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Compressed sensing has shown great potential in speeding up MR imaging by undersampling 𝑘-space data. Generally sparsity is
used as a priori knowledge to improve the quality of reconstructed image. Compressed sensingMR image (CS-MRI) reconstruction
methods have employed widely used sparsifying transforms such as wavelet or total variation, which are not preeminent in dealing
withMR images containing distributed discontinuities and cannot provide a sufficient sparse representation and the decomposition
at any direction. In this paper, we propose a novel CS-MRI reconstruction method from highly undersampled 𝑘-space data using
nonsubsampled shearlet transform (NSST) sparsity prior. In particular, we have implemented a flexible decomposition with an
arbitrary even number of directional subbands at each level using NSST for MR images. The highly directional sensitivity of NSST
and its optimal approximation properties lead to improvement in CS-MRI reconstruction applications. The experimental results
demonstrate that the proposedmethod results in the high quality reconstruction, which is highly effective at preserving the intrinsic
anisotropic features of MRI meanwhile suppressing the artifacts and added noise. The objective evaluation indices outperform all
compared CS-MRI methods. In summary, NSST with even number directional decomposition is very competitive in CS-MRI
applications as sparsity prior in terms of performance and computational efficiency.

1. Introduction

Magnetic resonance imaging (MRI) is a widely used non-
invasive imaging modality for clinical diagnosis. However,
relatively slow imaging speed of MRI remains a great chal-
lenge for clinical application.An effectiveway to speed upMR
imaging is 𝑘-space undersampling; in the course, only a small
subset of 𝑘-space ismeasured.However, undersampling often
violates the Nyquist sampling criterion, resulting in aliasing
artifacts in linear reconstruction, inadequate image resolu-
tion, and excessive Gibbs ringing artifacts.

Compressed sensing (CS) [1–3] proposed by Candès et al.
and Donoho is a novel signal acquisition and compression
theory. As a promising method, CS has been introduced to
MR image reconstruction, so-called compressed sensingMRI
(CS-MRI) [4–6]. CS-MRI allows high quality reconstruction
from undersampled 𝑘-space data by solving a constrained

minimization problem using nonlinear optimization algo-
rithm by enforcing the sparsity of images in a certain pre-
defined sparsifying transform, such as the traditional 2D
separable wavelet transform [4], total variation (TV) [4, 7, 8],
contourlet [9, 10], sharp frequency localization contourlet
(SFLCT) [11, 12], dual-tree complex wavelet transform (DT-
CWT) [13, 14], and complex double-density dual-tree DWT
[15]. The structured sparsity such as Gaussian scale mixture
(GSM) model [16, 17] and wavelet tree sparsity [18, 19] for
exploiting the dependencies between wavelet coefficients has
been introduced to CS-MRI reconstruction. In terms of the
restricted isometry property (RIP) condition in CS, incor-
porating a prior knowledge to enhance the sparsity into
the reconstruction can reduce the reconstruction error and
improve the reconstruction of details effectively. In the past
several years these analytical sparsifying transforms have
been successfully applied to CS-MRI and demonstrate high
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quality reconstructions from undersampled data. Some of
these transforms have been combined to further improve the
reconstruction [20–23]. Dictionary learning enables adaptive
sparser representation of MR images than the general sparsi-
fying transforms, which has been applied in CS-MRI [24].

The quality of reconstructed images largely depends on
the performance of exploiting the sparsity prior in CS-MRI,
which is key to accurate CS reconstruction. Therefore an
outstanding sparsifying transform suitable for representing
MR images should be adopted as sparsity prior in CS-MRI
reconstruction. The motivation of our study comes from the
morphology that MR images consist of different components
(point-like and curve-like features) in various orientations,
which cannot be sparsely represented by existing sparse
representation sufficiently, and yet dictionary learning is at
the expense of sacrificing time. In this paper we proposed
a novel CS-MRI image reconstruction method from highly
undersampled 𝑘-space data to improve the quality of recon-
structed MR images by enhancing the sparsity in nonsub-
sampled shearlet transform (NSST) domain. With the ability
to capture intrinsic geometrical features of multidimensional
data efficiently and sparsely represent images containing
edges optimally, the prominent sparse representation-NSST
is adopted as prior knowledge for the regularization in CS-
MRI. The numerical computation employs a corresponding
iterative NSST thresholding algorithm to solve this inverse
optimization problem.

2. Theory and Methods

2.1. Problem Formulation. The commonmodel of data acqui-
sition with incomplete measurements for CS-MRI is given by
the following formulation:

y = Fux + n, (1)

where x ∈ C𝑛 is the reconstructed image, y ∈ C𝑚 is the
acquired 𝑘-space measurement data corrupted with the noise
n, and Fu is the undersampled Fourier transform operator
which directly relies on the 𝑘-space undersampling scheme.
Suppose that x is represented as x = Ψ𝛼, whereΨ represents
the sparsity prior associated with the transform under which
MR image x has a sparse representation or approximation.
Then the measured data is given by y = FuΨ𝛼 + n, where
FuΨ represents the sensing matrix.

According to CS theory, CS-MRI claims to reconstruct
MR image from undersampled 𝑘-space data by enforcing the
image sparsity [4]. That is, x can be accurately reconstructed
from a small subset of 𝑘-space data by solving the following
ℓ
0
norm minimization problem:

min
𝛼

‖𝛼‖
0

s.t. y = FuΨ𝛼.
(2)

However, the ℓ
0
norm is not convex and the compu-

tational complexity of the optimization is NP-hard [7]. It
has been proven that, under certain condition, ℓ

0
norm

problem is equivalent to ℓ
1
norm. Thus the reconstruction

can be obtained by solving the following constrained convex
optimization:

min
𝛼

‖𝛼‖
1

s.t. 󵄩󵄩󵄩󵄩y − FuΨ𝛼
󵄩󵄩󵄩󵄩2 < 𝜀,

(3)

where 𝜀 is a statistic describing the magnitude of the error,
defined as the noise variance or themaximumallowable error
in the approximation.Minimizing the objective function ‖𝛼‖

1

promotes the sparsity of the images. The constraint ‖y −

FuΨ𝛼‖2 < 𝜀 enforces the fidelity of the reconstruction to the
measured 𝑘-space data. Besides, constrained ℓ

1
norm convex

optimization problem in (3) can be written in unconstrained
Lagrangian form:

min
𝛼

1

2

󵄩󵄩󵄩󵄩y − FuΨ𝛼
󵄩󵄩󵄩󵄩
2

2
+ 𝜆 ‖𝛼‖

1
. (4)

The second term of (4) is a regularization term that represents
prior sparse information of original images. 𝜆 is a regular-
ization parameter governing the tradeoff between the data
fidelity and its sparsity.

