robot kinematics, and the Kalman filter.
Nevertheless, since there exists a maximum sampling time
to reconstruct the velocity of the wheels, the odometric data
could have errors if the Nyquist-Shannon criteria are not
satisfied. Hence, the important issue to consider during the
control design is the inclusion of the physical limitations of
the system, such as bounds in velocities and/or torques. For
instance, high velocities developed by the mobile robot can
result in a higher probability of wheel slides and deviations
from the desired trajectory. In practice, the mobile robot
has bounded velocities and torques which should never
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Figure 1: Diagram of the holonomic omnidirectional mobile robot.

be exceeded. If the control strategy is designed without
considering these constraints, the system could exhibit poor
performance and even instability [8].

Many control strategies in robotics have been proposed
without considering explicitly the physical limits of the
system. One of the underlying assumptions is that the robot
task can be smoothly tailored in space and scaled in time so
as to fit to the system limitations. However, simply scaling
of the task commands could recover motion feasibility but
mayno longer satisfy the tracking performance [9].The above
description requires off-line planning of the desired trajec-
tory. This may result to be impractical in some applications,
for example, when the desired trajectory is available while
the robot is in motion or under unpredictable situations in
human-robot interaction systems, in which the speed and
acceleration magnitude become high during a short time
interval. Online trajectory scaling schemes have been pro-
posed in [10–13], mainly to satisfy torque limits. Moreover,
simple hardware and/or software saturation of the commands
results in the lack of execution of the desired motion [14].

Control of robots with bounded velocities and torques
has proved to be challenging problems, and these have been
addressed mainly for robot manipulators. For instance, on
one hand, interesting contributions for robot manipulators
with bounded torques are reported in [8–17]. On the other
hand, control of robot manipulators with bounded velocities
is considered in [18–25]. Control of mobile robots with
bounded torques is reported in [26] and that with velocity
constraints is reported in [27–31]. However, among all these
results, a common characteristic is that the considered system
is subject to different operation conditions, and its perfor-
mance is deteriorated when the signals are saturated. Also,
some of them do not completely guarantee the given limits
during the system transitory stage, even when the initial con-
ditions of the states are within the specified bounds. A formal
stability analysis is missed in many of these works, and with
few exceptions, the results are mainly valid for set-point
regulation or for the case in which the kinematic model of
the system is considered.

In this paper, we focus our attention on the motion
control problem of the OMR subject to velocity constraints.
Different from that reported in [27–31], the solution proposed

here consists in the redesign of a well-known tracking
controller to achieve global asymptotic tracking with desired
bounded velocities, considering the dynamic model of the
system. The proposed control scheme includes explicitly
the desired bounds for the developed Cartesian velocities,
which in turn bound themaximal velocities developed by the
wheels. These bounds are freely set by the user considering
the physical limits of the device. The proposal includes a
tracking controller (TC) combined with a passive nonlinear
controller (PNC) through a negative feedback connection
structure. The TC is used to achieve the desired tracking
performance, while the PNC is used to ensure bounded veloc-
ities. By using Lyapunov theory and passivity tools, global
asymptotic tracking with desired bounded velocities is
proved. Simulations and experimental results are provided to
show the effectiveness of the proposed control strategy.

The rest of the paper is organized as follows. In Section 2,
the dynamics of the consideredmobile robot is given, and the
problem formulation is stated. The main result of the pro-
posed control system, and its stability analysis, is presented
in Section 3. Simulations and real-time experiments are given
in Section 4. Finally, some conclusions and future work ideas
are given in Section 5.

2. Problem Formulation

2.1. Dynamic Model. Consider the OMR shown in Figure 1,
whose dynamics is described by

Σ:𝑀(𝑞) ̈𝑞 + 𝐶 (𝑞, ̇𝑞) ̇𝑞 = 𝐵 (𝑞) 𝜏, (1)

where 𝑞 = [𝑥
𝑤
, 𝑦
𝑤
, 𝜙
𝑤
]
⊤ is the configuration vector, which

includes linear and angular positions of the center of mass
of the OMR with respect to the inertial frame (𝑋

𝑤
, 𝑌
𝑤
), ̇𝑞 is

the velocity vector, ̈𝑞 is the acceleration vector, and 𝜏 ∈ R3

is the control input which includes the torques applied to the
wheels.𝑀(𝑞) ∈ R3×3 is the inertiamatrix,𝐶(𝑞, ̇𝑞) ̇𝑞 ∈ R3 is the
Coriolis and centrifugal force vector, and 𝐵(𝑞) ∈ R3×3 is the
input matrix. These are given as
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.

(2)

The system parameters correspond to those of a physical
prototype and are listed in Table 1.The dynamics of the OMR
has the following properties [1].

