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A theoretical study of two-dimensional magnetohydrodynamics viscous incompressible free convective boundary layer flow of an
electrically conducting, chemically reacting nanofluid from a convectively heated permeable vertical surface is presented. Scaling
group of transformations is used in the governing equations and the boundary conditions to determine absolute invariants. A third-
order ordinary differential equation which corresponds to momentum conservation and two second-order ordinary differential
equations which correspond to energy and nanoparticle volume fraction (species) conservation are derived. Our (group) analysis
indicates that, for the similarity solution, the convective heat transfer coefficient andmass transfer velocity are proportional to 𝑥−1/4

whilst the reaction rate is proportional to 𝑥−1/2, where 𝑥 is the axial distance from the leading edge of the plate. The effects of the
relevant controlling parameters on the dimensionless velocity, temperature, and nanoparticle volume fraction are examined. The
accuracy of the technique we have used was tested by performing comparisons with the results of published work and the results
were found to be in good agreement. The present computations indicate that the flow is accelerated and temperature enhanced
whereas nanoparticle volume fractions are decreased with increasing order of chemical reaction. Furthermore the flow is strongly
decelerated, whereas the nanoparticle volume fraction and temperature are enhanced with increasing magnetic field parameter.
Increasing convection-conduction parameter increases velocity and temperatures but has a weak influence on nanoparticle volume
fraction distribution. The present study demonstrates the thermal enhancement achieved with nanofluids and also magnetic fields
and is of relevance to nanomaterials processing.

1. Introduction

Nanofluids have a significant impact on heat transfer
enhancement in modern years. They have been utilized in
diverse technologies including turbulent flows [1], propulsion
[2], geothermics [3], porous media solar collectors [4, 5],
and chemical engineering coating processes [6]. Further,
interesting implementations of nanofluids include rocket
propellant combustion [7], drug delivery and food biophysics
[8], crystal growth [9], polymeric materials processing [10],
and automotive engine cooling [11]. Nanofluids constitute a
significant class of heat transfer fluids obtained by dispersing
certain nanoparticles (<100 nanometers in diameter) in con-
ventional poor thermal conductivity base fluids. Nanofluids

aim to achieve the maximum possible thermal properties
with the minimum possible concentration by uniform dis-
persion and stable suspension of nanoparticles in host fluids
[12, 13]. Nanofluids are capable of enhancing thermophysical
properties such as thermal conductivity, thermal diffusivity,
viscosity, and convective heat transfer coefficients compared
to those of the base fluids like water, ethylene or triethylene-
glucose and other coolants, biofluids, and polymer solu-
tions, as elaborated by Choi [14] and Wong and Leon [15].
In parallel with this, a subbranch of nanofluids termed
magnetic nanofluids has also shown significant promise in
numerous engineering fields. These fluids respond to applied
magnetic fields and allow further manipulation of heat
transfer and hydrodynamic characteristics. Often magnetite
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and aluminum oxide nanoparticles are exploited in the
architecture of such fluids. Important experimental studies of
magnetic nanofluids have been conducted by Parekh and Lee
[16]. The tribological performance of magnetic nanofluids
has been recently elucidated by Andablo-Reyes et al. [17].
Thermal enhancement features of magnetic nanofluids have
also been demonstrated by Chiang et al. [18]. Biomedical uses
for magnetic nanofluids have been confirmed by Patel [19].
Numerical simulations of magnetic nanofluids have been
reported by Rana et al. [20] for nanomaterials processing
operation using a finite elementmethod. Very recently, Yadav
et al. [21] studied the magnetohydrodynamic stability of
magnetic nanofluids using a numerical Galerkin technique
for the case of magnetite alumina-water systems.

Mathematical modelling of nanofluids was greatly sim-
plified by the seminal study of Buongiorno [22] who clarified
that the key mechanisms contributing to thermal enhance-
ment are Brownian diffusion and thermophoresis. Building
on this, an important boundary layer model for free convec-
tive flows of nanofluids was first presented by Kuznetsov and
Nield [23] which laid the foundation for many subsequent
studies. Magnetohydrodynamic boundary layer nanofluid
flow was later investigated by Hamad et al. [24]. Chamkha
and Aly [25] further studied magneto-nanofluid flow using
the Blottner implicit difference method and also considered
heat generation effects.