2.2. Nonsubsampled Shearlet Transform. The shearlet trans-
form, introduced by the authors and their collaborators in
[25, 26], is a very recent sibling in the family of geometric
image representations. The shearlet representation originally
derived from the framework of affine systems with composite
dilations [25–28]. The shearlet frame elements associated
with shearlet transform are defined at various scales. The
shearlet transform is amultiscale directional transformwhich
is especially adapted to localize distributed discontinuities
such as edges. Unlike conventional multiresolution analysis
tool, the shearlet representation is theoretically optimal in
representing directional and anisotropic features in images
and has the ability to accurately and efficiently capture the
geometric information of multidimensional data at various
scales. As a result, this approach provides optimal approxi-
mation properties for 2D images.

The shearlet representation forms an affine-like system
and has a simpler mathematical construction. In fact, the
elements of this system form a Parseval frame and are gener-
ated by applying dilations, shear transformations, and trans-
lations to a single well-localized window function. Shearlet
transform extends naturally to higher dimensions and can be
associated with a multiresolution analysis [28]. In addition,
this approach has a fast algorithmic implementation and is
very competitive for CS-MRI reconstruction.

The discrete shearlet transform, obtained by discretizing
the corresponding continuous transform, has different form
in the numerical implementation. Both a frequency and
time-domain based implementation of the discrete shearlet
transform have been developed [25]. The features of each
particular representation will have various advantages for
specific applications. Refer to [25–28] for more details about
the mathematical framework and the implement of discrete
shearlet transform. The reason for using nonsubsampled
shearlet transform (NSST) as sparsity prior for CS-MRI
reconstruction will be discussed in Section 2.3.1 in detail.
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2.3. ProposedMethod. Theaforementioned sparsifying trans-
forms integrated with CS-MRI are acknowledged to have a
limited capability in representing these directional informa-
tion and important details. The properties of each particular
representation will have different advantages for specific
application.They may not provide sufficient sparse represen-
tation for sharp spatial gradients and intrinsic geometrical
features contained inMR images.The contourlet transform is
an efficient directional multiresolution image representation.
However, nonideal filters used in the original contourlet
result in substantial amount of aliasing components and blur-
ring artifacts in representing smooth boundaries. To solve
this problem, Lu and Do [11] propose a new construction
of the contourlet, called sharp frequency localization con-
tourlet (SFLCT). SFLCT has been integrated with CS-MRI
reconstruction [12]. Since the combination of LP and 2D
directional filter bank (DFB) makes the aliasing problem
serious, newmultiscale pyramid with different set of low pass
and high pass filters for the first level and all other levels
is employed. SFLCT alleviates the nonlocalization problem
with the same redundancy of the original contourlet.Though
SFLCT is sharply localized in the frequency domain, the
downsampling of LP and DFBs stages makes it lack shift
invariance, which could easily produce Gibbs ringing arti-
facts around the singularities, for example, edges. Although
the contourlet basis is anisotropic, the directional subbands
can be decomposed only at 2𝑀 directions in terms of direc-
tional selectivity, in which 𝑀 denotes the cascade layers of
DFBs.

To overcome these limitations, on account of the MR
images consisting of curve singularities and anisotropic
directional features, a more appropriate sparsity prior with
highly directional sensitivity and anisotropy should be
applied to reconstruction. So we employ a special form
of shearlet transform—NSST—as sparsity prior in CS-MRI
reconstruction.

2.3.1. Major Advantages of NSST Sparsity Prior. Taking
account of measurement noise in 𝑘-space and the problems
of aliasing and shift-variance caused by decimation, in our
implementation for CS-MRI, we adopt the particular form
of the time-domain based shearlet transform. This will be
simply referred to as the nonsubsampled shearlet transform
(NSST), which is to use the nonsubsampled Laplacian pyra-
mid (LP) transformwith several different combinations of the
shearing filters. The idea of using NSST will be represented
one by one below.

(i) Essentially Optimal Sparsity and Approximation Property.
The family of shearlet function forms a tight frame of 𝐿2(R2),
and, thus, an image 𝑓 can be represented by 𝑓 = ∑

𝑗,ℓ,𝑘
⟨𝑓,

𝜓
𝑗,ℓ,𝑘

⟩𝜓
𝑗,ℓ,𝑘

. The coefficients 𝛼
𝑗,ℓ,𝑘

(𝑓) = ⟨𝑓, 𝜓
𝑗,ℓ,𝑘

⟩ are called
shearlet coefficients of the image 𝑓. The shearlet elements
form a tight frame of well-localized waveforms, at various
scales and directions, and are optimally sparse in representing
images with edges. They are compactly supported in the
frequency domain and have fast decay in the spatial domain.

To make the statement of optimal sparsity and approx-
imation property more rigorous, it is useful to quantify

the approximation performance from the point of view
of approximation theory. The asymptotic convergence rate
is actually the correct optimal behavior for approximating
general smooth objects having discontinuities along piece-
wise 𝐶

2 curves. Denoting as 𝑓
𝑀

the approximation of an
image 𝑓 by the 𝑀 largest transform coefficients in the
corresponding representation, the resulting approximation
error (in ℓ

2
-norm square) is ‖𝑓 − 𝑓

𝑀
‖
2

2
. It is very helpful to

achieve the best asymptotic decay rate for this error in
application. Let 𝐶2 be the space of functions that are twice
continuously differentiable. If the image 𝑓 is 𝐶2 everywhere
away from edge curves that are piecewise𝐶2, the best𝑀-term
asymptotic approximation error using shearlets has a decay
rate of 𝑂((log𝑀)

3

𝑀
−2

) [28], which is essentially optimal in
representing 2D images 𝑓 which are piecewise 𝐶2 except for
discontinuities along 𝐶2 curves and greatly outperforms that
of wavelet approximations onlywith the decay rate of𝑂(𝑀−1)
[29]. The shearlet transform has very similar asymptotic
approximation properties with the curvelets [30] and the
contourlets. The corresponding argument about optimal
sparsity is proved in [9, 28, 30]. The error decay rate using
shearlets is close to the theoretical optimal approximation,
where the error decays as 𝑀−2 [31, 32]. In particular, the
shearlet transform has some advantages over the contourlet
transform [25]. In this sense, the shearlet representation
provides optimally sparse representation of objects with
singularities along piecewise 𝐶2 edges.Thus through shearlet
transform, MR image can be decomposed into various
frequency regions whose supports are contained in pair of
trapezoidal regions symmetric with respect to the origin and
directionally oriented.