(P1) The inertiamatrix𝑀(𝑞) and its inverse are symmetric
and positive definite for all 𝑞.The inverse of the inertia
matrix is bounded for all 𝑞 by a positive constant 𝜇 as
‖(𝑀(𝑞))

−1

‖ ≤ 𝜇.

(P2) The Coriolis and centrifugal force vector 𝐶(𝑞, ̇𝑞) ̇𝑞

satisfies ‖𝐶(𝑞, ̇𝑞) ̇𝑞‖ ≤ 𝛼‖ ̇𝑞‖
2, for all 𝑞, ̇𝑞, and some

positive constant 𝛼.

(P3) The input matrix 𝐵(𝑞) is positive definite for all 𝑞. Its
inverse is denoted by 𝐵(𝑞) = (𝐵(𝑞))

−1.

2.2. Problem Statement. Suppose that there exists a controller
𝜏
𝐶

which makes the system Σ to asymptotically track a
desired trajectory 𝑞

𝑑
(𝑡) (i.e., by choosing for (1) the input

𝜏 = 𝜏
𝐶
, the closed-loop system dynamics behaves such that

lim
𝑡→∞

𝑞(𝑡) = 𝑞
𝑑
(𝑡)). However, 𝜏

𝐶
has been designedwithout

considering the velocity constraints in the system. So, we are
interested in redesigning the given tracking controller to
achieve asymptotic tracking with desired bounded velocities.

For 𝑖 ∈ {1, 2, 3}, let ̇𝑞
𝑖
denote the 𝑖th velocity of the system

Σ. Also, let the negative and positive constants ̇𝑞
𝑖𝐿

and ̇𝑞
𝑖𝑈

denote the desired lower and upper bounds, respectively, for
the 𝑖th velocity. These bounds are freely set by the user
considering the physical capabilities of the system. Define the
following complementary sets:

I
𝑖
= { ̇𝑞
𝑖
| ̇𝑞
𝑖
∈ [ ̇𝑞
𝑖𝐿

, ̇𝑞
𝑖𝑈

]} ,

O
𝑖
= { ̇𝑞
𝑖
| ̇𝑞
𝑖
∈ {R \I

𝑖
}} .

(3)

Then, it is said that ̇𝑞
𝑖
is within specifications, if and only if

̇𝑞
𝑖
∈ I
𝑖
, while it is out of specifications if and only if ̇𝑞

𝑖
∈ O
𝑖
.

Therefore, the controller redesign to be developed must
be capable of achieving asymptotic tracking with desired
bounded velocities, either ̇𝑞

𝑖
∈ I
𝑖
or ̇𝑞
𝑖
∈ O
𝑖
. More precisely,

the following objectives must be achieved:

lim
𝑡→∞

[𝑞
𝑖
(𝑡) − 𝑞

𝑑𝑖
(𝑡)] = 0, (4)

lim
𝑡→∞

[ ̇𝑞
𝑖
(𝑡) − ̇𝑞

𝑑𝑖
(𝑡)] = 0, (5)

̇𝑞
𝑖𝐿

≤ ̇𝑞
𝑖
(𝑡) ≤ ̇𝑞

𝑖𝑈

∀𝑡 ≥ 𝑇, (6)

for 𝑖 ∈ {1, 2, 3} and some finite time 𝑇 ≥ 0.
Throughout the paper, it is assumed that all variables in

the system are measurable, and its parameters are known.

3. Control Design

3.1. Tracking Controller. Given the desired vector of reference
𝑞
𝑑
(𝑡), define the tracking errors:

𝑞 = 𝑞 − 𝑞
𝑑
, ̇̃𝑞 = ̇𝑞 − ̇𝑞

𝑑
, ̈̃𝑞 = ̈𝑞 − ̈𝑞

𝑑
, (7)

and consider for the system Σ the “classical” computed torque
controller [1, 3]:

𝜏CT = 𝐵 (𝑞) [𝑀 (𝑞) [ ̈𝑞
𝑑
− 𝐾
𝐷

̇̃𝑞 − 𝐾
𝑃
𝑞] + 𝐶 (𝑞, ̇𝑞) ̇𝑞] , (8)

where 𝐾
𝑃
, 𝐾
𝐷
are constant positive definite diagonal matri-

ces, which are chosen accordingly to the desired tracking
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Table 1: Parameters of the omnidirectional mobile robot.

Parameter Description Value Units
𝛿
1

Angle for position of wheel 1 𝜋/6 rad
𝛿
2

Angle for position of wheel 2 𝜋/3 rad
𝐽 Wheel’s inertia 5.82𝐸 − 4 kg⋅m2

𝐼
𝑧

Mobile’s inertia 0.0127 kg⋅m2

𝑚 Mass 11.83 kg
𝑟 Wheel’s radius 0.0625 m
𝐿 Distance to the wheels 0.287 m

performance (see, e.g., [3]). It is well known that the closed-
loop dynamics, obtained by placing (8) in (1) with 𝜏 = 𝜏CT, is
described by the decoupled second-order linear system:

̈̃𝑞 + 𝑘
𝐷

̇̃𝑞 + 𝑘
𝑃
𝑞 = 0, (9)

whose stability properties are set through the control gains
𝑘
𝑃
and 𝑘

𝐷
. This tracking controller allows Σ to achieve

asymptotic tracking (4)-(5), but not with bounded velocities
(6).

