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Schwarz waveform relaxation (SWR) is a new type of domain decomposition methods, which is suited for solving time-dependent
PDEs in parallel manner. The number of subdomains, namely, 𝑁, has a significant influence on the convergence rate. For the
representative nonlinear problem 𝜕

𝑡
𝑢 = 𝜕

𝑥𝑥
𝑢 + 𝑓(𝑢), convergence behavior of the algorithm in the two-subdomain case is well-

understood. However, for the multisubdomain case (i.e., 𝑁 ≥ 3), the existing results can only predict convergence when 𝑓(𝑢) ≤
0 (∀𝑢 ∈ R). Therefore, there is a gap between𝑁 ≥ 3 and 𝑓(𝑢) > 0. In this paper, we try to finish this gap. Precisely, for a specified
subdomain number𝑁, we find that there exists a quantity 𝑑max such that convergence of the algorithm on unbounded time domains
is guaranteed if 𝑓(𝑢) ≤ 𝑑max (∀𝑢 ∈ R). The quantity 𝑑max depends on𝑁 and we present concise formula to calculate it. We show
that the analysis is useful to study more complicated PDEs. Numerical results are provided to support the theoretical predictions.

1. Introduction

Let Ω = (0, 𝐿) be a bounded spatial domain of interest. We
are interested in the Schwarz waveform relaxation (SWR)
algorithm applied to compute solution 𝑢 = 𝑢(𝑥, 𝑡) : Ω ×

(0, 𝑇) → R of the initial-boundary value problem (IBVP):

𝜕
𝑡
𝑢 = 𝜕
𝑥𝑥
𝑢+𝑓 (𝑢) , 𝑥 ∈ (0, 𝐿) , 𝑡 > 0,

𝑢 (𝑥, 0) = 𝑢0 (𝑥) , 𝑥 ∈ [0, 𝐿] ,

𝑢 (0, 𝑡) = 𝑔1 (𝑡) ,

𝑢 (𝐿, 𝑡) = 𝑔2 (𝑡) ,

𝑡 > 0,

(1)

where 𝑓 ∈ C1
(R) denotes a function which in general

depends in a nonlinear manner on 𝑢. This is a fundamental
model for analyzing the convergence properties of the SWR
algorithm and some important results are revisited as follows.

Gander [1] studied the SWR algorithm on bounded
and unbounded time intervals in the two-subdomain case.
Particularly, the author proved linear convergence of the
algorithm on unbounded time intervals, if the derivative of

𝑓(𝑢) can be bounded from above by a constant 𝑑, which
satisfies 𝑑 < (𝜋/𝐿)2 (other related or similar studies can be
found in [2–4]). In the case of 𝑁 subdomains with 𝑁 ≥ 3,
Gander and Stuart [5] analyzed the convergence behavior of
the SWR algorithm for the linear heat equation 𝜕

𝑡
𝑢 = 𝜕
𝑥𝑥
𝑢 on

unbounded time intervals. It was shown that the convergence
rate depends on𝑁 and deteriorates as𝑁 increases. For IBVP
(1) with 𝑓(𝑢) < 𝑑 and 𝑑 < 0, the work in [6] can be
generalized to obtain a similar convergence result in the
case of 𝑁 ≥ 3. In summary, in the multisubdomain case,
the convergence behavior of the SWR algorithm for (1) on
unbounded time domains is well-understood, when 𝑓(𝑢) ≤
0. For 𝑓(𝑢) > 0 and𝑁 ≥ 3, however, we know nothing up to
now.

In this paper, we try to finish this gap. After a brief
description of the multisubdomain SWR algorithm in Sec-
tion 2, we perform a convergence analysis for the multi-
subdomain SWR algorithm in Section 3. For given 𝑁, we
present concise formula to calculate the allowed upper bound
of 𝑓(𝑢), namely, 𝑑max, which guarantees convergence of the
algorithm on unbounded time domains. We show that the
analysis for (1) can be used to study the multisubdomain
domain decomposition methods [7, 8] for more complicated
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Figure 1: An illustration of domain decomposition with𝑁 overlapping subdomains.

PDEs: 𝜕
𝑡
𝑢 = 𝜕
𝑥
(𝜃(𝑢)𝜕

𝑥
𝑢)+𝑓(𝑢). Section 4 provides numerical

results to support the theoretical prediction andwe finish this
paper by giving some concluding remarks in Section 5.

2. The Schwarz Waveform
Relaxation Algorithm

For the initial-boundary value problem (IBVP) (1), we
decompose the whole space domain Ω = [0, 𝐿] into 𝑁 sub-
domains: Ω

𝑖
= [𝛼
𝑖
𝐿, 𝛽
𝑖
𝐿], where 𝑖 = 1, 2, . . . , 𝑁, 𝛼1 = 0,

𝛽
𝑁
= 1, and 0 < 𝛼

𝑖+1 < 𝛽𝑖 < 1 for 𝑖 = 1, 2, . . . , 𝑁 − 1. We
assume that 𝛽

𝑖
< 𝛼
𝑖+2 so that all the subdomains overlap but

domains which are not adjacent do not overlap, as shown in
Figure 1. Then, the 𝑁-subdomain SWR algorithm for IBVP
(1) can be written as

𝜕𝑢
𝑘

𝑖
(𝑥, 𝑡)

𝜕𝑡
=
𝜕
2
𝑢
𝑘

𝑖
(𝑥, 𝑡)

𝜕𝑥2
+𝑓 (𝑢

𝑘

𝑖
(𝑥, 𝑡)) ,

(𝑥, 𝑡) ∈ Ω
𝑖
×R
+
,

𝑢
𝑘

𝑖
(𝛼
𝑖
𝐿, 𝑡) = 𝑢

𝑘−1
𝑖−1 (𝛼𝑖𝐿, 𝑡) , 𝑡 ∈ R

+
,

𝑢
𝑘

𝑖
(𝛽
𝑖
𝐿, 𝑡) = 𝑢

𝑘−1
𝑖+1 (𝛽𝑖𝐿, 𝑡) , 𝑡 ∈ R

+
,

𝑢
𝑘

𝑖
(𝑥, 0) = 𝑢0 (𝑥) , 𝑥 ∈ Ω

𝑖
,

(2)

where 𝑢𝑘0 = 𝑔1(𝑡) and 𝑢
𝑘

𝑁+1 = 𝑔2(𝑡) for all 𝑘 ≥ 0. Let 𝑒𝑘
𝑖
=

𝑢
𝑘

𝑖
−𝑢
𝑖
(𝑢
𝑖
= 𝑢|
𝑥∈Ω𝑖

) be the error function at the 𝑘th iteration.
Then, we have

𝜕𝑒
𝑘

𝑖
(𝑥, 𝑡)

𝜕𝑡
=
𝜕
2
𝑒
𝑘

𝑖
(𝑥, 𝑡)

𝜕𝑥2
+𝑓

(�̂�
𝑘

𝑖
) 𝑒
𝑘

𝑖
(𝑥, 𝑡) ,

(𝑥, 𝑡) ∈ Ω
𝑖
×R
+
,

𝑒
𝑘

𝑖
(𝛼
𝑖
𝐿, 𝑡) = 𝑒

𝑘−1
𝑖−1 (𝛼𝑖𝐿, 𝑡) , 𝑡 ∈ R

+
,

𝑒
𝑘

𝑖
(𝛽
𝑖
𝐿, 𝑡) = 𝑒

𝑘−1
𝑖+1 (𝛽𝑖𝐿, 𝑡) , 𝑡 ∈ R

+
,

𝑒
𝑘

𝑖
(𝑥, 0) = 0, 𝑥 ∈ Ω

𝑖
,

(3)

where we have used the remainder term in Taylor’s expansion
𝑓(𝑢
𝑘

𝑖
) − 𝑓(𝑢

𝑖
) = 𝑓


(�̂�
𝑘

𝑖
)𝑒
𝑘

𝑖
for some function �̂�𝑘

𝑖
which lies

between 𝑢𝑘
𝑖
and 𝑢

𝑖
. In (3), 𝑒𝑘0 = 0 and 𝑒𝑘

𝑁+1 = 0 for all 𝑘 ≥ 0.
Following in this section, we define 𝛼0 = 𝛽0 = 0, 𝛼

𝑁+1 =

𝛽
𝑁+1 = 1, and 𝑒𝑘

−1 = 𝑒
𝑘

𝑁+2 = 0.