For CS-MRI, two most useful features of shearlets are
their ability to efficiently approximate signals containing
piecewise singularities and allowing for a much less redun-
dant sparse tight frame representation. Consequently shearlet
transform can represent images sparsely better than other
representations. Moreover NSST can offer shift invariance.
These properties are of vital importance for CS-MRI recon-
struction because these properties results in MR images
that are more compressible and hence more effective to be
reconstructed. We can achieve better approximation perfor-
mance and better sparse representation by shearlet coeffi-
cients compared to others. The reconstruction error in CS
is proportional to approximation error. By using NSST as
the sparse transform for some singularities in MR images,
the reconstruction error decreases faster than that of other
representations from undersampled 𝑘-space data. This is the
reason why we use NSST as sparsity prior to better recon-
struct some crucial features than using other representations
in CS-MRI.

(ii) Highly Directional Sensitivity and Anisotropy. The collec-
tion of shearlets {𝜑

𝑘
, 𝜓
(𝑑)

𝑗,ℓ,𝑘
: 𝑗 ≥ 0, −2

𝑗

≤ ℓ ≤ 2
𝑗

− 1, 𝑘 ∈

Z2, 𝑑 = 0, 1} is a Parseval frame (tight frame) for 𝐿2(R2)
[25]. This indicates that the decomposition is invertible and
the transformation is numerically well-conditioned. Details
about this construction can be found in [25, 28]. The tiling of
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(a) (b) (c)

Figure 1: Frequency tiling of the shearlets and an example of basis function. (a) The tiling of the frequency plane induced by the shearlets,
(b) basis function, and (c) the frequency support of a shearlet on a pair of trapezoids.

the frequency plane R̂
2
induced by the shearlets is illustrated

in Figure 1(a).
Shearlets are compactly supported in the frequency

domain and have fast decay in the spatial domain with
time-frequency localization. The frequency support of a
shearlet 𝜓

𝑗,ℓ,𝑘
satisfies parabolic scaling. Each element 𝜓̂

𝑗,ℓ,𝑘

is supported on a pair of trapezoids, of approximate size
2
2𝑗

×2
𝑗 (see Figure 1(c)), oriented along lines of slope ℓ2−𝑗. As

a consequence, shearlets exhibit highly directional sensitivity.
Unlike the isotropic elements of wavelet bases, a pair of
trapezoids elements of shearlet transform possesses very
high directional sensitivity and anisotropy. Display of a basis
function for the shearlet transform is shown in Figure 1(b).
As a result, the shearlet transform requires fewer coefficients
to represent curve-like feature of MR images than the other
transforms do.

(iii) No Restrictions on the Number of Directions for the
Shearing-Highly Directional Sensitivity and Flexibility. Such
elements are very efficient in representing curve-like edges
and texture features. Contourlet and SFLCT can capture the
geometry of images only in 2𝑀 directions which is not opti-
mal forMR images, because the feature information of organ,
tissue, or blood vessel could be in all directions. It is worth
being noted that an outstanding advantage of the shearlet
transform is that there are no restrictions on the number of
directions for the shearing compared with other “directional
wavelets” including contourlet and SFLCT. It is impossible
to obtain the flexibility of directional decomposition using
shearlet transform for a fan filter implementation of DFBs. In
addition, there are no constraints on the size of the supports
for the shearing in shearlet transform, in which the shearing
filter can have smaller support size than the directional filters
used in contourlet transform. Note that the only restriction
on the shearing filters is that the size of the filter should be
more than or equal to the maximum number of directional
subbands.

(iv) The Small Support Sizes of the Shearing Filters. Another
benefit of this implementation is that the shearing filtering
can be performed “directly” in the time-domain using a
convolution. In addition, the small support sizes of the filters
reduce the Gibbs-type ringing phenomenon and improve
the computational efficiency of the algorithm. The shearing

filters constructed by using a Meyer window are shown in
Figure 2.

(v) Shift Invariance. In the time-domain implementation, data
is undecimated at a specific scale using nonsubsampled LP.
Consequently NSST exhibits excellent shift invariance at the
same time, which can be helpful for CS-MRI reconstruction.
Although this is a highly redundant decomposition, this
version will be shown to be highly effective for the purpose
of eliminating the effect of acquisition noise in 𝑘-space.

NSST combines the power of multiscale methods with a
unique ability to capture the geometry of multidimensional
data and is optimally efficient in representing images con-
taining edges.Thehighly directional sensitivity of the shearlet
transform and its optimal approximation properties will lead
to improvements in CS-MRI applications. So NSST is a good
candidate for CS-MRI as sparsity prior. Incorporating NSST
sparsity prior knowledge into the process of image recon-
struction, we can get the sparse NSST coefficients and then
get the reconstructed MR images by solving aforementioned
constrained optimization problem.

2.3.2. The Improvement on the Number of Directions and
Parameters in Directional Decomposition. An important
advantage of the shearlet transform over the contourlet
transform is that there are no restrictions on the number
of directions for the shearing. In the experiments, consid-
ering anisotropic characteristics existing in MR images and
the accuracy of reconstruction we have implemented the
decomposition with an arbitrary even number of directional
subbands (2𝑁,𝑁 = 1, 2, . . .) at each scale using NSST, which
is more flexible than 2𝑀 directions of contourlet and SFLCT.
In this implementation, we have large flexibility in the choice
of the number of separated directional subbands for each
decomposition level, not just restricted to 23, 24, and so forth
directional subbands. We could achieve the decomposition
at 6, 10, and 12 directions, which cannot be achieved by
SFLCT. More flexible directional representation can provide
the superior decomposing directions for anisotropic features
inMR images.Thus it benefits us to capture the intrinsic char-
acteristics information of MR images at different directions
using NSST. Therefore, it only needs less transform domain
coefficients than the other sparsifying transforms when the
curve characteristics of MRI are expressed using NSST.
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Figure 2: Examples of the shearing filters constructed using a Meyer wavelet as the window function.