3.2. Tracking Controller with Desired Bounded Velocities

3.2.1. A Static Nonlinear Function. Let 𝐹 : R3 󳨃→ R3 be a con-
tinuous nonlinear vector function of the form

𝐹 ( ̇𝑞) =

[
[
[

[

𝑓
1
( ̇𝑞
1
)

𝑓
2
( ̇𝑞
2
)

𝑓
3
( ̇𝑞
3
)

]
]
]

]

, (10)

whose elements, denoted by 𝑓
𝑖
( ̇𝑞
𝑖
), are defined as follows:

𝑓
𝑖
( ̇𝑞
𝑖
) =

{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{

{

1, ̇𝑞
𝑖
< ̇𝑞
𝑖𝐿

,

1 − cos ((𝜋/Δ
𝑖
) ( ̇𝑞
𝑖
+ ̇𝑞
𝑖𝐿

− Δ
𝑖
))

2
,

̇𝑞
𝑖𝐿

≤ ̇𝑞
𝑖
< ̇𝑞
𝑖𝐿

+ Δ
𝑖
,

0, ̇𝑞
𝑖𝐿

+ Δ
𝑖
≤ ̇𝑞
𝑖
≤ ̇𝑞
𝑖𝑈

− Δ
𝑖
,

−1 + cos ((𝜋/Δ
𝑖
) ( ̇𝑞
𝑖
− ̇𝑞
𝑖𝑈

+ Δ
𝑖
))

2
,

̇𝑞
𝑖𝑈

− Δ
𝑖
< ̇𝑞
𝑖
≤ ̇𝑞
𝑖𝑈

,

−1, ̇𝑞
𝑖
> ̇𝑞
𝑖𝑈

,

(11)

for 𝑖 ∈ {1, 2, 3}. Note that the proposed function is a combina-
tion of a dead zone and a saturation, with a smooth transition
interval defined by the small positive constant Δ

𝑖
. Figure 2

shows the shape of 𝑓
𝑖
( ̇𝑞
𝑖
).

1
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0
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fi(q̇i)

Figure 2: Shape of the proposed function 𝑓
𝑖
( ̇𝑞
𝑖
).

Let 𝐴 be a positive definite diagonal matrix. Its elements,
denoted by 𝑎

𝑖
, are constant or possibly time-varying. In either

case, they are strictly positive for all time; that is,

𝐴 = diag {𝑎
𝑖
} > 0 ∀𝑡, 𝑖 ∈ {1, 2, 3} . (12)

The entries 𝑎
𝑖
are yet to be defined.

Proposition 1. Let 𝐴 be the diagonal matrix (12) and let 𝐹( ̇𝑞)

be the nonlinear function defined in (10)-(11).Then, the product
− ̇𝑞
⊤

𝐴𝐹( ̇𝑞) is passive.

Proof. By definition of 𝑓
𝑖
( ̇𝑞
𝑖
), the product ̇𝑞

𝑖
𝑓
𝑖
( ̇𝑞
𝑖
) is negative

semidefinite for all ̇𝑞
𝑖
, and 𝐴 is positive definite (12), so

− ̇𝑞𝐴𝐹 ( ̇𝑞) = −

3

∑

𝑖=1

̇𝑞
𝑖
𝑎
𝑖
𝑓
𝑖
( ̇𝑞
𝑖
) ≥ 0, ∀𝑡, ̇𝑞. (13)

Since the product is positive semidefinite, it is passive.

Proposition 2. Consider the velocity error ̇̃𝑞 defined in (7), the
diagonal matrix 𝐴 given in (12), and the nonlinear function
𝐹( ̇𝑞) defined in (10)-(11).Then, the product− ̇̃𝑞

⊤

𝐴𝐹( ̇𝑞) is passive
if the desired velocity bounds are set freely by the user taking
into account the relation:

̇𝑞
𝑖𝐿

+ Δ
𝑖
≤ ̇𝑞
𝑑𝑖
(𝑡) ≤ ̇𝑞

𝑖𝑈

− Δ
𝑖
, ∀𝑡, 𝑖 ∈ {1, 2, 3} . (14)

Proof. Let us write the product − ̇̃𝑞
⊤

𝐴𝐹( ̇𝑞) in the form

− ̇̃𝑞
⊤

𝐴𝐹 ( ̇𝑞) =

3

∑

𝑖=1

( ̇𝑞
𝑑𝑖
− ̇𝑞
𝑖
) 𝑎
𝑖
𝑓
𝑖
( ̇𝑞
𝑖
) . (15)

Then the following cases are analysed.