Hypothesis 1. Assume that (1) 𝑁 is an even integer; (2) the
subdomains which are not adjacent do not overlap; (3) all
the overlap sizes are equal to 𝑙; (4) all the lengths of the
subdomains are equal to 𝑠.

Under this hypothesis, we have

𝑁𝑠− (𝑁− 1) 𝑙 = 𝐿,

(𝛽
𝑖
−𝛼
𝑖
) 𝐿 = 𝑠,

𝑖 = 1, 2, . . . , 𝑁,

(𝛽
𝑖−1 −𝛼𝑖) 𝐿 = 𝑙,

(𝛽
𝑖
−𝛽
𝑖−1) 𝐿 = 𝑠 − 𝑙,

(𝛼
𝑖
−𝛼
𝑖−1) 𝐿 = 𝑠 − 𝑙,

𝑖 = 2, 3, . . . , 𝑁.

(4)

The following two lemmas are useful to analyze the
convergence properties of the SWR algorithm in the multi-
subdomain case.

Lemma 1 (see [1]). Assume that the function 𝑤 ∈ C([0, 𝐿] ×
[0,∞))∩C2,1

((0, 𝐿)×(0,∞)) satisfies the following differential
inequalities:

𝑤
𝑡
− 𝑐

2
(𝑥, 𝑡) 𝑤

𝑥𝑥
+ 𝑎 (𝑥, 𝑡) 𝑤 ≥ 0, 0 < 𝑥 < 𝐿, 𝑡 > 0,

𝑤 (0, 𝑡) ≥ 0, 𝑡 > 0,

𝑤 (𝐿, 𝑡) ≥ 0, 𝑡 > 0,

𝑤 (𝑥, 0) ≥ 0, 0 ≤ 𝑥 ≤ 𝐿,

(5)

where 𝑎(𝑥, 𝑡) is a function bounded from below by some
constant 𝐶 (i.e., 𝑎(𝑥, 𝑡) ≥ 𝐶) and 𝑐2(𝑥, 𝑡) > 0 for all 𝑥 ∈ (0, 𝐿)
and 𝑡 > 0. Then, it holds that 𝑤(𝑥, 𝑡) ≥ 0, ∀(𝑥, 𝑡) ∈ [0, 𝐿] ×
[0,∞).
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Lemma 2. Assume that the function 𝑓 in (1) satisfies 𝑓(𝑢) ≤
𝑑 (∀𝑢 ∈ R) and 0 < 𝑑 < (𝜋/𝐿)2. Then, the error functions 𝑒𝑘

𝑖

in (3) decay on the interfaces 𝑥 = 𝛽
𝑖−1𝐿 and 𝑥 = 𝛼

𝑖+1𝐿 at the
rate


𝑒
𝑘

𝑖
(𝛽
𝑖−1𝐿, ⋅)

∞
≤ 𝑟
𝑖
𝑟
𝑖+1

𝑒
𝑘−2
𝑖+2 (𝛽𝑖+1𝐿, ⋅)

∞

+ 𝑟
𝑖
𝑝
𝑖+1

𝑒
𝑘−2
𝑖
(𝛼
𝑖+1𝐿, ⋅)

∞

+𝑝
𝑖
𝑞
𝑖−1

𝑒
𝑘−2
𝑖
(𝛽
𝑖−1𝐿, ⋅)

∞

+𝑝
𝑖
𝑠
𝑖−1

𝑒
𝑘−2
𝑖−2 (𝛼𝑖−1𝐿, ⋅)

∞
,

(6)

for 𝑖 = 2, 3, . . . , 𝑁, and


𝑒
𝑘

𝑖
(𝛼
𝑖+1𝐿, ⋅)

∞
≤ 𝑞
𝑖
𝑟
𝑖+1

𝑒
𝑘−2
𝑖+2 (𝛽𝑖+1𝐿, ⋅)

∞

+ 𝑞
𝑖
𝑝
𝑖+1

𝑒
𝑘−2
𝑖
(𝛼
𝑖+1𝐿, ⋅)

∞

+ 𝑠
𝑖
𝑞
𝑖−1

𝑒
𝑘−2
𝑖
(𝛽
𝑖−1𝐿, ⋅)

∞

+ 𝑠
𝑖
𝑠
𝑖−1

𝑒
𝑘−2
𝑖−2 (𝛼𝑖−1𝐿, ⋅)

∞
,

(7)

for 𝑖 = 1, 2, . . . , 𝑁 − 1, where

𝑟
𝑖
=

sinh [(𝛽
𝑖−1 − 𝛼𝑖) 𝐿√𝑑]

sinh [(𝛽
𝑖
− 𝛼
𝑖
) 𝐿√𝑑]

,

𝑝
𝑖
=

sinh [(𝛽
𝑖
− 𝛽
𝑖−1) 𝐿√𝑑]

sinh [(𝛽
𝑖
− 𝛼
𝑖
) 𝐿√𝑑]

,

𝑞
𝑖
=

sinh [(𝛼
𝑖+1 − 𝛼𝑖) 𝐿√𝑑]

sinh [(𝛽
𝑖
− 𝛼
𝑖
) 𝐿√𝑑]

,

𝑠
𝑖
=

sinh [(𝛽
𝑖
− 𝛼
𝑖+1) 𝐿√𝑑]

sinh [(𝛽
𝑖
− 𝛼
𝑖
) 𝐿√𝑑]

.

(8)

Proof. Let 𝑒𝑘
𝑖
(𝑥, 𝑡) be the solution of the following differential

equation:

𝜕𝑒
𝑘

𝑖
(𝑥, 𝑡)

𝜕𝑡
=
𝜕
2
𝑒
𝑘

𝑖
(𝑥, 𝑡)

𝜕𝑥2
+𝑑𝑒
𝑘

𝑖
(𝑥, 𝑡) ,

𝑒
𝑘

𝑖
(𝛼
𝑖
𝐿, 𝑡) =


𝑒
𝑘−1
𝑖−1 (𝛼𝑖𝐿, ⋅)

∞
,

𝑒
𝑘

𝑖
(𝛽
𝑖
𝐿, 𝑡) =


𝑒
𝑘−1
𝑖+1 (𝛽𝑖𝐿, ⋅)

∞
,

𝑒
𝑘

𝑖
(𝑥, 0) =

sin [(𝑥 − 𝛼
𝑖
𝐿)√𝑑]

sin [(𝛽
𝑖
− 𝛼
𝑖
) 𝐿√𝑑]


𝑒
𝑘−1
𝑖+1 (𝛽𝑖𝐿, ⋅)

∞

+

sin [(𝛽
𝑖
𝐿 − 𝑥)√𝑑]

sin [(𝛽
𝑖
− 𝛼
𝑖
) 𝐿√𝑑]


𝑒
𝑘−1
𝑖−1 (𝛼𝑖𝐿, ⋅)

∞
,

(9)

where (𝑥, 𝑡) ∈ Ω
𝑖
× R+. The solution 𝑒𝑘

𝑖
can be written down

as

𝑒
𝑘

𝑖
(𝑥, 𝑡) =

sin [(𝑥 − 𝛼
𝑖
𝐿)√𝑑]

sin [(𝛽
𝑖
− 𝛼
𝑖
) 𝐿√𝑑]


𝑒
𝑘−1
𝑖+1 (𝛽𝑖𝐿, ⋅)

∞

+

sin [(𝛽
𝑖
𝐿 − 𝑥)√𝑑]

sin [(𝛽
𝑖
− 𝛼
𝑖
) 𝐿√𝑑]


𝑒
𝑘−1
𝑖−1 (𝛼𝑖𝐿, ⋅)