Generally, most studies involving magnetohydrodynam-
ics and nanofluids assume either constant wall temperature
or constant heat flux at the surface. Aziz [26] introduced the
idea of using the convective heating boundary condition to
analyze Blasius flow. This condition was shown to exert a
significant influence on flow characteristics in the boundary
layer. Subsequently, the convective boundary condition was
utilized by a variety of researchers including Yao et al. [27]
for stretching/shrinking flows, Makinde and Aziz [28] for
nanofluids, Yacob et al. [29] for nanofluids, Uddin et al. [30]
for nanofluid flow in porous media, and Aziz and Khan [31]
for natural convective nanofluid.

These studies have neglected chemical reaction effects.
Reaction is an important mechanism in materials process-
ing operations. Chemical reactions may be homogenous,
heterogenous, exothermic, or endothermic. They may be of
first order or higher. Numerous boundary layer convection
simulations in the presence of chemical reaction have been
communicated in many diverse areas including combustion
[32], geophysics [33], polymer melt flows [34], geothermics
[35], PEM fuel cells [36], and solar collectors [37]. Makinde
et al. [38] studied chemical reaction and cross-diffusion
effects on magnetic heat transfer using the Aziz convec-
tive surface boundary condition, showing that increasing
order of chemical reaction increases concentration boundary
layer thickness whereas species diffusion is opposed with
increasing destructive chemical reaction rate. Furthermore,
this study showed that thermal boundary layer thickness
was enhanced with increasing local convective heat trans-
fer parameter and destructive chemical reaction rate but
depressed with increasing chemical reaction order. Chemical
reactions are important also in nanofluid systems, although
very little work has been reported concerning theoretical

studies. Chen et al. [39] have provided a detailed exposition
of nanofluids designed using specific chemical reactions.
Ismoen et al. [40] have studied the nanofluid convection
with suction effects, chemical reaction, and thermal radia-
tion. Kameswaran et al. [41] have used MATLAB to model
the convective heat and mass transfer in dissipative and
reactive magneto-nanofluid flow with Soret diffusion effects
for the cases of copper-water and silver-water nanofluids.
Rosca et al. [42] have studied reactive nanofluid stagnation-
point flow. These studies used a relatively simple nanofluid
model developed by Tiwari and Das [43]. In the current
study we extend the recent work of Aziz and Khan [31]
to include higher order chemical reaction, magnetic field,
and suction/injection effects. A more elaborate nanofluid
transport model is employed than discussed previously. A
one parameter group method is utilized to develop similarity
transformations for the governing conservation equations
and boundary conditions. The resulting nonlinear boundary
value problem is solved with MAPLE 17 numerical quadra-
ture.The influences of chemical reaction, magnetic field, wall
transpiration, convective-conductive boundary condition,
Brownian parameter, thermophoresis parameter and Lewis
number on the dimensionless fluid velocity, temperature,
and nanoparticle volume fraction distributions are explored.
Validation of the solutions with earlier nonreactive nanofluid
studies is also included.

The investigations of problems related to heat and
nanoparticle volume fraction transfer with chemical reaction
are of great practical importance to engineers and scientists
due to their occurrence in many branches of science and
engineering. A few representative fields of interest where
combined heat and nanoparticle volume fraction transfer
along with chemical reaction play an important role are
in chemical process industries such as food processing and
polymer production. A good area of applications of the
present problem is nanofluid synthesis for medicine.

2. Mathematical Transport Model for Reactive
Magneto-Nanofluid Convection

We examine the two-dimensional, steady magnetohydrody-
namics (MHD) free convective nanofluid boundary layer
flow over a permeable flat vertical plate as shown in Figure 1
(i, ii, and iii represent momentum and thermal and nanopar-
ticle volume fraction boundary layers, resp.). We consider
the case of a variable magnetic field of strength 𝐵(𝑥) applied
normal to the plate (in order to get true similarity solution).
It is assumed that the electric conductivity 𝜎 is variable.
Following Samanta and Guha [44] and Uddin et al. [45], we
assumed that 𝜎 = 𝜎

0

𝑢, 𝜎
0

is the constant electric conductivity
and𝐵(𝑥) = 𝐵

0

/√𝑥,𝐵
0

is the constantmagnetic field strength.
One can anticipate the fact that when 𝐵(𝑥) = 𝐵

0

/√𝑥,
there is a singular point at 𝑥 = 0 (i.e., at the leading edge).
However, it is well known that the boundary layer equations
are not valid there.