(i) If ̇𝑞
𝑖
∈ I
𝑖
, and if ̇𝑞

𝑖
∈ [ ̇𝑞
𝑖𝐿

+Δ
𝑖
, ̇𝑞
𝑖𝑈

−Δ
𝑖
], then𝑓

𝑖
( ̇𝑞
𝑖
) = 0

(see (11) and Figure 2), and therefore the 𝑖th element
of (15) is zero; that is,

( ̇𝑞
𝑑𝑖
− ̇𝑞
𝑖
) 𝑎
𝑖
𝑓
𝑖
( ̇𝑞
𝑖
) = 0. (16)
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Table 2: Positivity of the 𝑖th element of (15).

̇𝑞
𝑖

̇𝑞
𝑑𝑖

( ̇𝑞
𝑑𝑖
− ̇𝑞
𝑖
) 𝑓

𝑖
( ̇𝑞
𝑖
) ( ̇𝑞

𝑑𝑖
− ̇𝑞
𝑖
)𝑎
𝑖
𝑓
𝑖
( ̇𝑞
𝑖
)

− − + + +
− + + + +
+ − − − +
+ + − − +

(ii) If ̇𝑞
𝑖
∈ I
𝑖
, and more precisely, if either ̇𝑞

𝑖
∈ [ ̇𝑞
𝑖𝐿

, ̇𝑞
𝑖𝐿

+

Δ
𝑖
) or ̇𝑞

𝑖
∈ ( ̇𝑞
𝑖𝑈

− Δ
𝑖
, ̇𝑞
𝑖𝑈

], it is clear that | ̇𝑞
𝑑𝑖
| < | ̇𝑞

𝑖
|

from (14). Then, with aid of Table 2, it is concluded
that the 𝑖th element of (15) is positive definite; that is,

( ̇𝑞
𝑑𝑖
− ̇𝑞
𝑖
) 𝑎
𝑖
𝑓
𝑖
( ̇𝑞
𝑖
) > 0. (17)

(iii) If ̇𝑞
𝑖
∈ O
𝑖
, then | ̇𝑞

𝑑𝑖
| < | ̇𝑞
𝑖
|, and obviously | ̇𝑞

𝑖
| ̸= 0. As

in the previous case, Table 2 helps us to conclude that
the 𝑖th element of (15) is positive definite; that is, (17)
is satisfied again.

From the previous analysis, one has that (15) is either zero
or positive definite for all ̇𝑞

𝑖
. Then,

− ̇̃𝑞
⊤

𝐴𝐹 ( ̇𝑞) =

3

∑

𝑖=1

( ̇𝑞
𝑑𝑖
− ̇𝑞
𝑖
) 𝑎
𝑖
𝑓
𝑖
( ̇𝑞
𝑖
) ≥ 0 ∀𝑡, ̇̃𝑞, ̇𝑞. (18)

Since the product is positive semidefinite, it is passive.

3.2.2. Control Redesign. Now, to bound the velocities of the
OMR, the following nonlinear controller is proposed:

𝜏LV = 𝐵 (𝑞)𝑀 (𝑞)𝐴𝐹 ( ̇𝑞) , (19)

where the elements of the diagonal matrix 𝐴 are defined as

𝑎
𝑖
= 𝜆
𝑖
+
󵄩󵄩󵄩󵄩𝑧𝑖

󵄩󵄩󵄩󵄩 , (20)

where 𝜆
𝑖
is a positive constant, and

𝑧
𝑖
= ̈𝑞
𝑑
− 𝑘
𝐷𝑖

̇̃𝑞
𝑖
− 𝑘
𝑃𝑖
𝑞
𝑖
. (21)

Note that (12) is satisfied with this definition of 𝑎
𝑖
.

To achieve asymptotic tracking with desired bounded
velocities, the foregoing controller must be used simultane-
ously with the tracking controller. To this aim, the following
bounded-velocity controller for trajectory tracking is finally
proposed for the system Σ:

𝜏BV = 𝐵 (𝑞) [𝑀 (𝑞) [ ̈𝑞
𝑑
− 𝑘
𝐷

̇̃𝑞 − 𝑘
𝑃
𝑞] + 𝐶 (𝑞, ̇𝑞) ̇𝑞]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝜏CT

+ 𝐵(𝑞)𝑀(𝑞)𝐴𝐹( ̇𝑞)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝜏LV

,

(22)

where 𝜏CT is exactly the computed torque controller given in
(8), used to asymptotically track the desired reference, while
𝜏LV is the nonlinear controller (19), used to keep the velocities
within its limits.

u +

+

+

−

H

y2

H1

H2

y

q̇d

̇q̃y1 =

AF(q̇)

�1

�2

Figure 3: Negative feedback connection𝐻
1
-𝐻
2
.