∞
,

(10)

which is a time-independent function of 𝑡. Since 𝑑 < (𝜋/𝐿)2

and 𝛼
𝑖
, 𝛽
𝑖
∈ [0, 1], we have (𝑥 − 𝛼

𝑖
𝐿)√𝑑, (𝛽

𝑖
𝐿 − 𝑥)√𝑑 ∈ [0, 𝜋)

for 𝑥 ∈ [𝛼
𝑖
𝐿, 𝛽
𝑖
𝐿], and this implies 𝑒𝑘

𝑖
(𝑥, 𝑡) ≥ 0.Therefore, the

difference 𝑤 = 𝑒𝑘
𝑖
− 𝑒
𝑘

𝑖
satisfies

𝜕𝑤 (𝑥, 𝑡)

𝜕𝑡
=
𝜕
2
𝑤 (𝑥, 𝑡)

𝜕𝑥2
+𝑑𝑒
𝑘

𝑖
(𝑥, 𝑡) − 𝑓


(�̂�
𝑘

𝑖
) 𝑒
𝑘

𝑖
(𝑥, 𝑡) ,

(𝑥, 𝑡) ∈ Ω
𝑖
×R
+
,

𝑤 (𝛼
𝑖
𝐿, 𝑡) ≥ 0, 𝑡 ∈ R

+
,

𝑤 (𝛽
𝑖
𝐿, 𝑡) ≥ 0, 𝑡 ∈ R

+
,

𝑤 (𝑥, 0) ≥ 0, 𝑥 ∈ Ω
𝑖
.

(11)

We have

𝑑𝑒
𝑘

𝑖
(𝑥, 𝑡) − 𝑓


(�̂�
𝑘

𝑖
) 𝑒
𝑘

𝑖
(𝑥, 𝑡)

= 𝑑𝑒
𝑘

𝑖
(𝑥, 𝑡) − 𝑓


(�̂�
𝑘

𝑖
) 𝑒
𝑘

𝑖
(𝑥, 𝑡) + 𝑓


(�̂�
𝑘

𝑖
) 𝑒
𝑘

𝑖
(𝑥, 𝑡)

− 𝑓

(�̂�
𝑘

𝑖
) 𝑒
𝑘

𝑖
(𝑥, 𝑡)

= (𝑑 −𝑓

(�̂�
𝑘

𝑖
)) 𝑒
𝑘

𝑖
(𝑥, 𝑡) + 𝑓


(�̂�
𝑘

𝑖
)𝑤 ≥ 𝑓


(�̂�
𝑘

𝑖
)𝑤,

(12)

since 𝑓(�̂�𝑘
𝑖
) ≤ 𝑑 and 𝑒𝑘

𝑖
(𝑥, 𝑡) ≥ 0. Then, from (11) we get

𝜕𝑤 (𝑥, 𝑡)

𝜕𝑡
≥
𝜕
2
𝑤 (𝑥, 𝑡)

𝜕𝑥2
+𝑓

(�̂�
𝑘

𝑖
)𝑤 (𝑥, 𝑡) ,

(𝑥, 𝑡) ∈ Ω
𝑖
×R
+
,

𝑤 (𝛼
𝑖
𝐿, 𝑡) ≥ 0, 𝑡 ∈ R

+
,

𝑤 (𝛽
𝑖
𝐿, 𝑡) ≥ 0, 𝑡 ∈ R

+
,

𝑤 (𝑥, 0) ≥ 0, 𝑥 ∈ Ω
𝑖
.

(13)

Now, by using Lemma 1 we have 𝑤 = 𝑒
𝑘

𝑖
− 𝑒
𝑘

𝑖
≥ 0; that is,

𝑒
𝑘

𝑖
(𝑥, 𝑡) ≥ 𝑒

𝑘

𝑖
(𝑥, 𝑡) for (𝑥, 𝑡) ∈ Ω

𝑖
× R+. A similar argument

holds for the sum 𝑤(𝑥, 𝑡) = 𝑒
𝑘

𝑖
(𝑥, 𝑡) + 𝑒

𝑘

𝑖
(𝑥, 𝑡), and thus


𝑒
𝑘

𝑖
(𝑥, ⋅)

∞

≤

sin [(𝑥 − 𝛼
𝑖
𝐿)√𝑑]

sin [(𝛽
𝑖
− 𝛼
𝑖
) 𝐿√𝑑]


𝑒
𝑘−1
𝑖+1 (𝛽𝑖𝐿, ⋅)

∞

+

sin [(𝛽
𝑖
𝐿 − 𝑥)√𝑑]

sin [(𝛽
𝑖
− 𝛼
𝑖
) 𝐿√𝑑]


𝑒
𝑘−1
𝑖−1 (𝛼𝑖𝐿, ⋅)

∞
.

(14)



4 Mathematical Problems in Engineering

It is easy to find that this inequality holds on all the
subdomains and any iteration index 𝑘. Hence, it holds that

𝑒
𝑘−1
𝑖+1 (𝛽𝑖𝐿, ⋅)

∞

≤

sin [(𝛽
𝑖
− 𝛼
𝑖+1) 𝐿√𝑑]

sin [(𝛽
𝑖+1 − 𝛼𝑖+1) 𝐿√𝑑]


𝑒
𝑘−2
𝑖+2 (𝛽𝑖+1𝐿, ⋅)

∞

+

sin [(𝛽
𝑖+1 − 𝛽𝑖) 𝐿√𝑑]

sin [(𝛽
𝑖+1 − 𝛼𝑖+1) 𝐿√𝑑]


𝑒
𝑘−2
𝑖
(𝛼
𝑖+1𝐿, ⋅)

∞
,

(15a)


𝑒
𝑘+1
𝑖−1 (𝛼𝑖𝐿, ⋅)

∞

≤

sin [(𝛼
𝑖
− 𝛼
𝑖−1) 𝐿√𝑑]

sin [(𝛽
𝑖−1 − 𝛼𝑖−1) 𝐿√𝑑]


𝑒
𝑘

𝑖
(𝛽
𝑖−1𝐿, ⋅)

∞

+

sin [(𝛽
𝑖−1 − 𝛼𝑖) 𝐿√𝑑]

sin [(𝛽
𝑖−1 − 𝛼𝑖−1) 𝐿√𝑑]


𝑒
𝑘

𝑖−2 (𝛼𝑖−1𝐿, ⋅)
∞
.

(15b)

Substituting these two inequalities back into the right hand
side of (14) and then evaluating (14) at 𝑥 = 𝛽

𝑖−1𝐿 leads to
inequality (6). Evaluating (14) at 𝑥 = 𝛼

𝑖+1𝐿 leads to (7).

3. Convergence Analysis

Based on Hypothesis 1 and Lemmas 1 and 2, here we perform
a convergence analysis for the SWR algorithm (2) in the 𝑁-
subdomain case. We then generalize the analysis to more
general nonlinear problems.The following notations are used
throughout this section:

𝑟 =

sin (𝑙√𝑑)

sin (((𝐿 + (𝑁 − 1) 𝑙) /𝑁)√𝑑)
,

𝑝 =

sin (((𝐿 − 𝑙) /𝑁)√𝑑)

sin (((𝐿 + (𝑁 − 1) 𝑙) /𝑁)√𝑑)
,

𝜙 =
𝑙

𝐿
𝜋,

𝜑 =
𝐿 − 𝑙

𝑁𝐿
𝜋,

𝜌 (𝑑,𝑁) = 𝑝
2
+ 2𝑝𝑟 cos( 𝜋

𝑁
)+min {𝑁− 2, 1} 𝑟2,

𝜎 = cos( 𝜋
𝑁
) ,

K (𝜔,𝑁)

=
sin2 (𝜑𝜔) + 2𝜎 sin (𝜙𝜔) sin (𝜑𝜔) +min {𝑁 − 2, 1} sin2 (𝜙𝜔)

sin2 [(𝜙 + 𝜑) 𝜔]
,

(16a)

D =

(
(
(
(
(
(
(
(
(
(
(

(

𝑝
2
𝑝𝑟

𝑝𝑟 𝑝
2
𝑝𝑟 𝑟

2

𝑟
2
𝑝𝑟 𝑝

2
𝑝𝑟

𝑝𝑟 𝑝
2
𝑝𝑟 𝑟

2

𝑟
2
𝑝𝑟 𝑝

2
𝑝𝑟

d d d

𝑝𝑟 𝑝
2
𝑝𝑟

𝑟
2
𝑝𝑟 𝑝

2

)
)
)
)
)
)
)
)
)
)
)

)

,

𝜉
𝑘
=

(
(
(
(
(
(
(
(

(


𝑒
𝑘

1 (𝛼2𝐿, ⋅)
∞


𝑒
𝑘

3 (𝛽2𝐿, ⋅)
∞


𝑒
𝑘

3 (𝛼4𝐿, ⋅)
∞

.