A homogeneous isothermal irreversible chemical reac-
tion of order 𝑛 is deemed to take place between the surface
of the plate and fluid. We further assume the left surface
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Figure 1: Flow configuration and coordinate system.

of the plate to be heated by convection from a hot fluid at
a temperature 𝑇

𝑓

(𝑥) with a heat transfer coefficient ℎ
𝑓

(𝑥).
The temperature of the right surface of the plate is denoted
by 𝑇
𝑤

where 𝑇
𝑤

> 𝑇
∞

. The nanoparticle volume fraction
of the wall is denoted by 𝐶

𝑤

whilst the ambient values of
the temperature and the nanoparticle volume fraction are
denoted, respectively, by 𝑇

∞

and 𝐶
∞

. We assume that (i) the
electric conductivity and reaction rate order are variable, (ii)
density of the fluid is constant except the body force term, (iii)
the concentration of nanoparticles is sufficiently diluted that
particle coagulation in the boundary layer can be neglected,
(iv) the magnetic Reynolds number is sufficiently small that
the induced magnetic field can be neglected when compared
to the applied magnetic field, (v) the Hall effect, viscous
dissipation, and Joule heating terms are neglected, and (vi)
the external electric field as well as the electric field due to
the polarization of charges can be ignored. For the unsteady
and incompressible nanofluids, the following four equations
embodying the conservation of mass, momentum, thermal
energy, and nanoparticle volume fraction in the vectorial
form are (Buongiorno [22], Kuznetsov and Nield [23])

∇ ⋅ k = 0,

𝜌 (

𝜕k
𝜕𝑡

+ k ⋅ ∇k)

= −∇𝑝 + 𝜇∇
2k

+ [𝜙𝜌
𝑝

+ (1 − 𝜙) 𝜌
𝑓

{𝛽 (𝑇 − 𝑇
∞

)}] g + J × B,

𝜕𝑇

𝜕𝑡

+ k ⋅ ∇𝑇 = 𝛼∇
2

𝑇

+ 𝜏 [𝐷
𝐵

∇𝑇 ⋅ ∇𝐶 + (

𝐷
𝑇

𝑇
∞

)∇𝑇 ⋅ ∇𝑇] ,

𝜕𝐶

𝜕𝑡

+ k ⋅ ∇𝐶 = 𝐷
𝐵

∇
2

𝐶 + (

𝐷
𝑇

𝑇
∞

)∇
2

𝑇

+ 𝑘 (𝐶 − 𝐶
∞

)
𝑛

,

(1)

where k is the velocity vector, 𝑇 is the temperature, 𝐶 is
the nanoparticle volume fraction, 𝑝 is the pressure, ] is the
kinematic viscosity, 𝜌 is the fluid density,𝐷

𝐵

is the Brownian
diffusion coefficient and 𝐷

𝑇

is the thermophoretic diffusion
coefficient, J = 𝜎(E + V × B) is the electric current density, B
is the magnetic induction vector, and E is the electric field.
We assume that electric filed neglect E = 0. It is assumed
that B = (0, 𝐵, 0). We consider steady-state flow and we
write k = (𝑢, V). The Oberbeck–Boussinesq approximation is
used and with these assumptions and the standard boundary
layer assumptions, we obtain the governing equations in
dimensional form as follows:

𝜕𝑢

𝜕𝑥

+

𝜕V
𝜕𝑦

= 0, (2)

𝜕𝑝

𝜕𝑥

= 𝜇

𝜕
2

𝑢

𝜕𝑦
2

−

1

𝜌
𝑓

𝜎
0

𝐵
2

(𝑥) 𝑢
2

− 𝜌
𝑓

(𝑢

𝜕𝑢

𝜕𝑥

+ V
𝜕𝑢

𝜕𝑦

)

+ [(1 − 𝐶
∞

) 𝜌
𝑓

∞

𝛽𝑔𝛽 (𝑇 − 𝑇
∞

)

− (𝜌
𝑝

− 𝜌
𝑓

∞

) 𝑔 (𝐶 − 𝐶
∞

)] ,

(3)