After considerable quantity of experiments, it demon-
strates that only three-level decomposition using NSST and
12 directions in each level for sparse representation of MR
images has already been enough, which can achieve better
reconstruction performance outperforming four-level and
2
𝑀 directions decomposition using SFLCT. Finer decompo-
sition scales and much more directions cannot result in the
improvement of reconstruction performance; instead they
will increase the burden of computation. In practice, we use a
Meyer wavelet window to construct the directional shearing
filters, as shown in Figure 2. The shearing filters of sizes 12 ×
12, 12 × 12, and 12 × 12 from finer to coarser were used
with the number of shearing directions chosen to be 12, 12,
and 12. NSST (12, 12, and 12) indicates that a Meyer-based
shearing filter of size 12 with 12 directions was applied to the
first, second, and third decomposition level.

Figure 3 illustrates the three-level shearlet decomposi-
tion of a T2 brain MR image with Ewing’s sarcoma from
the Harvard University site (http://www.med.harvard.edu/
AANLIB/home.html). The first level decomposition gener-
ates 6 directional subbands, the second level decomposition
generates 8 directional subbands, and the third level decom-
position generates 12 directional subbands.

2.3.3. Compressed Sensing MRI Reconstruction Using NSST
Sparsity Prior. The reconstruction problem from undersam-
pling 𝑘-space data actually belongs to an underdetermined
system of linear equations. It is very helpful to incorporate a
priori sparse information into the nonlinear reconstruction
for further improvement of reconstruction performance. In
this paper, we specially employ NSST with even number
directional decomposition as sparsity prior in CS-MRI appli-
cations. For the reconstruction problem, we adopt the convex
ℓ
1
-norm regularization to promote sparsity in NSST domain.

Different numerical reconstruction algorithms to solve (4)
optimization problem [33–38] have been proposed in the past
few decades. Among the existing algorithms, the iterative
shrinkage thresholding algorithm (ISTA) is straightforward,
often-used, and effective for solving linear inverse problems.
The reason is that ISTA with good robustness is easy to
implement and can be integrated easily with existing spar-
sifying transforms in practical application. These properties
are significant for CS-MRI. Considering the effectiveness and

the convenience of ISTA,we adopt improved iterative shearlet
thresholding to solve CS-MRI.

The interpretation and convergence of iterative thresh-
olding algorithm for solving constraint ℓ

1
norm optimization

were discussed in the literature [33, 35]. The core idea of iter-
ative thresholding is that the objective function is guaranteed
to decrease on each iteration of the algorithm.This algorithm
iteratively performs soft thresholding to decrease the ℓ

1
norm

of the coefficients 𝛼 and a gradient descent to decrease the
value of ‖y − FuΨ𝛼‖2. Equation (4) can be simply solved by
iterative shearlet thresholding:

𝛼
𝑘+1

= 𝑆
𝜃𝑘
(
1

𝑐
(FuΨ)

H
(y − FuΨ𝛼𝑘) + 𝛼𝑘)

= 𝑆
𝜃𝑘
(
1

𝑐
(FuΨ)

H r + 𝛼
𝑘
) ,

(5)

where (FuΨ)
H denotes the conjugate transpose operator of

FuΨ and Ψ and ΨH denote the shearlet inverse and for-
ward transform, respectively. The choice of 𝑐 should satisfy
𝑐 > ‖(FuΨ)

H
(FuΨ)‖2 = 𝜆max((FuΨ)

H
(FuΨ)) (the maximal

eigenvalue of the matrix (FuΨ)
H
(FuΨ)). r = y−FuΨ𝛼𝑘 is the

residual in 𝑘-space. The thresholding function can be used
in the coefficient iteration. Here 𝑆

𝜃𝑘
(𝛼) is a soft thresholding

operator to shrink each entry 𝛼
𝑖
of vector 𝛼 according to the

following:

𝑆
𝜃𝑘
(𝛼
𝑖
) =

{{

{{

{

0 if 󵄨󵄨󵄨󵄨𝛼𝑖
󵄨󵄨󵄨󵄨 ≤ 𝜃
𝑘

𝛼
𝑖
−

󵄨󵄨󵄨󵄨𝛼𝑖
󵄨󵄨󵄨󵄨

𝛼
𝑖

𝜃
𝑘

otherwise.
(6)

Since 𝛼 is a complex vector forMR images, a complex thresh-
olding operator should be defined. Daubechies et al. [33]
extended the definition of the operator and derived a complex
thresholding operator, which is defined as 𝑆

𝜃𝑘
(|𝛼
𝑖
|𝑒
𝑗𝜔

) =

𝑆
𝜃𝑘
(|𝛼
𝑖
|)𝑒
𝑗𝜔, 𝜔 ∈ [0, 2𝜋).

In order to eliminate the effect of the magnitude of
MR images on stop criteria, a relative error tolerance [12]
𝑅
𝑘

= ‖y − FuΨ𝛼̂‖2/‖y‖2 is adopted to replace absolute
stop criteria related to 𝜀 of (3). The decreasing factor 𝜌

(0 < 𝜌 < 1) is adopted to decrease the threshold in
each iteration. The computational parameters 𝜂 and 𝜌 in the
algorithm are constants, and we set them to be the same in all
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(a)

(b)

(d)

(e)

(c)

Figure 3: Decomposition coefficient of a T2 brain MR image with sarcoma based on NSST, of 3 resolution scales, 6, 8, and 12 directions
for every scale, respectively. (a) T2 brain MR image with sarcoma. (b) Lowpass subband, the approximate shearlet coefficients. (c)∼(e) The
detail shearlet coefficients of decomposition level 1, level 2, and level 3 in every direction, respectively, with the full colormap scaling for better
presentation.
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(1) Require: y ∈ C𝑚,Ψ ∈ C𝑛×𝑑, 𝜂, 𝜌, (0 < 𝜌 < 1).
(2) Set 𝜃

0
= max((FuΨ)

Hr0), 𝛼0 = [(0, . . . , 0)
1×𝑑

]
𝑇, x0 = Ψ𝛼0, r0 = y

(3) Repeat
(4) Update coefficient vector according to 𝛼

𝑘+1
= 𝛼
𝑘
+ 𝑆
𝜃𝑘
((FuΨ)

Hr
𝑘
)

(5) Computer residual r
𝑘+1

= y − FuΨ𝛼𝑘+1
(6) Update the threshold 𝜃

𝑘+1
= 𝜌𝜃
𝑘

(7) 𝑘 ← 𝑘 + 1

(8) until 𝑅
𝑘
= ‖y − FuΨ𝛼𝑘‖2/‖y‖2 ≤ 𝜂

(9) return 𝛼̂, x̂ = Ψ𝛼̂.