.

.


𝑒
𝑘

𝑁−1 (𝛽𝑁−2𝐿, ⋅)
∞


𝑒
𝑘

𝑁−1 (𝛼𝑁𝐿, ⋅)
∞

)
)
)
)
)
)
)
)

)(𝑁−1)×1

,

E =

(
(
(
(
(
(
(
(
(
(
(

(

𝑝
2
𝑝𝑟 𝑟

2

𝑝𝑟 𝑝
2
𝑝𝑟

𝑝𝑟 𝑝
2
𝑝𝑟 𝑟

2

𝑟
2
𝑝𝑟 𝑝

2
𝑝𝑟

d d d

𝑝𝑟 𝑝
2
𝑝𝑟 𝑟

2

𝑟
2
𝑝𝑟 𝑝

2
𝑝𝑟

𝑝𝑟 𝑝
2

)
)
)
)
)
)
)
)
)
)
)

)

,

𝜂
𝑘
=

(
(
(
(
(
(
(
(

(


𝑒
𝑘

2 (𝛽1𝐿, ⋅)
∞


𝑒
𝑘

2 (𝛼3𝐿, ⋅)
∞


𝑒
𝑘

4 (𝛽3𝐿, ⋅)
∞

.

.

.


𝑒
𝑘

𝑁−2 (𝛼𝑁−1𝐿, ⋅)
∞


𝑒
𝑘

𝑁
(𝛽
𝑁−1𝐿, ⋅)

∞

)
)
)
)
)
)
)
)

)(𝑁−1)×1

.

(16b)

3.1. ConvergenceAnalysis for (2). From (6) and (7), we see that
the error at a given boundary interface depends on the errors
at different boundary interfaces; this leads to the following
two independent linear systems of inequalities:

𝜉
𝑘+2

≤ D𝜉𝑘,

𝜂
𝑘+2

≤ E𝜂𝑘,
(17)

where each inequality should be interpreted in the compo-
nent sense. The vectors 𝜉𝑘 and 𝜂𝑘 and the matrices D and E
are slightly different if the number of subdomains 𝑁 is even
or odd. Under Hypothesis 1 (i.e., 𝑁 is an even integer and
𝑟
𝑖
= 𝑠
𝑖
= 𝑟,𝑝
𝑖
= 𝑞
𝑖
= 𝑝), the vectors 𝜉𝑘 and 𝜂𝑘 and thematrices

D and E are defined by (16b). For 𝑁 odd, these vectors and
matrices can be defined similarly.

To study the diminution of the vectors 𝜉𝑘 and 𝜂𝑘, we focus
on the spectral norms of D and E. To this end, we first recall
the common definition for the spectral norm; namely,

‖V‖2 = √
𝑛

∑

𝑗=1
V (𝑗)2,

‖𝐴‖2 = sup
‖V‖2=1

‖𝐴V‖2 ,

∀V ∈ R
𝑛
, 𝐴 ∈ R

𝑛×𝑛
.

(18)
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Lemma 3. With the argument 𝜌(𝑑,𝑁) defined by (16a), the
spectral norms of D and E satisfy

‖D‖2 , ‖E‖2 ≤ 𝜌 (𝑑,𝑁) . (19)

Proof. We prove the bound for D. The bound for the matrix
E can be obtained similarly. Clearly, the matrix D can be
partitioned asD = 𝐽 + 𝑟

2
𝐹, where 𝐽 is a tridiagonal matrix

𝐽 =
(
(
(

(

𝑝
2
𝑝𝑟

𝑝𝑟 𝑝
2
𝑝𝑟

d d d

𝑝𝑟 𝑝
2
𝑝𝑟

𝑝𝑟 𝑝
2

)
)
)

)(𝑁−1)×(𝑁−1)

, (20)

and𝐹 is amatrix which has only𝑂(𝑁−2) nonzero entries and
these are equal to 1. In fact, it is easy to verify ‖𝐹‖2 ≤ min{𝑁−
2, 1} for 𝑁 ≥ 2. From Lemma 3.8 given in [5], we know that
the eigenvalues of 𝐽 are given by 𝜆

𝑗
(𝐽) = 𝑝

2
+ 2𝑝𝑟 cos(𝜋𝑗/𝑁).

The spectral norm of D then can be estimated by ‖D‖2 ≤

‖𝐽‖2 + 𝑟
2
‖𝐹‖2 = 𝑝

2
+ 2𝑝𝑟 cos(𝜋/𝑁) + min{𝑁 − 2, 1}𝑟2 =

𝜌(𝑑,𝑁).

Clearly, to prove 𝜉𝑘, 𝜂𝑘 → 0 as 𝑘 → +∞, it suffices to
prove 𝜌(𝑑,𝑁) < 1. However, as we will show a little later, this
in general does not hold for all choices of 𝑑 and𝑁. Let

√𝑑 = 𝜔
𝜋

𝐿
, 𝜔 ∈ (0, 1) . (21)

Then, the arguments 𝑝 and 𝑟 defined by (16a) can be regarded
as functions of 𝜔; that is,

𝑟 = 𝑟 (𝜔) :=
sin ((𝑙/𝐿) 𝜋𝜔)

sin (((𝐿 + (𝑁 − 1) 𝑙) /𝑁𝐿) 𝜋𝜔)
,

𝑝 = 𝑝 (𝜔) :=
sin (((𝐿 − 𝑙) /𝑁𝐿) 𝜋𝜔)

sin (((𝐿 + (𝑁 − 1) 𝑙) /𝑁𝐿) 𝜋𝜔)
.

(22)

Clearly, withK(𝜔,𝑁) defined by (16a), it holds that

𝜌 (𝑑,𝑁) =K (𝜔,𝑁)

= [𝑝 (𝜔) + 𝑟 (𝜔)]
2
−𝑝 (𝜔) 𝑟 (𝜔) sin2 ( 𝜋

2𝑁
) ,

∀𝑁 ≥ 3.

(23)

Moreover, Hypothesis 1 implies 𝑠 > 2𝑙, and therefore by using
𝑁𝑠 − (𝑁 − 1)𝑙 = 𝐿 we get (𝑁 + 1)𝑙 < 𝐿. Hence, the quantities
𝜙 and 𝜑 defined by (16a) satisfy

𝜙+𝜑 =
𝐿 + (𝑁 − 1) 𝑙

𝑁𝐿
<
𝐿 + ((𝑁 − 1) / (𝑁 + 1)) 𝐿

𝑁𝐿
𝜋

≤
𝜋

2
, ∀𝑁 ≥ 3, 𝜙, 𝜑 ∈ (0, 𝜋

2
) , 𝜙 < 𝜑.

(24)

For the case 𝑑 ≤ 0, the functions 𝑝(𝜔) and 𝑟(𝜔) are changed
to

𝑟 (𝜔) =
sinh ((𝑙/𝐿) 𝜋𝜔)

sinh (((𝐿 + (𝑁 − 1) 𝑙) /𝑁𝐿) 𝜋𝜔)
,

𝑝 (𝜔) =
sinh (((𝐿 − 𝑙) /𝑁𝐿) 𝜋𝜔)

sinh (((𝐿 + (𝑁 − 1) 𝑙) /𝑁𝐿) 𝜋𝜔)
,

with 𝜔 = 𝐿
√−𝑑

𝜋
.