Theorem 3. Given the OMR dynamics (1), together with its
properties, and a smooth desired reference ̇𝑞

𝑑
(𝑡) to be tracked,

consider desired bounds for the velocities to be developed by the
mobile robot which are freely set considering (14). Then, taking
forΣ the control input 𝜏 = 𝜏BV, where 𝜏BV is given in (22), global
asymptotic tracking with bounded velocities is achieved.

Proof. Take for Σ the control input 𝜏 = 𝜏BV (i.e., place (22) in
(1)) to obtain the closed-loop dynamics:

̈̃𝑞 + 𝑘
𝐷

̇̃𝑞 + 𝑘
𝑃
𝑞 − 𝐴𝐹 ( ̇𝑞) = 0, (23)

which represents the system𝐻, shown in Figure 3, consisting
of the negative feedback connection of 𝐻

1
and 𝐻

2
. These

systems are described by

𝐻
1
:
{

{

{

̈̃𝑞 + 𝑘
𝐷

̇̃𝑞 + 𝑘
𝑃
𝑞 = V
1
,

𝑦
1
= ̇̃𝑞,

𝐻
2
: { 𝑦
2
= −𝐴𝐹 ( ̇𝑞) = −𝐴𝐹 (V

2
+ ̇𝑞
𝑑
) = −𝐴𝐹 ( ̇̃𝑞 + ̇𝑞

𝑑
) ,

(24)

with the connections
V
1
= 𝑢 − 𝑦

2
,

V
2
= 𝑦
1
,

(25)

where 𝑢 ≡ 0. Note that𝐻
1
corresponds to (9).

Hereafter, the proof is presented in two steps. First, global
asymptotic tracking is proved by showing that the system 𝐻

is output strictly passive and zero-state observable (see, e.g.,
[32, 33] for definitions, properties, and results of dissipative
systems). Second, bounded velocities are proved by showing
that the setI

𝑖
is attractive.

Passivity. We start by proving that both systems 𝐻
1
and 𝐻

2

are passive.

(i) First, consider the system𝐻
1
of the feedback connec-

tion shown in Figure 3 and described in (24). Take the
time derivative of the (radially unbounded) positive
definite storage function:

𝑆 (𝑞, ̇̃𝑞) =
1

2
𝑞
⊤

𝑘
𝑃
𝑞 +

1

2

̇̃𝑞
⊤
̇̃𝑞, (26)

along𝐻
1
to obtain

̇𝑆 (𝑞, ̇̃𝑞) = ̇̃𝑞
⊤

V
1
− ̇̃𝑞
⊤

𝑘
𝐷

̇̃𝑞 = 𝑦
⊤

1
V
1
− 𝑦
⊤

1
𝑘
𝐷
𝑦
1
. (27)
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The foregoing equation clearly states that𝐻
1
is output

strictly passive. Moreover,𝐻
1
is zero-state observable

(see Definition 6.5 in [32]), since 𝑞 = 0 is the unique
solution which can stay in the set

Z
1
= {𝑞 ∈ R

𝑛

| 𝑦
1
= 0, V

1
= 0} = {𝑘

𝑃
𝑞 = 0} , (28)

for 𝑘
𝑃
positive definite.

(ii) Second, for the static nonlinear function described
by 𝐻
2
in (24), and connected to 𝐻

1
by the negative

feedback connection shown in Figure 3, its input-
output product is

𝑦
⊤

2
V
2
= V⊤
2
𝑦
2
= ̇̃𝑞
⊤

(−𝐴𝐹 ( ̇̃𝑞 + ̇𝑞
𝑑
)) = − ̇̃𝑞

⊤

𝐴𝐹 ( ̇𝑞) . (29)

From Proposition 2, it is clear that𝐻
2
is passive.

Then, since𝐻
1
and𝐻

2
are both passive systems, thewhole

negative feedback connection 𝐻 is passive (Theorem 6.1 in
[32]). Note that the storage function (26) is still valid for
system 𝐻 with the connections (25). The time derivative of
the storage is

̇𝑆 = 𝑦
⊤

1
𝑢 − 𝑦
⊤

1
𝑘
𝐷
𝑦
1
− 𝑦
⊤

1
𝑦
2
= 𝑦
⊤

𝑢 − 𝑦
⊤

𝑘
𝐷
𝑦 − (− ̇̃𝑞

⊤

𝐴𝐹 ( ̇𝑞))
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

≥0

≤ 𝑦
⊤

𝑢 − 𝑦
⊤

𝑘
𝐷
𝑦,

(30)

so𝐻 is output strictly passive.