𝑢

𝜕𝑇

𝜕𝑥

+ V
𝜕𝑇

𝜕𝑦

= 𝛼

𝜕
2

𝑇

𝜕𝑦
2

+ 𝜏 [𝐷
𝐵

𝜕𝐶

𝜕𝑦

𝜕𝑇

𝜕𝑦

+

𝐷
𝑇

𝑇
∞

(

𝜕𝑇

𝜕𝑦

)

2

] , (4)

𝑢

𝜕𝐶

𝜕𝑥

+ V
𝜕𝐶

𝜕𝑦

= 𝐷
𝐵

𝜕
2

𝐶

𝜕𝑦
2

+

𝐷
𝑇

𝑇
∞

𝜕
2

𝑇

𝜕𝑦
2

− 𝑘 (𝑥) (𝐶 − 𝐶
∞

)
𝑛

. (5)

This model extends the earlier model of Aziz and Khan
[31] with the inclusion of magnetohydrodynamic body force,
chemical reaction, and wall transpiration effect.

The boundary conditions are

𝑢 = 0, V = V
𝑤

(𝑥) , −𝑘

𝜕𝑇

𝜕𝑦

= ℎ
𝑓

(𝑥) (𝑇
𝑓

− 𝑇
𝑤

) , 𝐶 = 𝐶
𝑤

at 𝑦 = 0,

𝑢 󳨀→ 0, 𝑇 󳨀→ 𝑇
∞

, 𝐶 󳨀→ 𝐶
∞

as 𝑦 󳨀→ ∞,

(6)

where (𝑢, V) is velocity components along and perpendicular
directions of the plate, V

𝑤

(𝑥) is suction/injection velocity,
𝜏 = (𝜌𝑐)

𝑝

/(𝜌𝑐)
𝑓

is ratio of nanoparticle heat capacity
and the base fluid heat capacity, 𝛼 = 𝑘/(𝜌𝑐)

𝑓

is thermal
diffusivity of the fluid, 𝜌

𝑓

is density of the base fluid, 𝜎 is
variable electric conductivity, 𝜇, 𝑘, and 𝛽 denote viscosity,
thermal conductivity, and volumetric expansion coefficient
of the nanofluid and 𝜌

𝑝

represents density of the particles,
g is acceleration due to gravity, 𝐷

𝐵

is Brownian diffusion
coefficient, and 𝐷

𝑇

is thermophoretic diffusion coefficient.
It is convenient for the solution of our problem, to express
(2)–(6) in dimensionless form.Thus, we define the following
dimensionless quantities:

𝑥 =

𝑥

𝐿

, 𝑦 =

𝑦Ra1/4

𝐿

, 𝑢 =

𝑢𝐿

𝛼Ra1/2
,

V =
V𝐿

𝛼Ra1/4
, 𝜃 =

𝑇 − 𝑇
∞

𝑇
𝑓

− 𝑇
∞

, 𝜙 =

𝐶 − 𝐶
∞

𝐶
𝑤

− 𝐶
∞

.

(7)
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Here 𝐿 is a characteristic length for the vertical surface
and Ra = (1 − 𝐶

∞

)𝑔𝛽𝜌
𝑓

∞

Δ𝑇𝐿
3

/𝛼] is the Rayleigh number.
A dimensional stream function 𝜓 defined as 𝑢 = 𝜕𝜓/𝜕𝑦, V =
−𝜕𝜓/𝜕𝑥 is introduced into (3)–(6) so as to reduce the number
of equations as well as number of dependent variables. We
then obtain the following equations:

𝜕𝜓

𝜕𝑦

𝜕
2

𝜓

𝜕𝑥𝜕𝑦

−

𝜕𝜓

𝜕𝑥

𝜕
2

𝜓

𝜕𝑦
2

− Pr
𝜕
3

𝜓

𝜕𝑦
3

+

𝑀

𝑥

(

𝜕𝜓

𝜕𝑦

)

2

− Pr [𝜃 −Nr𝜙] = 0,

(8)

𝜕𝜓

𝜕𝑦

𝜕𝜃

𝜕𝑥

−

𝜕𝜓

𝜕𝑥

𝜕𝜃

𝜕𝑦

−

𝜕
2

𝜃

𝜕𝑦
2

−Nb𝜕𝜃
𝜕𝑦

𝜕𝜙

𝜕𝑦

−Nt(𝜕𝜃
𝜕𝑦

)

2

= 0,

(9)

𝜕𝜓

𝜕𝑦

𝜕𝜙

𝜕𝑥

−

𝜕𝜓

𝜕𝑥

𝜕𝜙

𝜕𝑦

−

1

Le
𝜕
2

𝜙

𝜕𝑦
2

−

Nt
Nb

1

Le
𝜕
2

𝜃

𝜕𝑦
2

+

𝐿 (Δ𝐶)
𝑛−1

𝛼√Ra
𝑘 (𝑥) 𝜙

𝑛

= 0.