(25)

Hence, it is easy to get 𝑟(𝜔) + 𝑝(𝜔) < 1 (⇒ K(𝜔,𝑁) <
1), since the hyperbolic-sine function satisfies sinh(𝑥1) +
sinh(𝑥2) ≤ sinh(𝑥1 + 𝑥2), ∀𝑥1,2 ∈ R. On the contrary, for the
sine function, it holds that sin(𝑥1) + sin(𝑥2) > sin(𝑥1 + 𝑥2),
∀𝑥1,2 ∈ (0, 𝜋/2) and 𝑥1 + 𝑥2 ≤ 𝜋/2. This, together with (24),
gives

𝑟 (𝜔) + 𝑝 (𝜔)

=
sin ((𝑙/𝐿) 𝜋𝜔) + sin (((𝐿 − 𝑙) /𝑁𝐿) 𝜋𝜔)

sin (((𝐿 + (𝑁 − 1) 𝑙) /𝑁𝐿) 𝜋𝜔)

>
sin ((𝑙/𝐿) 𝜋𝜔 + ((𝐿 − 𝑙) /𝑁𝐿) 𝜋𝜔)
sin (((𝐿 + (𝑁 − 1) 𝑙) /𝑁𝐿) 𝜋𝜔)

= 1.

(26)

Therefore, for 𝑑 > 0 it is not obvious to seeK(𝜔,𝑁) < 1.

Lemma 4. Under Hypothesis 1, for given 𝑁 ≥ 3 the function
K(𝜔,𝑁) defined by (16a) is increasing for 𝜔 ∈ (0, 1) and
satisfiesK(0, 𝑁) < 1 andK(1, 𝑁) > 1.

Proof. The proof is divided into two parts.

Part I (K(0,𝑁) < 1 and K(1,𝑁) > 1). It is easy to get
lim
𝜔→ 0K(𝜔,𝑁) = (𝜙

2
+ 𝜑

2
+ 2𝜎𝜙𝜑)/(𝜙 + 𝜑)2 < 1, since

𝜎 < 1. We next proveK(1, 𝑁) > 1. To this end, we define

�̃� (𝜙, 𝜑) :=
sin2 (𝜙) + sin2 (𝜑) + 2𝜎 sin (𝜙) sin (𝜑)

sin2 (𝜙 + 𝜑)
,

�̂� (𝜙, 𝜑)

:= sin (𝜙 +𝜑) [sin (𝜙) cos (𝜙) + 𝜎 cos (𝜙) sin (𝜑)]

− [sin2 (𝜙) + sin2 (𝜑) + 2𝜎 sin (𝜙) sin (𝜑)]

⋅ cos (𝜙 + 𝜑) .

(27)

Then, it holds thatK(1, 𝑁) = �̃�(𝜙, 𝜑) and

𝜕�̃� (𝜙, 𝜑)

𝜕𝜙
=

2�̂� (𝜙, 𝜑)
sin3 (𝜙 + 𝜑)

. (28)
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Moreover, a routine calculation yields

�̂� (𝜙, 𝜑) = [sin (𝜙) cos (𝜑) + cos (𝜙) sin (𝜑)]

⋅ [sin (𝜙) cos (𝜙)

+ 𝜎 cos (𝜙) sin (𝜑)] − [cos (𝜙) cos (𝜑)

− sin (𝜙) sin (𝜑)] [sin2 (𝜙) + sin2 (𝜑)

+ 2𝜎 sin (𝜙) sin (𝜑)] = sin (𝜑) cos (𝜙)

⋅ [𝜎 cos (𝜙) sin (𝜑)

− cos (𝜑) sin (𝜑) + sin (𝜙) cos (𝜙)

− 𝜎 sin (𝜙) cos (𝜑)] + sin (𝜙) sin (𝜑) [sin2 (𝜙)

+ sin2 (𝜑) + 2𝜎 sin (𝜙) sin (𝜑)] = sin (𝜑) cos (𝜙)

⋅ [𝜎 sin (𝜑 − 𝜙)

+
sin (2𝜙) − sin (2𝜑)

2
]+ sin (𝜙) sin (𝜑) [sin2 (𝜙)

+ sin2 (𝜑) + 2𝜎 sin (𝜙) sin (𝜑)] .

(29)

Since 𝜙 = (𝑙/𝐿)𝜋 and 𝜑 = ((𝐿 − 𝑙)/𝑁𝐿)𝜋, we have

𝜎 sin (𝜑 − 𝜙) +
sin (2𝜙) − sin (2𝜑)

2
= 𝑉 (𝑙) ,

𝑉 (𝑙)

:= cos( 𝜋
𝑁
) sin(𝐿 − (𝑁 + 1) 𝑙

𝑁𝐿
𝜋)

+
sin ((2𝑙/𝐿) 𝜋) − sin (2 ((𝐿 − 𝑙) /𝑁𝐿) 𝜋)

2
.

(30)

It is easy to get 𝜕𝑉(𝑙)/𝜕𝑙 = 𝜋𝑉1(𝑙) and 𝜕
2
𝑉(𝑙)/𝜕𝑙

2
= 𝜋

2
𝑉2(𝑙),

where

𝑉1 (𝑙) := −
𝑁 + 1
𝑁𝐿

cos( 𝜋
𝑁
) cos(𝐿 − (𝑁 + 1) 𝑙

𝑁𝐿
𝜋)

+
1
𝐿
cos(2𝑙

𝐿
𝜋)+

1
𝑁𝐿

cos(2𝐿 − 𝑙
𝑁𝐿

𝜋) ,

𝑉2 (𝑙) := − (
𝑁 + 1
𝑁𝐿

)

2
cos( 𝜋

𝑁
) sin(𝐿 − (𝑁 + 1) 𝑙

𝑁𝐿
𝜋)

−
2
𝐿2
[sin(2𝑙𝜋

𝐿
)−

sin (2 (𝐿 − 𝑙) 𝜋/𝑁𝐿)
𝑁2 ] .

(31)

By using (𝑁 + 1)𝑙 < 𝐿, we get ((𝐿 + (𝑁 − 1)𝑙)/𝑁𝐿)𝜋 < ((𝐿 +
(𝑁 − 1)(𝐿/(𝑁 + 1)))/𝑁𝐿)𝜋 = 2𝜋/(𝑁 + 1) ≤ 𝜋/2 (∀𝑁 ≥ 3);
this implies

𝑉2 (𝑙) < �̂�2 (𝑙)

:= − cos( 𝜋
𝑁
)(
𝑁 + 1
𝑁𝐿

)

2
sin(𝐿 − (𝑁 + 1) 𝑙

𝑁𝐿
𝜋)

−
2
𝐿2

sin(2𝑙𝜋
𝐿
)

+
4

(𝑁𝐿)
2 sin(

𝐿 − 𝑙 + 𝑁𝑙

𝑁𝐿
𝜋) .

(32)

For any𝑁 ≥ 3, we have cos(𝜋/𝑁)((𝑁+1)/𝑁𝐿)2 ≥ (1/2)((𝑁+
1)/𝑁𝐿)2 > 4/(𝑁𝐿)2; this, together with 2/𝐿2 > 4/(𝑁𝐿)2,
gives

�̂�2 (𝑙) ≤
4

(𝑁𝐿)
2 [− sin(

𝐿 − (𝑁 + 1) 𝑙
𝑁𝐿

𝜋)

− sin(2𝑙
𝐿
𝜋)+ sin(𝐿 − 𝑙 + 𝑁𝑙

𝑁𝐿
)𝜋] < 0,

(33)

where in the last inequality we have used ((𝐿 − (𝑁 +

1)𝑙)/𝑁𝐿)𝜋 + (2𝑙/𝐿)𝜋 = ((𝐿 + (𝑁 − 1)𝑙)/𝑁𝐿)𝜋 ∈ (0, 𝜋/2] and
sin(𝑥1) + sin(𝑥2) > sin(𝑥1 + 𝑥2) for any 𝑥1, 𝑥2 ∈ (0, 𝜋/2) and
𝑥1 + 𝑥2 ≤ 𝜋/2.