Algorithm 1: NSST IST CS-MRI.

the experiments. The selecting problem of the value of 𝜂 and
𝜌 was investigated in the paper [12].

From empirical analysis, 𝜂 = 10
−6 and 𝜌 = 0.8 are an

appropriate choice to acquire good performance for CS-
MRI. The improved CS-MRI reconstruction algorithm from
undersampled 𝑘-space measurements using iterative NSST
soft thresholding is summarized in Algorithm 1.

3. Experimental Results and Discussion

To evaluate the performance of the proposed approach, we
performed a large number of experiments on in vivoMR scan
and a standard phantom, which contain a representative T2-
weighted axial MR complex image of human brain and water
phantom complex data (fromComputational Imaging Group
at Xiamen University) [39–41]. Sampling schemes in the
experiments include 2D variable density random sampling
pattern and pseudoradial line sampling. All the experiments
were implemented using a laptop equippedwith an Intel Core
i5-2450M CPU at 2.50GHz and 6GB memory, employing a
32-bit Windows 7 operating system.The routines were tested
in MATLAB R2011b.

The reconstruction results and performance of the pro-
posed method are compared with four existing schemes:
zero-filling, TV-CG [4], orthogonal discrete wavelet trans-
form- (ODWT-) based [4], and SFLCT-based [13] CS-
MRI reconstruction. For ODWT-based method, images are
decomposed using the “db4” wavelet with 4 vanishing
moments and four decomposition levels, denoted as ODWT.
For implementing SFLCTmethod [13], the level of decompo-
sition is set to 4. SFLCT iswith decomposition level [5, 4, 4, 3],
which means four decomposition levels and 25, 24, 24, and 23
directional subbands from coarse to fine scales. The “pkva”
quincunx/fan filter is employed as a decomposition filter in
SFLCT. For NSST-based CS-MRI reconstruction, the level of
decomposition, the size of shearing filters, and the maximum
number of directional subbands have been mentioned in
forenamed Section 2.3.2.

3.1. Performance without Noise. We first study the noiseless
scenario to see the performance of NSST-based sparsity
representation and its application in CS-MRI reconstruction.

(i) T2-Weighted Image of the Brain. In Figure 4, comparison
of NSST-based CS-MRI reconstruction versus existing four

approaches fromundersampled 𝑘-space data for T2-weighted
MR image of the brain (256 × 256) of slice 10 [39–41] is
illustrated. The complex raw data is acquired from a healthy
volunteer at a 3T Siemens Trio Tim MRI scanner using the
T2-weighted turbo spin echo sequence with sequence param-
eters (TR/TE = 6100/99ms, 220 × 220mm field of view, and
3mm slice thickness). Variable density random sampling
pattern with 24.96% sampling rate is employed.

Obviously, the reconstructed MRI images using other
four methods suffer considerably from less contrast and less
visibility in some tissue structures, which is clearly seen to
have many undesirable artifacts and loss of features. TV-
CG is unable to remove aliasing artifacts seen in the zero-
filling result. On the other hand, as shown in Figure 4(g),
the reconstruction using NSST-based approach is relatively
devoid of aliasing artifacts. Gibbs ringing artifacts have
been drastically mitigated employing the proposed approach
compared with the other four reconstructions due to NSST
sparsity constraint in our method. The quality of recon-
structed results has a large degree of improvement utilizing
the proposed approach. Specifically, in comparison to other
methods, the reconstructed images (g) using the proposed
approach can provide good contrast between gray and white
matter. The anatomic structure of bilateral basal ganglia
was depicted well. Cerebral cisterns and sulci were present
with clear border (see the zoom-in in Figure 4(g1)). (c1)∼
(f1) in Figure 4 show line-like and texture-like artifacts in
the smooth region and the edges of tissue are blurred. The
reconstructed MR images using NSST-based approach with
higher contrast and spatial resolution can preserve integrity
of boundary and texture of tissue perfectly. To better illustrate
the reconstruction performance based on NSST for the edge
details of MR image, the comparison visual appearance is
given in (c1)∼(g1) and (c2)∼(g2) of Figure 4. The zoom-in
(c2)∼(f2) exists Gibbs ringing artifacts around the edges at
different levels, while (g2) is observed tomitigate the artifacts
considerably.

Themagnitude of reconstruction error for fivemethods is
shown on the same scale [0, 0.25] in Figure 5.Themagnitudes
of the reconstruction error of comparing four methods show
muchmore regions of high error indicating loss of structured
features, indicating the reconstruction error for the proposed
approach is minimal among these methods. The error image
of zero-filling and TV-CG is observed to have significantly
more structured errors indicating loss of feature information
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Figure 4: Comparison of reconstruction results for T2wBrain slice 10. (a) Reconstructed image from fully sampled data (256 × 256), (b)
𝑘-space sampling mask of variable density random sampling with 24.96% sampling rate, (c)∼(g) reconstruction using TV-CG, zero-filling,
ODWT-based, SFLCT-based, and NSST-based CS-MRI, respectively, and (a1), (c1)∼(g1) and (a2), (c2)∼(g2) zoom-in of (a), (c)∼(g) for two
different regions, respectively. The PSNRs of them are 34.08, 28.65, 33.99, 34.95, and 37.45, respectively.
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Figure 5: Magnitude of reconstruction error for T2wBrain slice 10 with the gray scale of [0, 0.25]. (a)∼(e) The difference images between
fully sampled MR image (a) and reconstruction images (c)∼(g) in Figure 4, respectively. The RLNEs of them are 0.1316, 0.2461, 0.1331, 0.1192,
and 0.0894, respectively.

in corresponding reconstructed images. The error of SFLCT-
based is smaller than the previous three but still not as good
as the result of the proposed approach. In other words, the
reconstruction with NSST-based could preserve more details
and produce an artifact-free reconstruction that looks close
to the fully sampled reconstruction images.