(10)

subject to the nondimensional boundary conditions:

𝜕𝜓

𝜕𝑦

= 0,

𝜕𝜓

𝜕𝑥

=

𝐿

𝛼Ra1/4
V
𝑤

(𝑥) ,

𝜕𝜃

𝜕𝑦

= −

𝐿ℎ
𝑓

(𝑥)

𝑘Ra1/4
(1 − 𝜃) , 𝜙 = 1

at 𝑦 = 0,

𝜕𝜓

𝜕𝑦

󳨀→ 0, 𝜃 󳨀→ 0, 𝜙 󳨀→ 0 as 𝑦 󳨀→ ∞.

(11)

Here the following definitions apply:𝑀 = 𝜎
0

𝐵
2

0

/𝜌
𝑓

(mag-
netohydrodynamic parameter), Pr = ]/𝛼 (Prandtl number),
Nt = 𝜏𝐷

𝑇

Δ𝑇/𝛼𝑇
∞

(thermophoresis), Nb = 𝜏𝐷
𝐵

Δ𝐶/𝛼

(Brownian motion), Nr = (𝜌
𝑝

− 𝜌
𝑓

∞

)Δ𝐶/𝜌
𝑓

∞

𝛽Δ𝑇(1 − 𝐶
∞

)

(buoyancy ratio), and Le = 𝛼/𝐷
𝐵

(Lewis number).
Group theoretic methods are a powerful, sophisticated,

and systematic technique which allows the derivation of
similarity equations. Using the group method, we can obtain
existing similarity solutions aswell as new similarity solutions
[45]. Group methods reduce the number of independent
variables with one or more of the governing system of
partial differential equations keeping the system and auxiliary
conditions invariant. The method combines the independent
variables into a single independent variable (which is known
as the similarity variable) [47, 48]. The original initial and
boundary conditions become two boundary conditions in
the new combined variable [49]. The main benefit of this
method is that it can be successfully applied to nonlinear
differential equations. The technique has been successfully
utilized in non-Newtonian flows [50] turbulence [51], chemi-
cally reacting flows [52], cross-diffusion flows [53], stagnation

flows in porous media [54], variable-viscosity convection
[55], magnetic nanofluid flows [56], and radiative flows [57–
59]. Group theoretic methods have also been reviewed in
the context of subsonic magnetofluid dynamics by Bég [60].
A simplified form of Lie-group transformations, namely,
the scaling group of transformations, is used to determine
the invariant solutions (similarity solutions) of (8)–(10) and
boundary conditions (11):

Γ : 𝑥
∗

= 𝑥𝑒
𝜀𝛼

1

, 𝑦
∗

= 𝑦𝑒
𝜀𝛼

2

, 𝜓
∗

= 𝜓𝑒
𝜀𝛼

3

,

𝜃
∗

= 𝜃𝑒
𝜀𝛼

4

, 𝜙
∗

= 𝜙𝑒
𝜀𝛼

5

, ℎ
∗

𝑓

= ℎ
𝑓

𝑒
𝜀𝛼

6

,

𝑘
∗

= 𝑘𝑒
𝜀𝛼

7

, V∗
𝑤

= V
𝑤

𝑒
𝜀𝛼

8

.

(12)

𝜀 is an arbitrary constant which is known as the parameter
of the group and 𝛼

𝑖

(𝑖 = 1, 2, . . . , 8) are arbitrary real
numbers not all zero whose relationship will be determined
later. The transformations in (11) can be thought of as a
point transformation which transforms the coordinates
(𝑥, 𝑦, 𝜓, 𝜃, 𝜙, ℎ

𝑓

, 𝑘, V
𝑤

) to (𝑥
∗

, 𝑦
∗

, 𝜓
∗

, 𝜃
∗

, 𝜙
∗

, ℎ
𝑓

∗

, 𝑘
∗

, V
𝑤

∗

).
Substituting (12) into (8)–(11) and applying invariant
condition led to

𝛼
1

= 4𝛼
2

, 𝛼
3

= 3𝛼
2

, 𝛼
4

= 𝛼
5

= 0,

𝛼
6

= −𝛼
2

, 𝛼
7

= −2𝛼
2

, 𝛼
8

= −𝛼
2

.