From (32) and (33), we have 𝜕2𝑉(𝑙)/𝜕𝑙2 < 0, ∀𝑙 ∈ (0, 𝐿/
(𝑁+ 1)). Therefore,𝑉(𝑙) does not have local minimum(s) for
𝑙 ∈ (0, 𝐿/(𝑁 + 1)). Moreover, by noticing

𝑉 (0) = cos( 𝜋
𝑁
) sin( 𝜋

𝑁
)

− cos( 𝜋
𝑁
) sin( 𝜋

𝑁
) = 0,

𝑉 (
𝐿

𝑁 + 1
) = 0,

(34)

we have 𝑉(𝑙) > 0 for all 𝑙 ∈ (0, 𝐿/(𝑁 + 1)). This, together
with (28)–(30), gives 𝜕�̃�(𝜙, 𝜑)/𝜕𝜙 > 0, ∀𝜙 ∈ (0, 𝜑). Hence,
K(1, 𝑁) = �̃�(𝜙, 𝜑) > �̃�(0, 𝜑) = 1.

Part II (K(𝜔,𝑁) is an increasing function for 𝜔 ∈ [0, 1]).
From the second equality in (23), we know that the function
K(𝜔,𝑁) can be represented as

K (𝜔,𝑁) = 𝑟
2
(𝜔) + 2𝑟 (𝜔) 𝑝 (𝜔) 𝜎 +𝑝2 (𝜔) , (35)

where 𝑟(𝜔) and 𝑝(𝜔) are defined by (22) and 𝜎 = cos(𝜋/𝑁).
Let 0 ≤ 𝐴 < 𝐵 ≤ 𝜋 be two constants and 𝐻(𝜔) =

sin(𝐴𝜔)/sin(𝐵𝜔). Then, it is easy to prove 𝐻(𝜔) > 0 (∀𝜔 ∈
(0, 1)). (We have sign(𝐻(𝜔)) = sign(𝐻1(𝜔)) with 𝐻1(𝜔) =
𝐴 cos(𝐴𝜔)sin(𝐵𝜔) − 𝐵 cos(𝐵𝜔)sin(𝐴𝜔). Moreover, we have
𝐻


1(𝜔) = (𝐵
2
− 𝐴

2
)sin(𝐴𝜔)sin(𝐵𝜔) > 0; this, together with

𝐵 > 𝐴 ≥ 0 and 𝐻1(0) = 0, gives 𝐻1(𝜔) > 0. Hence,
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𝐻

(𝜔) > 0 for 𝜔 ∈ (0, 1).) Therefore, it is easy to understand

that 𝑟(𝜔), 𝑝(𝜔) > 0 for 𝜔 ∈ (0, 1). Since 𝑟, 𝑝, and 𝜎 are
positive, we finally get 𝜕

𝜔
K > 0 for 𝜔 ∈ (0, 1).

Now, we are in a position to present one of the main
results of this section.

Theorem 5. Under Hypothesis 1, assume that the function 𝑓
in (1) satisfies 𝑓(𝑢) ≤ 𝑑 (∀𝑢 ∈ R) with 0 < 𝑑 < ((𝜋/𝐿)𝜔∗)2,
where for specified integer 𝑁 ≥ 2 the argument 𝜔∗ ∈ (0, 1] is
the unique root ofK(𝜔,𝑁) = 1. Then, the𝑁-subdomain SWR
algorithm (2) with𝑁 ≥ 2 is convergent. In particular, the error
functions can be bounded in infinity norm in time and space,
as

max
1≤2𝑖≤𝑁


𝑒
2𝑘+1
2𝑖 (⋅, ⋅)

∞,∞
≤ 𝐶𝜌
𝑘
(𝑑,𝑁)


𝜉
02 ,

max
1≤2𝑖+1≤𝑁


𝑒
2𝑘+1
2𝑖+1 (⋅, ⋅)

∞,∞
≤ 𝐶𝜌
𝑘
(𝑑,𝑁)


𝜂
02 ,

(36)

where

𝐶 = max
𝑖=1,2,...,𝑁

max
𝑥∈[𝛼𝑖𝐿,𝛽𝑖𝐿]

(

sin [(𝑥 − 𝛼
𝑖
𝐿)√𝑑]

sin [(𝛽
𝑖
− 𝛼
𝑖
) 𝐿√𝑑]

+

sin [(𝛽
𝑖
𝐿 − 𝑥)√𝑑]

sin [(𝛽
𝑖
− 𝛼
𝑖
) 𝐿√𝑑]

) .

(37)

Proof. From (14), for all 𝑥 ∈ [𝛼
𝑖
𝐿, 𝛽
𝑖
𝐿] we have


𝑒
𝑘

𝑖
(𝑥, ⋅)

∞

≤ (

sin [(𝑥 − 𝛼
𝑖
𝐿)√𝑑]

sin [(𝛽
𝑖
− 𝛼
𝑖
) 𝐿√𝑑]

+

sin [(𝛽
𝑖
𝐿 − 𝑥)√𝑑]

sin [(𝛽
𝑖
− 𝛼
𝑖
) 𝐿√𝑑]

)

⋅max {𝑒
𝑘−1
𝑖+1 (𝛽𝑖𝐿, ⋅)

∞
,

𝑒
𝑘−1
𝑖−1 (𝛼𝑖𝐿, ⋅)

∞
} .

(38)

With the constant 𝐶 given above, this implies

max
1≤2𝑖≤𝑁


𝑒
2𝑘+1
2𝑖 (⋅, ⋅)

∞,∞
≤ 𝐶


𝜉
2𝑘∞ ,

max
1≤2𝑖+1≤𝑁


𝑒
2𝑘+1
2𝑖+1 (⋅, ⋅)

∞,∞
≤ 𝐶


𝜂
2𝑘∞ .

(39)

Since the infinity norm is bounded by the spectral norm, we
have

max
1≤2𝑖≤𝑁


𝑒
2𝑘+1
2𝑖 (⋅, ⋅)

∞,∞
≤ 𝐶


𝜉
2𝑘2 ,

max
1≤2𝑖+1≤𝑁


𝑒
2𝑘+1
2𝑖+1 (⋅, ⋅)

∞,∞
≤ 𝐶


𝜂
2𝑘2 .

(40)

Then, by using ‖𝜉2𝑘‖2 ≤ ‖D‖𝑘2‖𝜉
0
‖2 and ‖𝜂

2𝑘
‖2 ≤ ‖E‖𝑘2‖𝜂

0
‖2

and Lemma 3, we get (36). Finally, by using Lemma 4 (i.e.,
𝜌(𝑑,𝑁) < 1 for 0 < 𝑑 < ((𝜋/𝐿)𝜔

∗
)
2), convergence of the

SWR algorithm in the multisubdomain case follows.

Remark 6. For 𝑁 = 2, that is, the two-subdomain case, we
have 𝜙+2𝜑 = 𝜋; hence,K(𝜔, 2) = sin2(𝜑𝜔)/sin2[(𝜙+𝜑)𝜔] =
sin2(𝜑𝜔)/sin2[(𝜋−𝜑)𝜔]. Since 𝜑 ∈ (0, 𝜋/2), it is easy to know
that K(𝜔, 2) is an increasing function of 𝜔 ∈ [0, 1]; this,
together with K(𝜔, 2)|

𝜔=1 = 1, implies 𝜔∗ = 1. Therefore,
Theorem 5 actually includes Theorem 4.1 given by Gander
[1].