(ii)Water Phantom. Figure 6 shows the case of standardwater
phantom complex data [39–41]. The water phantom data is
acquired at 7T Varian MRI system (Varian, Palo Alto, CA,
USA) with the spin echo sequence (TR/TE = 2000/100ms, 80
× 80mm field of view, and 2mm slice thickness). The phan-
tom for MRI system is used for evaluation of image quality
and testing a MRI machine performance. The phantom is
well suited to assess the spatial resolution qualitatively and
quantitatively over a wide range. It contains simple geometric
objects which are the representation of anatomical structures.
They are important in evaluating MR image quality. These
objects possess different gray scale, contrast, and spatial
resolution. Figure 6(a) shows fully sampled reconstruction
phantom image (256 × 256). Pseudoradial sampling pattern
(44 lines) with 16.35% undersampling rate (Figure 6(b)) is
employed on a water phantom as shown in Figure 6.

From the experimental results, the proposed method can
achieve better visual results than others. Considering the
visual perception, the reconstructed result of NSST-based
CS-MRI which looks much clearer on the whole is obvi-
ously superior to other four schemes. Reconstruction using
zero-filling in Figure 6(d) gives poor result which exhibits
curve-like artifacts and appears obscure for the objects.

The reconstructed results of TV-CG (c) and ODWT-based
approach (e) with less contrast and loss of considerable details
still show the presence of some Gibbs ringing artifacts and
blurring around edges.The reconstructionwith SFLCT-based
CS approach (f) can suppress these artifacts around the
objects but contains a number of random textures in the back-
ground region which do not exist in the fully sampled image.
These textures could bemistaken as a certain feature to distort
vision and affect the judgment of the doctor. By contrast, the
proposed method performs better. Reconstructed phantom
(g) of Figure 6 via the proposedmethodwith improved visual
quality looks much better compared to the other four images.
It is clear enough to permit the visualization of small details
with less graininess. More details are visible because this
image has higher spatial resolution. Such MR images tend to
be more diagnostic, more accurate, and generally desirable.

The reconstruction results (a1), (c1)∼(g1) and (a2), (c2)∼
(g2) of Figure 6 are zoom-in of (a), (c)∼(g) for two different
regions, respectively. It is worth noting that the reconstructed
image by the proposed algorithm with the uniform back-
ground just like the fully sampled image eliminates artifacts to
some extent.The results demonstrate that NSST outperforms
other compared sparsity priors in reconstructing the curve-
like characteristics of image. Meanwhile the edge of objects is
much clearer and sharper than four compared approaches.
The homogeneity and image intensities of the NSST-based
reconstruction appear well.

Themagnitude of reconstruction error for fivemethods is
shown on the same scale [0, 0.25] in Figure 7. From Figure 7,
it is found that the magnitude of reconstruction error for
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Figure 6: Comparison of NSST-based CS-MRI reconstruction versus other four schemes for a water phantom. (a) Fully sampled water
phantom (256 × 256), (b) simulated 𝑘-space trajectory (pseudoradial 44 lines mask with 16.35% sampling rate), (c)∼(g) reconstruction using
TV-CG, zero-filling, ODWT-based, SFLCT-based, and the proposedNSST-basedCS-MRI, respectively, and (a1), (c1)∼(g1) and (a2), (c2)∼(g2)
zoom-in of (a), (c)∼(g) for two different regions, respectively. The PSNRs of them are 31.02, 23.61, 28.64, 30.34, and 32.52, respectively.
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Figure 7:Magnitude of reconstruction error forwater phantomwith the scale of [0, 0.25]. (a)∼(e)Thedifference images between fully sampled
MR image (a) and reconstruction images (c)∼(g) in Figure 4, respectively. The RLNEs of them are 0.0591, 0.1388, 0.0778, 0.0639, and 0.0498,
respectively.

the proposed approach is the lowest among these five meth-
ods. The error image of zero-filling and TV-CG is observed
to have significantly more structured errors indicating loss of
feature information in corresponding reconstructed images.
The error of SFLCT-based is smaller than the previous
three, but still not as good as the result of the proposed
approach. The magnitudes of the reconstruction error of
comparing four methods show much more regions of high
error indicating loss of structured features. In other words,
the reconstruction with NSST-based could preserve more
details and produce an artifact-free reconstruction that looks
close to the fully sampled image.

The above comparison demonstrates that NSST-based
CS-MRI reconstruction approach is highly effective at pre-
serving more intrinsic characteristics information and miti-
gating Gibbs ringing artifact. It can significantly improve the
quality of reconstructed MR image which meets the require-
ments of clinical diagnostic applications, which outperforms
compared methods.

3.2. Performance with Noise. To demonstrate the perfor-
mance of the proposed method in the noisy case, zero-mean
complex Gaussian white noise of the standard deviation 𝜎 =

10.2 is added to the 𝑘-space data for the following examples.

(i) T2wBrain Slice 27. Figure 8 exhibits reconstructed results
of the proposed method and other compared methods from
𝑘-space noisy data for T2-weighted brain image employing
2D variable density random sampling with 24.96% sampling
rate. The reconstruction with ODWT, SFLCT is unable to

sufficiently remove obvious artifacts and noise seen in the
zero-filling result. The proposed method achieves relative
high quality reconstruction with superior edge preserving
and less noise.The noise is greatly reduced in the reconstruc-
tion of Figure 8(h), which shows the superior ability of noise
suppression.

Figure 9 demonstrates the magnitude of reconstruction
error for five methods on the same scale [0, 0.25] under noisy
circumstances. The magnitude image of the reconstruction
error for NSST shows much smaller error magnitude and
loss of features than that of other methods. The PSNR of
noisy fully sampled reconstruction (Figure 8(a)) with respect
to the noise-free reference image is approximately 29.82 dB.
The PSNR of NSST-based result is about 5.11 dB, 3.67 dB,
and 2.29 dB higher than that of TV-CG, ODWT, and SFLCT
reconstruction, respectively. It is also 6.7 dB higher than the
PSNR of the fully sampled noisy image, in spite of only using
1/4 of the full data to reconstruct. The rest of the objective
evaluation indices of the proposed method also outperform
other methods.