(13)

Expanding each transformation in (12) in Taylor’s series
in powers of 𝜀, keeping the terms up to the order 𝜀, and
making use of the relation in (13) we obtain

𝑥
∗

− 𝑥 = 𝜀4𝛼
2

𝑥, 𝑦
∗

− 𝑦 = 𝜀𝛼
2

𝑦,

𝜓
∗

− 𝜓 = 3𝜀𝛼
2

𝜓, 𝜃
∗

− 𝜃 = 0, 𝜙
∗

− 𝜙 = 0,

ℎ
𝑓

∗

− ℎ
𝑓

= −𝜀𝛼
2

ℎ
𝑓

, 𝑘
∗

− 𝑘 = −2𝜀𝛼
2

,

V
𝑤

∗

− V
𝑤

= −𝜀𝛼
2

V
𝑤

.

(14)

We seek the absolute invariants under this group of
transformations in (14).The absolute invariant is the function
having the same form before and after the transformation.
To obtain absolute invariants, we employ the following
characteristic equations:

𝑑𝑥

4𝛼
2

𝑥

=

𝑑𝑦

𝛼
2

𝑦

=

𝑑𝜓

3𝛼
2

𝜓

=

𝑑𝜃

0

=

𝑑𝜙

0

=

𝑑ℎ
𝑓

−𝛼
2

ℎ
𝑓

=

𝑑𝑘

−2𝛼
2

𝑘

=

𝑑V
𝑤

−𝛼
2

V
𝑤

, 𝛼
2

̸= 0.

(15)

Solving (15) leads to the following transformations:

𝜂 =

𝑦

4

√𝑥

, 𝜓 = 𝑥
3/4

𝑓 (𝜂) , 𝜃 = 𝜃 (𝜂) , 𝜙 = 𝜙 (𝜂) ,

ℎ
𝑓

=

ℎ
𝑓

0

4

√𝑥

, 𝑘 =

𝑘
0

√𝑥

, V
𝑤

=

V
𝑤

0

4

√𝑥

.

(16)

Here 𝜂 is the similarity independent variable and 𝑓(𝜂),
𝜃(𝜂), and 𝜙(𝜂) are, respectively, the dimensionless velocity,
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temperature, and nanoparticle volume fraction functions
and ℎ

𝑓

0

, 𝑘
0

, and V
𝑤

0

are constant heat transfer coefficient,
reaction rate, and mass transfer velocity. With the use of
the transformations in (16), (8)–(11) reduce to the following
“similar” ordinary differential equations:

𝑓
󸀠󸀠󸀠

+

1

4Pr
(3𝑓𝑓
󸀠󸀠

− 2𝑓
󸀠2

− 4𝑀𝑓
󸀠2

) + 𝜃 −Nr𝜙 = 0,

𝜃
󸀠󸀠

+

3

4

𝑓𝜃
󸀠

+ Nb𝜃󸀠𝜙󸀠 +Nt𝜃󸀠2 = 0,

𝜙
󸀠󸀠

+

3

4

Le𝑓𝜙󸀠 + Nt
Nb

𝜃
󸀠󸀠

− Le𝐾𝜙𝑛 = 0.

(17)

The appropriate prescribed boundary conditions assume

𝑓 (0) =

4

3

𝑓
𝑤

, 𝑓
󸀠

(0) = 0, 𝜃
󸀠

(0) = −𝛾 [1 − 𝜃 (0)] ,

𝜙 (0) = 1, 𝑓
󸀠

(∞) = 𝜃 (∞) = 𝜙 (∞) = 0.