3.2. Application to More General Nonlinear Problems. We
now consider the following IBVP:

𝜕
𝑡
𝑢 = 𝜕
𝑥
(𝜃 (𝑢) 𝜕

𝑥
𝑢) +𝑓 (𝑢) ,

(𝑥, 𝑡) ∈ (0, 𝐿) ×R
+
,

𝑢 (0, 𝑡) = 𝑔1 (𝑡) ,

𝑢 (𝐿, 𝑡) = 𝑔2 (𝑡) ,

𝑡 ∈ R
+
,

𝑢 (𝑥, 0) = 𝑢0 (𝑥) , 𝑥 ∈ [0, 𝐿] ,

(41)

where the functions 𝜃 and 𝑓 satisfy

𝑓

(𝑢) ≤ 𝑑 (∀𝑢 ∈ R) , 𝑓 ∈ C

1
(R) ,

𝜃 (𝑢) ≥ 𝜃min > 0 (∀𝑢 ∈ R) , 𝜃 ∈ C (R) .

(42)

We can also assume that 𝜃 and 𝑓 depend on 𝑥 and 𝑡, but
this only makes a trivial difference. Here, we are interested
in applying the domain decomposition strategy to (41) from
time step to time step. Assume that (41) is discretized by the
backward Euler method:

𝑢
𝑛
−Δ𝑡
𝑛
[𝜕
𝑥
(𝜃 (𝑢
𝑛
) 𝜕
𝑥
𝑢
𝑛
) +𝑓 (𝑢

𝑛
)] = 𝑢

𝑛−1, (43)

where Δ𝑡
𝑛
denotes the step size and 𝑢

𝑛
(𝑥) ≈ 𝑢(𝑡

𝑛
, 𝑥). We can

also consider some other time integrators, such as Trape-
zoidal, Runge-Kutta methods, but the analysis is similar.
Now, with 𝑢

𝑛−1(𝑥) known from the previous computation
step, we focus on calculating 𝑢

𝑛
(𝑥) through the domain

decomposition method [7, 8]:

𝑥 ∈ Ω
𝑖
:

{{{{

{{{{

{

𝑈
𝑘

𝑖
(𝑥) − Δ𝑡

𝑛
[𝜕
𝑥
(𝜃 (𝑈

𝑘

𝑖
(𝑥)) 𝜕

𝑥
𝑈
𝑘

𝑖
(𝑥)) + 𝑓 (𝑈

𝑘

𝑖
(𝑥))] = 𝑢

𝑛−1 (𝑥) ,

𝑈
𝑘

𝑖
(𝛼
𝑖
𝐿) = 𝑈

𝑘−1
𝑖−1 (𝛼𝑖𝐿) ,

𝑈
𝑘

𝑖
(𝛽
𝑖
𝐿) = 𝑈

𝑘−1
𝑖+1 (𝛽𝑖𝐿) ,

(44)
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where𝑈𝑘0 ≡ 𝑔1(𝑡𝑛) and𝑈
𝑘

𝑁+1 ≡ 𝑔2(𝑡𝑛). Upon convergence, we
get 𝑈∞(𝑥) = 𝑢

𝑛
(𝑥).

To analyze the convergence of the sequence {𝑈𝑘
𝑗
}
∞

𝑘=0, we
need the following lemma.

Lemma7 (see [9]). LetL𝑢 := 𝑎𝑢+𝑏𝑢+𝑐𝑢 be a linear, elliptic
operator with 𝑐 < 0 in a bounded domain Ω. Suppose that, in
Ω,L𝑢 ≥ 0 (≤ 0) with 𝑢 ∈ C2

(Ω) ∩C0
(Ω). Then, it holds that

sup
𝑥Ω
𝑢 ≥ sup

𝑥∈𝜕Ω
max{𝑢, 0} (inf

𝑥Ω
𝑢 ≤ inf

𝑥∈𝜕Ω
min{𝑢, 0}).

Define

𝑒
𝑘

𝑖
(𝑥) = ∫

𝑈
𝑘

𝑖
(𝑥)

𝑈𝑖(𝑥)

𝜃 (V) 𝑑V (with 𝑈
𝑖
(𝑥) = 𝑈 (𝑥)|

𝑥∈Ω𝑖
) . (45)

Then, we have

𝜕
𝑥
𝑒
𝑘

𝑖
(𝑥) = 𝜃 (𝑈

𝑘

𝑖
(𝑥)) 𝜕

𝑥
𝑈
𝑘

𝑖
(𝑥) − 𝜃 (𝑈

𝑖
(𝑥)) 𝜕

𝑥
𝑈
𝑖
(𝑥) ,

𝑒
𝑘

𝑖
(𝑥) = 𝜃 (𝑈

𝑘

𝑖
) (𝑈
𝑘

𝑖
(𝑥) −𝑈

𝑖
(𝑥)) ,

(46)

where for the second equality we have used the mean value
theorem for integrals with some𝑈𝑘

𝑖
lying between𝑈𝑘

𝑖
and𝑈

𝑖
.

Subtracting 𝑈
𝑖
from (44) and then using (46), we get

𝑥 ∈ Ω
𝑖
:

{{{{{{{

{{{{{{{

{

𝜕
2
𝑥
𝑒
𝑘

𝑖
(𝑥) +

Δ𝑡
𝑛
𝑓

(�̂�
𝑘

𝑖
) − 1

Δ𝑡
𝑛
𝜃 (𝑈
𝑘

𝑖
)

𝑒
𝑘

𝑖
(𝑥) = 0,

𝑒
𝑘

𝑖
(𝛼
𝑖
𝐿) = 𝑒

𝑘−1
𝑖−1 (𝛼𝑖𝐿) ,

𝑒
𝑘

𝑖
(𝛽
𝑖
𝐿) = 𝑒

𝑘−1
𝑖+1 (𝛽𝑖𝐿) ,

(47)

where 𝑒𝑘0(𝑥) = 𝑒
𝑘

𝑁+1(𝑥) ≡ 0. Let

𝑑 =
Δ𝑡
𝑛
𝑑 − 1

Δ𝑡
𝑛
𝜃min

. (48)

Then, from (42) we have (Δ𝑡
𝑛
𝑓

(�̂�
𝑘

𝑖
)−1)/Δ𝑡

𝑛
𝜃(𝑈
𝑘

𝑖
) ≤ 𝑑. Now,

by using Lemma 7 and a similar procedure as we did in the
proof of Lemma 2, it holds that


𝑒
𝑘

𝑖
(𝑥)

≤ 𝑒
𝑘

𝑖
(𝑥) , ∀𝑥 ∈ Ω

𝑖
, (49)

provided 𝑑 < (𝜋/𝐿)2, where 𝑒𝑘
𝑖
(𝑥) ≥ 0 is defined by

𝑒
𝑘

𝑖
(𝑥) =

sinh [(𝑥 − 𝛼
𝑖
𝐿)√−𝑑]

sinh [(𝛽
𝑖
− 𝛼
𝑖
) 𝐿√−𝑑]


𝑒
𝑘−1
𝑖+1 (𝛽𝑖𝐿)



+

sinh [(𝛽
𝑖
𝐿 − 𝑥)√−𝑑]

sinh [(𝛽
𝑖
− 𝛼
𝑖
) 𝐿√−𝑑]


𝑒
𝑘−1
𝑖−1 (𝛼𝑖𝐿)


.

(50)

Here, for 𝑑 = 0 or 𝑑 > 0 the quantity sinh(𝐴√−𝑑)/
sinh(𝐵√−𝑑) should be understood as

sinh (𝐴√−𝑑)

sinh (𝐵√−𝑑)
=
𝐴

𝐵
, if 𝑑 = 0,

sinh (𝐴√−𝑑)

sinh (𝐵√−𝑑)
=

sin (𝐴√𝑑)

sin (𝐵√𝑑)
, if 𝑑 > 0.

(51)

Define

𝑟 =

sinh (𝑙√−𝑑)

sinh (((𝐿 + (𝑁 − 1) 𝑙) /𝑁)√−𝑑)
,

𝑝 =

sinh (((𝐿 − 𝑙) /𝑁)√−𝑑)

sinh (((𝐿 + (𝑁 − 1) 𝑙) /𝑁)√−𝑑)
,

𝜌 (𝑑,𝑁) = 𝑝
2
+ 2𝑝𝑟 cos( 𝜋

𝑁
)+ 𝑟

2
.