(ii) Water Phantom. Figure 10 demonstrates the performance
of our method on water phantom of Figure 6 using pseudo
radial line sampling with 16.35% sampling rate (as shown in
Figure 6(b)) under the noisy circumstance.

The reconstruction with ODWT and SFLCT is unable to
sufficiently remove the aliasing and noise seen in the zero-
filled result. On the other hand, our method can suppress the
aliasing and noise, meanwhile preserving edges and details.
TV-CG provides a comparable reconstruction to NSST
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Figure 8: Comparison of reconstruction results for T2wBrain slice 27 from noise-added undersampled 𝑘-space data. (a) The noisy fully
sampled reconstruction image, (b) variable density random sampling pattern at sampling rate 24.96%, (c) added noisemagnitude, and (d)∼(h)
reconstructed images using zero-filling, TV-CG, ODWT-based, SFLCT-based, and the proposed NSST-based CS-MRI, respectively. The
PSNRs of (d)∼(h) are 27.12, 31.41, 32.85, 34.23, and 36.52, respectively.
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Figure 9: Reconstruction error magnitudes for T2wBrain slice 27 with noise standard deviation 10.2 with the gray scale of [0, 0.25]. (a)∼(e)
The difference images between fully sampled MR image (Figure 8(a)) and reconstruction images (d)∼(h), respectively. The RLNEs of them
are 0.27, 0.17, 0.14, 0.12, and 0.09, respectively.
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Table 1: Comparison of the objective assessment indices of CS-MRI reconstruction via NSST-based to compared methods using three
different sampling patterns with different sampling rates.

MR images and mask Indices Reconstruction methods
Zero-filling TV-CG ODWT SFLCT Proposed

T2wBrain slice 10
using mask Carteian 040

PSNR 28.9486 33.1252 32.7337 34.1371 36.0823
TEI 0.4346 0.6417 0.6319 0.6889 0.7486
SSIM 0.7514 0.8815 0.8610 0.8673 0.9317
RLNE 0.2378 0.1470 0.1538 0.1308 0.1046

T2wBrain slice 10
using mask VDS 2496

PSNR 28.6510 34.0847 33.9880 34.9453 37.4500
TEI 0.4385 0.6935 0.6722 0.7155 0.7830
SSIM 0.6166 0.8933 0.8714 0.8686 0.9485
RLNE 0.2461 0.1316 0.1331 0.1192 0.0894

Water phantom
using mask VDS 2496

PSNR 26.5477 33.1360 32.5484 33.9574 35.0718
TEI 0.5916 0.6819 0.6664 0.6913 0.6984
SSIM 0.6150 0.6165 0.8005 0.8235 0.8296
RLNE 0.0990 0.0463 0.0496 0.0422 0.0371

Water phantom
using mask PRS 44 1635

PSNR 23.6072 31.0209 28.6408 30.3416 32.5182
TEI 0.3537 0.6403 0.6023 0.6616 0.6799
SSIM 0.5233 0.6321 0.7086 0.7517 0.8090
RLNE 0.1388 0.0591 0.0778 0.0639 0.0498

Note.mask Carteian 040 denotes with variable density Cartesian sampling mask in 𝑘-space with 40% sampling rate, mask VDS 2496 denotes variable density
random sampling mask with 24.96% sampling rate, and mask PRS 44 1635 denotes pseudoradial 44 lines sampling mask with 16.35% sampling rate.

contributing to the superior denoising and edge-preserving
property of total variation. The magnitude image of the
reconstruction error for NSST-based method demonstrates
errors ofmuch smallermagnitude and less structure than that
of zero-filling, ODWT-based, SFLCT-based method.

The PSNR of the fully sampled noisy image with respect
to the noise-free reference is about 30.76 dB. The PSNR of
NSST-based reconstruction is about 2.2 dB higher than that
of SFLCT and 1.2 dB higher than that of TV-CG. It is also
higher than the PSNR of both the fully sampled noisy image
and other method results indicating good denoising and
aliasing removal.The RLNE of NSST-based reconstruction is
also the lowest among compared methods.

The results are observed to be highly effective in denoising
the reconstructed image, which indicates the promising
performance of our method in the presence of reasonable
amount of noise. The reason is that the implementation of
NSST applies a nonsubsampled Laplacian pyramid decom-
position, which results in less effect on subband coefficients
for noise compared with critical downsampling wavelet.

3.3. Contrast of Reconstruction Quality at Different Sampling
Rates by Objective Assessment Indices. Besides the visual
appearance, the objective criteria are also essential for the
reconstructed Image Quality Assessment (IQA). The recon-
structed MR images with excellent perceptual visual quality
and high objective evaluation indices have a high diagnostic
value clinically. We desire to obtain diagnostic-quality recon-
struction fromhighly undersampled 𝑘-space data. In order to
measure the performance of the proposed method fully, we
need to evaluate reconstructions quality quantitatively and
qualitatively. The quality of the reconstruction is quantified

using four objective evaluation indices—peak signal-to-noise
ratio (PSNR), structural similarity (SSIM) index [42], trans-
ferred edge information (TEI) [43], and relative ℓ

2
norm error

(RLNE) [12]. To evaluate the reconstruction error, we use the
relative ℓ

2
norm error (RLNE) defined as 𝑒(x̂) = ‖x̂− x̃‖

2
/‖x̃‖
2

to measure the difference between the reconstructed image x̂
and the fully sampled image x̃. A lower error implies that the
reconstructed image is more consistent to the fully sampled
image.

The curves (a)∼(d) of Figure 11 show comparison of
objective assessment indices PSNR, SSIM, RLNE, and TEI
versus sampling rate, respectively, using zero-filling, TV-CG,
ODWT-based, and SFLCT-based CS-MRI reconstruction
with comparison to the proposed NSST-based algorithm at
different undersampling rates for T2-weighted brain image
(256 × 256) of slice 10 with variable density random sam-
plingmask.These assessment parameters demonstrateNSST-
based CS-MRI reconstruction algorithm obtains the highest
objective criteria except SSIM.This also demonstrates that the
proposed algorithm can give the best reconstructed image at
considerable low sampling rate in 𝑘-space measurements.