Global Asymptotic Tracking. For system 𝐻, take 𝑦 = 0 and
𝑢 = 0 to obtain the set Z = {𝑘

𝑃
𝑞 = 0} (note that 𝑦 = ̇̃𝑞 = 0

implies that ̇𝑞
𝑑
≡ ̇𝑞, and using (14), one obtains | ̇𝑞

𝑖
| < ̇𝑞
𝑖
, so

𝐹( ̇𝑞) ≡ 0, and therefore −𝐴(𝑡)𝐹( ̇𝑞) ≡ 0 in (23)). Since 𝑞 = 0 is
the unique solutionwhich can stay inZ, the system𝐻 is zero-
state observable. Now, following Lemma 6.7 in [32], since𝐻
is output strictly passive and zero-state observable, it is con-
cluded that 𝑞 = 0 is globally asymptotically stable (the storage
function (26) is radially unbounded). This finally proves (4)-
(5).

Bounded Velocities. Considering (23), the system is under the
action of the proposed controller. Then, if ̇𝑞

𝑖
∈ I
𝑖
with ̇𝑞

𝑖
∈

[ ̇𝑞
𝑖𝐿

+Δ
𝑖
, ̇𝑞
𝑖𝑈

−Δ
𝑖
], one has that 𝑓

𝑖
( ̇𝑞
𝑖
) = 0, which implies that

𝜏LV = 0, and ̇𝑞
𝑖
is driven only with the tracking controller (i.e.,

𝜏 = 𝜏CT). As a consequence, asymptotic tracking of the refer-
ence will be achieved, as it was already proved, and the veloc-
ities are bounded. However, the tracking controller could
make ̇𝑞

𝑖
increase rapidly its speed towards the desired bound

̇𝑞
𝑖
. But inasmuch as ̇𝑞

𝑖
approaches the bounds, the magnitude

of 𝜏LV also increases rapidly in accordancewith𝑓𝑖( ̇𝑞
𝑖
), causing

̇𝑞
𝑖
not to leave the setI

𝑖
. In case that ̇𝑞

𝑖
∈ O
𝑖
, one has that ̇𝑞

𝑖

is driven fastly, in finite time, to the setI
𝑖
.

The above description corresponds to the attractive
behaviour of I

𝑖
, which is ensured from (23), and it is now

proved. To this aim, define

̇𝑞
𝑖
= min (󵄨󵄨󵄨󵄨󵄨 ̇𝑞𝑖𝐿

󵄨󵄨󵄨󵄨󵄨
, ̇𝑞
𝑖𝑈

) ,

𝜎
𝑖
=
1

2
( ̇𝑞
2

𝑖
− ̇𝑞
2

𝑖
) > 0 ∀ ̇𝑞

𝑖
∈ O
𝑖
.

(31)

Note that 𝜎
𝑖
= 0 implies that ̇𝑞

𝑖
∈ I
𝑖
. The dynamics of 𝜎

𝑖
is

thus described by

𝜎̇
𝑖
= ̇𝑞
𝑖
̈𝑞
𝑖
. (32)

Take the time derivative of

𝑉
𝑖
(𝜎
𝑖
) =

1

2
𝜎
2

𝑖
, (33)

along (32) to obtain

𝑉̇
𝑖
(𝜎
𝑖
) = 𝜎
𝑖
𝜎̇
𝑖
= 𝜎
𝑖
̇𝑞
𝑖
̈𝑞
𝑖
. (34)

By definition, 𝜎
𝑖
is positive definite, so we focus on the anal-

ysis of the product ̇𝑞
𝑖
̈𝑞
𝑖
.

Considering (7) and (21), the closed-loop dynamics (23)
can be written in the form

̈𝑞 = 𝑧
𝑖
+ 𝑎
𝑖
𝑓
𝑖
( ̇𝑞
𝑖
) , (35)

and then the product ̇𝑞
𝑖
̈𝑞
𝑖
is written as

̇𝑞
𝑖
̈𝑞
𝑖
= ̇𝑞
𝑖
(𝑧
𝑖
+ 𝑎
𝑖
𝑓
𝑖
( ̇𝑞
𝑖
)) ≤

󵄨󵄨󵄨󵄨
̇𝑞
𝑖

󵄨󵄨󵄨󵄨 ⋅
󵄨󵄨󵄨󵄨𝑧̇𝑖
󵄨󵄨󵄨󵄨 +

̇𝑞
𝑖
𝑎
𝑖
𝑓
𝑖
( ̇𝑞
𝑖
) . (36)