(52)

Then, following the analysis in Section 3.1, Theorem 8 can be
derived directly.

Theorem 8. Let 𝜃 and 𝑓 satisfy (42). Let 𝑑 = (Δ𝑡
𝑛
𝑑 −

1)/Δ𝑡
𝑛
𝜃min < ((𝜋/𝐿)𝜔

∗
)
2, where 𝜔∗ ∈ (0, 1] is the unique

root of K(𝜔,𝑁) = 1 and K is defined by (16a). Then, for
𝑁 ≥ 2 iterations (44) are convergent and the error functions
{𝑒
𝑘

𝑖
(𝑥)}
𝑖=1,2,...,𝑁 defined by (45) uniformly decay to zero with a

rate 𝜌(𝑑,𝑁) < 1.

For specified𝑁, 𝑙, 𝑑, 𝜃min, and 𝐿, Theorem 8 can be used
to select a safe step size Δ𝑡

𝑛
and therefore it is instructive for

designing an adaptive-step-size computation.

Remark 9 (monotonicity of 𝜌). At the end of this section,
we claim that 𝜌 is an increasing function of 𝑑 and 𝑁

and is a decreasing function of 𝑙. We show the increasing
monotonicity with respect to 𝑑 and the others can be proved
similarly. Indeed, for 𝑑 ∈ (0, (𝜋/𝐿)2) it holds

𝑟 =

sin (𝑙√𝑑)

sin (((𝐿 + (𝑁 − 1) 𝑙) /𝑁)√𝑑)
,

𝑝 =

sin (((𝐿 − 𝑙) /𝑁)√𝑑)

sin (((𝐿 + (𝑁 − 1) 𝑙) /𝑁)√𝑑)
,

(53)

and we have already proved in Lemma 4 (Part II) that both 𝑟
and 𝑝 are increasing functions of √𝑑 (and therefore they are
increasing functions of 𝑑). It remains to consider 𝑑 ≤ 0. Let
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Table 1: To reach (56), the measured iteration number 𝑘 for each 𝑑 and𝑁 (× denotes divergence).

𝑁 = 2 𝑁 = 3 𝑁 = 4 𝑁 = 5 𝑁 = 6 𝑁 = 7 𝑁 = 8 𝑁 = 9 𝑁 = 10
𝑑 = 𝑑max 131 301 465 × × × × × ×

𝑑 = −25 35 48 62 79 96 115 135 155 176

𝐵 > 𝐴 > 0 be two constants and𝐻(𝑧) = sinh(𝐴𝑧)/sinh(𝐵𝑧).
Then, it is easy to get sign(𝐻(𝑧)) = sign(𝐻1(𝑧)), where

𝐻1 (𝑧) = 𝐴 cosh (𝐴𝑧) sinh (𝐵𝑧)

− 𝐵 cosh (𝐵𝑧) sinh (𝐴𝑧) .
(54)

We have 𝐻1(𝑧) = (𝐴
2
− 𝐵

2
)sinh(𝐴𝑧)sinh(𝐵𝑧) < 0 (∀𝑧 > 0)

and this, togetherwith𝐻1(0) = 0, implies𝐻(𝑧) > 0 for 𝑧 > 0.
Hence, for 𝑑 ≤ 0 the arguments 𝑟 and 𝑝 are also increasing
functions of 𝑑. Since 𝑟, 𝑝 ≥ 0, it is easy to understand that 𝜌
is an increasing function of 𝑑.

4. Numerical Results

In this section, we present numerical results to verify the
theoretical predictions analyzed at the continuous level. We
consider the following linear reaction diffusion equation:

𝜕
𝑡
𝑢 = 𝜕

2
𝑥
𝑢+𝑑𝑢+ 𝑡

2sin (𝑡𝑥) ,

(𝑥, 𝑡) ∈ (0, 1) × (0, 20) ,

𝑢 (0, 𝑡) = 𝑢 (1, 𝑡) = 0, 𝑡 ∈ (0, 20) ,

𝑢 (𝑥, 0) = 0, 𝑥 ∈ (0, 1) .

(55)

The Laplace operator 𝜕2
𝑥
is discretized by the centered finite

difference scheme with Δ𝑥 = 1/200 and the resulting system
of ODEs is solved by the backward Euler method with step
size Δ𝑡 = 1/100. The overlap size 𝑙 is chosen as 𝑙 = 0.05.
Then, according to Theorem 5, the allowed maximal choice
of 𝑑, which theoretically guarantees convergence of the SWR
algorithm, is 𝑑max = 4.7762. In Figure 2, for two choices
of the problem parameter 𝑑: 𝑑 = 4.7762 and 𝑑 = −25,
we compare the convergence rate of the SWR algorithm in
the case of 4 subdomains. The left column corresponds to
𝑑 = 𝑑max = 4.7762 and the right column corresponds to
𝑑 = −25. From top to bottom, we show the randomly chosen
initial guess, the 5th iterate, the 10th iterate, and the reference
solution. (The reference solution is defined by the so-called
monodomain solution, which corresponds to the numerical
solution computed in the global space-time domain, by using
the same discretization.) We see that for 𝑑 = −25 the iterate
after 5 iterations is very close to the reference solution, while
for 𝑑 = 𝑑max = 4.7762 the difference between the iterate and
the reference solution is obviously visible after 10 iterations.
A complete comparison is shown in Figure 3.

To finish this section, we investigate how the convergence
rate of the SWR algorithm depends on 𝑁, the number of
subdomains. Let 𝐿 = 1 and the overlap size 𝑙 = 0.05. Then,
for two choices of the problem parameter 𝑑 we first show
in Figure 4 the convergence factor 𝜌(𝑑,𝑁) as a function of
𝑁. We see that a smaller problem parameter leads to smaller
convergence factor. This confirms what we have observed in
Figures 2 and 3. Moreover, for both 𝑑 = 𝑑max = 4.7762 and
𝑑 = −25 the convergence factor increases as𝑁 increases; that
is, the convergence factor deteriorates when the number of
subdomains increases. Next, we show in Table 1 themeasured
iteration number for the SWR algorithm when the error
between the iterate and reference solution is less than 10−5;
that is,

max
𝑗=1,2,...,𝑁

max
𝑥∈Ω𝑗,𝑡∈[0,20]


𝑢
𝑘

𝑗
(𝑥, 𝑡) − 𝑢 (𝑥, 𝑡)


≤ 10−5. (56)

We see that the results in Table 1 confirm the theoretical
prediction by Figure 4 very well.

5. Conclusions

We have analyzed the convergence properties of the Schwarz
waveform relaxation (SWR) algorithm for a class of rep-
resentative nonlinear parabolic problems, in the case of
many subdomains. Dependence of the convergence rate
on the number of subdomains and problem parameters
is investigated. By using this “dependence,” we can get
sufficient condition guaranteeing convergence of the algo-
rithm and estimate the convergence rate under specified
problem/algorithmparameters. For example, for given𝑁 (the
number of subdomains) we can use Theorem 5 to get the
allowed upper bound of𝑓(𝑢), that is, 𝑑max, which guarantees
that the SWR algorithm is convergent if max

𝑢∈R𝑓

(𝑢) ≤

𝑑max. Numerical result shows that such a 𝑑max predicted by
Theorem 5 is sharp. We also presented a generalization of
the analysis to more general nonlinear parabolic problems,
where multisubdomain decomposition is used for each time
step (see Theorem 8). Another contribution of this work is
the special technique for proving Theorems 5 and 8, which,
as we will show in our forthcoming paper, plays a central
role for analyzing the convergence properties of the SWR
algorithm with more efficient transmission conditions (e.g.,
the extensively studied Robin transmission conditions) in the
nonlinear and multisubdomain situation.
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Figure 2: Approximation of the iterates generated by the SWR algorithm to the reference solution for two problems parameters: 𝑑 = 𝑑max =

4.7762 (left column) and 𝑑 = −25 (right column). From top to bottom: the randomly chosen initial guess, the 5th iterate, the 10th iterate, and
the reference solution.
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