Table 1 depicts the comparison of objective evaluation
indices for aforementioned two reconstructed images accord-
ing to the proposed NSST-based CS-MRI reconstruction
with existingmethods using three different sampling patterns
with different sampling rates vividly. The values of four
typical evaluation indices indicate the proposed method can
obtain a better reconstruction performance and significant
improvements.

From Figure 11 and Table 1, it is obvious that the proposed
method not only can obtain minor reconstruction error,
good edge-preserving characteristics but also can improve
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Figure 10: Performance with noise standard deviation 10.2 for a water phantom. (a)The noisy fully sampled reconstruction, (b) added noise
magnitude, and (c)∼(g) reconstructed images using zero-filling, TV-CG, ODWT-based, SFLCT-based, and the proposed NSST-based CS-
MRI method, respectively. The PSNRs of (c)∼(g) are 23.76, 31.31, 28.64, 30.34, and 32.52, respectively. (h)∼(l) The difference images between
fully sampled MR image and reconstruction images (c)∼(g), respectively. The RLNEs of them are 0.1364, 0.0589, 0.0778, 0.0639, and 0.0498,
respectively.



Mathematical Problems in Engineering 15

50

45

40

35

30

25

PS
N

R

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Comparison of five methods

Sampling rate

(a)

1

0.9

0.8

0.7

0.6

0.5

0.4

SS
IM

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Comparison of five methods

Sampling rate

(b)

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

RL
N

E

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Comparison of five methods

Sampling rate

Zero-filling
TV_CG
ODWT

SFLCT
Proposed

(c)

Zero-filling
TV_CG
ODWT

SFLCT
Proposed

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

TE
I

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Comparison of five methods

Sampling rate

(d)

Figure 11: Objective assessment indices of five methods for T2-weighted brain image (256 × 256) of slice 10 with variable density random
sampling mask with different sampling rates. (a)∼(d) PSNR, SSIM, RLNE, and TEI versus sampling rate, respectively.

the spatial detail information and preserve the structural
similarity of image compared with the existing algorithms
(especially in the zoom-in), which can also be justified by the
obtained superior values of evaluation indices (see Table 1).
These objective assessment findings agree with the visual
assessment.

Considering IQA from various comprehensive assess-
ment standards the best overall reconstruction performance
is achieved by the proposedNSST-basedCS-MRI reconstruc-
tion method. Its performance is superior to other comparing
methods. Furthermore, it has good stability of MR images
reconstruction.

Reasons of the superior reconstruction performance for
the proposed method are obvious. This is due to the fact

that NSST is an excellent multiresolution geometric anal-
ysis tool which possesses optimal approximation property
and provides an optimal sparse representation in terms of
better spatial localization, highly directional sensitivity, and
anisotropy and shift invariance. This is helpful to extract
all prominent information from MR images and provide
more useful reconstruction clinically with improved visual
quality. It is also verified by the fact that the superiority of
the proposed approach over comparing approaches and shift-
invariant decomposition based on NSST overcomes pseudo-
Gibbs phenomena successfully and improves the quality of
the reconstructed image around edges.

3.4. Computational Time. The computation time of
these reconstruction methods is summarized in Table 2.
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Table 2: Runtime of different reconstruction methods.

Methods Zero-filling TV-CG ODWT SFLCT Proposed
Runtime (S) 0.003 13.339 5.650 36.004 163.026
Note. Computations were performed on a laptop equipped with 2.50GHz
Intel Core i5-2450M CPU and 6GB memory for Figure 6(b) with 16.35% 𝑘-
space data.

In the implementation of TV-CG by 8 iterations, the weight
for TV penalty and for transform ℓ

1
penalty is set as 0.01

and 0.005, respectively. The iteration stopping criteria of
ODWT-based, SFLCT-based, and proposed NSST method
are all that relative error tolerance is less than a certain
threshold.

Table 2 shows clearly that the runtime of proposed NSST-
based reconstruction is about 163 seconds. It seems like the
most time-consuming one. Indeed the computational time of
TV-CG, SFLCT, and NSST belongs to the same order. This
order of difference in time is not a vital problem in the current
computational environment. So the computation time of
proposed method is acceptable within a rational range.

The same iterative reconstruction based on subsampled
shearlet transform takes 81 seconds or so, which is much
less than NSST method. But its reconstruction performance
is similar with that of SFLCT-based method. The difference
for PSNRs of the two methods is less than 1 dB, and other
objective indices are close.Thus the advantage of nonsubsam-
pled shearlet transform is obvious for CS-MRI reconstruction
as sparsity prior. The relative time-consuming reason of
proposed NSST method is undecimated at a specific scale
using nonsubsampled LP; in contrast, the DFB used in the
contourlets decimates 2D data along vertical and horizontal
direction. NSST is still computational efficiency although it
is highly redundant. In addition, the computational cost may
be decreased substantially with the use of code optimization.

4. Conclusions

In this paper, a novel CS-MRI reconstruction based on NSST
is proposed. NSST provides good localization and improved
directional selectivity. More intrinsic information can be
preserved in reconstructed MR image with improved visual
quality. In order to show the practical applicability of the
proposed method, two representative MR images and a stan-
dard phantom are considered. The experiments demonstrate
that the performance of CS-MRI reconstruction using NSST
sparsity prior outperforms that of existing zero-filling, TV-
CG, ODWT-based, and SFLCT-based methods. From the
subjective visual and the comparisons of objective evaluation
indices, it is not hard to see the proposed method’s supe-
riority, which can preserve more prominent details of MR
image and can greatly improve visual quality of reconstruc-
tion image with much less graininess and less information
distortion than the others. The usage of NSST sparsity prior
with optimal approximation andhighly directional sensitivity
can reduce aliasing and noise, by means of which reducing
unexpected artifacts like in other reconstructed images while
also capturing local intrinsic features effectively. Efficient

implementation of the proposed method, for example, by
using the computation power of Graphics Processing Unit
is expected. Moreover, the application of some powerful
adaptive sparse representations would be explored, such as
multiscale dictionary learning in CS-MRI in a future work.
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