Since ̇𝑞
𝑖
∈ O
𝑖
, it is true that

̇𝑞
𝑖
𝑎
𝑖
𝑓
𝑖
( ̇𝑞
𝑖
) = −𝑎

𝑖

󵄨󵄨󵄨󵄨
̇𝑞
𝑖

󵄨󵄨󵄨󵄨 , (37)

and using (20), one has that
󵄨󵄨󵄨󵄨
̇𝑞
𝑖

󵄨󵄨󵄨󵄨 ⋅
󵄨󵄨󵄨󵄨𝑧̇𝑖
󵄨󵄨󵄨󵄨 +

̇𝑞
𝑖
𝑎
𝑖
𝑓
𝑖
( ̇𝑞
𝑖
) ≤

󵄨󵄨󵄨󵄨
̇𝑞
𝑖

󵄨󵄨󵄨󵄨 ⋅
󵄨󵄨󵄨󵄨𝑧̇𝑖
󵄨󵄨󵄨󵄨 − 𝑎𝑖

󵄨󵄨󵄨󵄨
̇𝑞
𝑖

󵄨󵄨󵄨󵄨 ≤ −𝜆
󵄨󵄨󵄨󵄨
̇𝑞
𝑖

󵄨󵄨󵄨󵄨 . (38)

Therefore,

̇𝑞
𝑖
̈𝑞
𝑖
≤ −𝜆

󵄨󵄨󵄨󵄨
̇𝑞
𝑖

󵄨󵄨󵄨󵄨 < 0, (39)

and going back to (34), one finally has

𝜎
𝑖
𝜎̇
𝑖
≤ −𝜆

󵄨󵄨󵄨󵄨𝜎𝑖
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨
̇𝑞
𝑖

󵄨󵄨󵄨󵄨 < 0, (40)

which states that 𝜎
𝑖
= 0 is reached in finite time (see,

e.g., [34]). Moreover, (39) states that the 𝑖th velocity and
acceleration have opposite signs, which proves that ̇𝑞

𝑖
will not

leave I
𝑖
. Therefore, I

𝑖
is attractive, and the velocities will

remain bounded, satisfying (6).

4. Simulations and Real-Time Experiments

The aim of this section is to illustrate the effectiveness of the
proposed control scheme (22) via numerical simulations and
real-time experiments. These consist in the tracking control
of an OMR with desired bounded velocities. With the pur-
pose to include a reference to better illustrate the capabilities
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Figure 4: Simulation results of the task space trajectories described by the OMR under the action of the CT and BV controllers.

of the proposal (22), the simulations and experiments are
also developed for the OMR with the computed-torque con-
troller (8), which allows the system to be controlled without
bounding its velocities.

Consider the OMR described in Section 2.1, and let the
desired smooth trajectory be a “Daisy,” whose parametric
equations are [6]

𝑥
𝑑
(𝑡) =

1

2
+ 𝑏
𝑡
(𝑎
𝑡
+ 𝑟
𝑡
cos (𝑚𝜔𝑡)) cos (𝜔𝑡) ,

𝑦
𝑑
(𝑡) =

1

2
+ 𝑏
𝑡
(𝑎
𝑡
+ 𝑟
𝑡
cos (𝑚𝜔𝑡)) sin (𝜔𝑡) ,

𝜙
𝑑
(𝑡) = cos (𝜔𝑡) .

(41)

The trajectory has an external radius of 𝑏
𝑡
(𝑎
𝑡
+ 𝑟
𝑡
) and is

centred at the point (in the Cartesian space) 𝑥 = 0.5 [m] and
𝑦 = 0.5 [m]. The values of its parameters are 𝑎

𝑡
= 1 [m],

𝑟
𝑡
= 0.7 [m], 𝑏

𝑡
= 0.2 (a scaling factor adjusting the trajectory

to the working area), and𝑚 = 5 (the number of petals). Also,
𝜔 = 2𝜋/25 leads the OMR to track a whole turn in 25 s.

Considering this trajectory, the desired velocity bounds
are set as follows: 𝑥̇

𝐿
= −0.2 [m/s], 𝑥̇

𝑈
= 0.25 [m/s], ̇𝑦

𝐿
=

−0.2 [m/s], ̇𝑦
𝑈
= 0.25 [m/s], ̇𝜙

𝐿
= −0.35 [rad/s], and ̇𝜙

𝑈
=

0.3 [rad/s]. Also, the parameters for the proposed BV con-
troller are set as Δ

𝑖
= 0.0125 and 𝜆

𝑖
= 1, for 𝑖 ∈ {1, 2, 3}.

In all the graphics to be presented, to distinguish the
system performance under the action of the different con-
trollers, the following subscripts are used in the signals:
CT for the computed-torque controller (8), and BV for

the proposed bounded-velocity trajectory tracking controller
(22)

4.1. Simulations. Simulations were developed in MAT-
LAB/Simulink with a fixed-step Euler method at 1ms. The
initial condition of the OMR was 𝑞(0) = [0 0 0 0 0 0]

⊤,
and the desired tracking performance was specified, follow-
ing [3], through𝐾

𝑃
= diag{𝜔2

𝑛
}, and𝐾

𝐷
= diag{2𝜉𝜔

𝑛
}, where

𝜉 = 0.85 is the desired damping ratio and𝜔
𝑛
= 5 [rad/s] is the

desired undamped natural frequency.
Figures 4 to 7 show the system behaviour under the

action of the CT and BV controllers. For the CT controller,
asymptotic tracking is completely achieved in approximately
2.5 s (see Figures 5 and 6, dashed-dot lines), and note that
the system develops maximal velocities of about 1.5 rad/s (see
Figure 6, dashed-dot lines). Then, for the OMR under the
CT controller, it is clear that the desired velocity constraints
(dotted lines) are not satisfied with the given tracking per-
formance. However, with the proposed redesign (22), the BV
controller, both asymptotic tracking and desired bounded
velocities are completely achieved (see Figures 5 and 6, solid
lines). This is achieved at the cost of greater convergence
times, which is natural as the velocities do remain constrained
to the desired maximal values. During the transitory stage,
note that the velocity tracking errors are reduced as the
velocities remain bounded (with theBVcontroller, the system
velocities are kept closer to the desired velocities to be
tracked). Also, as shown in Figure 7, a benefit of having
bounded velocities is to require reduced control efforts
(because the proposed BV controller dissipates the excess of
energy in the system when the velocities remain bounded).
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Figure 5: Simulation results of the positions and tracking errors of the OMR under the action of the CT and BV controllers.
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Figure 6: Simulation results of the velocities and tracking errors of the OMR under the action of the CT and BV controllers.
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Figure 7: Simulation results of the torques applied to the OMR under the action of the CT and BV controllers.

4.2. Real-Time Experiments. Real-time experiments were
carried out in the mobile robot prototype shown in Figure 8,
which has been designed to maximize its dexterity (see [35]).
The dynamics of the system, as well as its parameters, corre-
spond to those given in Section 2.1.

Considering the CT controller, the desired tracking per-
formance was specified, following [3], through the control
parameters 𝑘

𝑃𝑖
= 𝜔
2

𝑛𝑖

and 𝑘
𝐷𝑖

= 2𝜉
𝑖
𝜔
𝑛𝑖𝑖
, for 𝑖 ∈ {1, 2, 3}.

These were set to 𝜔
𝑛1

= 𝜔
𝑛2

= 23.45, 𝜔
𝑛3

= 31.62 [rad/s],
𝜉
1
= 𝜉
2
= 1.067, and 𝜉

3
= 0.79. Also, for the BV controller,

we have taken Δ
𝑖
= 0.01, and 𝜆

𝑖
= 0.1.

Figures 9 to 12 show the real-time systembehaviour under
the action of the CT and BV controllers. It can be seen in

Figure 11 that the CT controller alone does not allow the
system to satisfy the desired velocity bounds. This is not the
case for the BV controller, which in fact behaves similar to the
CT controller when all the velocities are within their limits,
but away of the bounds (see Figures 11 and 12). Note that,
for both controllers, convergence to the reference trajectory
is achieved at almost the same instant of time, but with
bounded errors (see Figures 10 and 11). Among other reasons,
these errors could have been produced by the inaccuracy of
the dynamic model used to derive the control scheme. The
experimental results are very similar to those obtained by
numerical simulations and are consistent to the theoretical
development.
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Figure 8: Physical prototype of the omnidirectional mobile robot.
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Figure 9: Experimental results of the task space trajectories described by the OMR under the action of the CT and BV controllers.

5. Conclusions and Future Work

A solution to achieve global asymptotic tracking with desired
bounded velocities for an omnidirectional mobile robot was
proposed. It consisted in the redesign of a tracking controller
to take into account, explicitly, the velocity constraints of the
system. The stability analysis was developed using Lyapunov
and passivity tools. Simulation and experimental results
showed the effectiveness of the proposal.

The ideas proposed here can be extended to use other
tracking controllers to further improve the system perfor-
mance.This can be done immediately with those allowing the

preservation of the passivity properties of the closed-loop sys-
tem. Also, the extension can be done to bound other impor-
tant variables in the system, like positions, accelerations, and
torques. Among others, applications of these ideas in par-
allel robotics, aerial vehicles, and human-robot interaction
are visualized.
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Figure 10: Experimental results of the positions and tracking errors of the OMR under the action of the CT and BV controllers.
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ẋCT
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0.3

0.2

0.1

0

−0.1

−0.2

0 5 10 15 20 25 30

Time (s)

(c) Velocity in 𝑦

̇

ỹ
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Figure 11: Experimental results of the velocities and tracking errors of the OMR under the action of the CT and BV controllers.
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Figure 12: Experimental results of the torques applied to the OMR under the action of the CT and BV controllers.
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trayectorias de un robot móvil (3,0) mediante control acotado,”
Revista Iberoamericana de Automática e Informática Industrial,
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