(18)

The emerging thermophysical parameters are defined
as follows: 𝐾 = 𝑘

0

(Δ𝐶)
𝑛−1

𝐿/𝛼√Ra (reaction), 𝑓
𝑤

=

−V
𝑤

0

𝐿Ra1/4/𝛼 (suction/injection), and 𝛾 = ℎ
𝑓

0

𝐿/Ra1/4𝑘
(thermal convective). Note that all parameters are free from
axial distance 𝑥 which confirm the true similarity solution.
The primes denote derivative with respect to 𝜂. It is pertinent
to note that when𝑀 = Nb = Nt = 𝑓

𝑤

= 𝐾 = 0 and 𝛾 → ∞,
the present flow model is reduced to that considered by Bég
[60]. Additionally for 𝑀 = 𝑓

𝑤

= 𝐾 = 0 and 𝛾 → ∞, our
problem reduces exactly to the model studied by Kuznetsov
and Nield [23]. Furthermore for 𝑀 = 𝑓

𝑤

= 𝐾 = 0, our
problem reduces to the equations ofAziz andKhan [31]. From
an engineering perspective, several derivative quantities of
the velocity, temperature, and nanoparticle concentration
variables are of interest. The local Nusselt number Nu

𝑥

and
the Sherwood number Sh

𝑥

are defined to be

Nu
𝑥

=

𝑥𝑞
󸀠󸀠

𝑤

𝑘 (Δ𝑇)

, Sh
𝑥

=

𝑥𝑞
󸀠󸀠

𝑚

𝐷
𝐵

(Δ𝐶)

, (19)

where 𝑞󸀠󸀠
𝑤

and 𝑞
󸀠󸀠

𝑚

are the wall heat and mass fluxes, respec-
tively, and 𝜏

𝑤

is the wall shear stress. Following Kuznetsov
and Nield [23], the reduced local Nusselt number Nu

𝑟

and
reduced local Sherwood number Sh

𝑟

can be introduced and
defined thus:

Nu
𝑟

= −𝜃
󸀠

(0) , Sh
𝑟

= −𝜙
󸀠

(0) . (20)

3. Numerical Solution with Maple 17

Equations (17) subject to boundary conditions in (18)
were solved numerically by using the Runge-Kutta-Fehlberg
fourth-fifth order numerical method available in Maple 17.
The validity of the present computations has been confirmed
via benchmarking with several earlier studies. We have
compared our local skin friction factor represented by 𝑓󸀠󸀠(0)
and the local reduced Nusselt number represented by −𝜃󸀠(0)

Table 1: Comparison of our results for 𝑓
󸀠󸀠

(0) and −𝜃
󸀠

(0) with
published results (Le = 0.01).

Pr
𝑓
󸀠󸀠

(0) −𝜃
󸀠

(0)

Khair and
Bejan [46] Present Khair and Bejan

[46]
Present
results

0.01 0.44104 0.441699 0.1803 0.180194
0.72 0.8806 0.880658 0.3871 0.387372
10 1.0542 1.054089 0.4650 0.464912
100 1.1428 1.124179 0.4898 0.488268
1000 1.15205 1.144077 0.4985 0.495915

Table 2: Comparison of our results for and with published results.

Present results Aziz and Khan [31]
Nu
𝑟

Sh
𝑟

Nu
𝑟

Sh
𝑟

Nr Nb = 0.1 Le = 10

Nt = 0.1, 𝛾 = 10, Pr = 10,
𝑓
𝑤

=𝑀 = 𝐾 = 0

0.1 0.39201 1.07969 0.3920 1.0797
0.3 0.3850 1.0541 0.3850 1.0542
0.5 0.3776 1.026299 0.3775 1.0263

Nu
𝑟

Sh
𝑟

Nu
𝑟

Sh
𝑟

Nb Nr = 0.1 Le = 10

Nt = 0.1, 𝛾 = 10, Pr = 10,
𝑓
𝑤

=𝑀 = 𝐾 = 0

0.3 0.34071 1.1295 0.3407 1.1295
0.5 0.2944 1.1462 0.2944 1.1462

Nu
𝑟

Sh
𝑟

Nu
𝑟

Sh
𝑟

Le Nb = 0.1 Nr = 0.1

Nt = 0.1, 𝛾 = 10, Pr = 10,
𝑓
𝑤

=𝑀 = 𝐾 = 0

1 0.39291 0.29277 0.3929 0.2928
5 0.3934 0.7981 0.3934 0.7981

with the previously published data of Khair and Bejan [46].
The comparison is shown in Table 1, and excellent agreement
is achieved. Also we have compared our results with those of
Aziz and Khan [31] and found a close agreement (Table 2).
Confidence in the present results is therefore high. In the
present computations, the asymptotic boundary conditions
given in (18) were replaced by a finite value of 10 for similarity
variable 𝜂max as follows:

𝜂max = 10, 𝑓
󸀠

(10) = 𝜃 (10) = 𝜙 (10) = 0. (21)

The choice of 𝜂max = 10 ensures that all numerical
solutions approach the far field asymptotic values correctly.
This is an important point which is sometimes overlooked.
Pantokratoras [61] observed that many published results
on the boundary layer flow are erroneous as the graphs
for velocity, temperature, and concentration distributions
in the boundary layers do not approach the correct values
asymptotically.
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Figure 2: Thermofluid characteristics for Kuznetsov-Nield case
[23].
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Figure 3: Effects of convection-conduction parameter on the
dimensionless velocity, temperature, and nanoparticles volume
fraction.

4. Discussion of Results

Figure 2 shows the flow characteristics for the case studied
by Kuznetsov and Nield [23]. The trends are almost identical
to those computed by these researchers. The effects of
different thermophysical parameters on the dimensionless
velocity, temperature, and the nanoparticle volume fraction
distributions are illustrated in Figures 3–10. In all the plots
suction is present at the sheet (𝑓

𝑤

> 0) unless otherwise
indicated. Also generally Nr is specified less than unity
throughout so that thermal buoyancy force always exceeds
species buoyancy force. Figure 3 displays the influence of
the thermal convective parameter (𝛾) in the presence of

𝜂
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Figure 4: Effects of Brownian motion parameter Nb on the dimen-
sionless velocity, temperature, and nanoparticles volume fraction
profiles.
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Figure 5: Effects of thermophoresis parameterNt on the dimension-
less velocity, temperature, and nanoparticle volume fraction profiles.

uniform (first order) chemical reaction (𝑛 = 1) and weak
magnetic field (𝑀 = 0.1). The velocity, temperature, and the
nanoparticle volume fraction of the fluid all increase with an
increase of the strength of 𝛾. Increasingly stronger thermal
convective boundary condition accelerates the flow since the
fluid on the right surface of the sheet is heated by the hot
fluid on the left surface of the sheet, making it lighter and
thus causing it to flow faster. Increasing convective boundary
effect (also termed the convection-conduction parameter)
heats the boundary layer, as expected, principally at the wall
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Figure 6: Effect ofmagnetic field parameter𝑀 on the dimensionless
velocity, temperature, and nanoparticle volume fraction profiles for
isothermal plate.
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Figure 7: Effect of suction/injection parameter 𝑓
𝑤

on the dimen-
sionless velocity, temperature, and nanoparticle volume fraction
profiles.

(sheet). The slight increase in nanoparticle volume fraction
is localized to a region some distance from the wall. The
thermal boundary condition 𝜃

󸀠

(0) = −𝛾[1 − 𝜃(0)] clearly
affects the temperature distribution and this in turn indi-
rectly influences the concentration field (nanoparticle vol-
ume fraction) via the coupling terms, Nb𝜃󸀠𝜙󸀠 and (Nt/Nb)𝜃󸀠.
Momentum and thermal boundary layer thicknesses are
markedly decreased and increased, respectively, with increas-
ing thermal convective parameter. Figure 4 reveals that with

Nb = Nr = Nt = 0.5, Pr = 0.72,

n = 1, K = fw = M = 0.1, 𝛾 = 0.2

Le = 2, 5, 10
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Figure 8: Effects of Lewis number Le on the dimensionless velocity,
temperature, and nanoparticle volume fraction profiles.
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Figure 9: Effects of reaction parameter on the dimensionless
velocity, temperature, and nanoparticle volume fraction profiles.

increasing Brownian motion parameter, Nb, both dimen-
sionless velocity and temperature are boosted whereas the
nanoparticle volume fraction is depressed. Again this figure
corresponds to a generative reaction (𝐾 > 0) of first order
(𝑛 = 1). Thermal enhancement with increasing Brown-
ian motion is clearly demonstrated and thermal boundary
layer thickness will also be greater. Many explanations have
been provided for this phenomenon including the ballistic
transport of energy carriers within individual nanoparticles
and between nanoparticles which are in contact and also
nanoparticle structuring, as elaborated by Prasher et al. [62].
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Figure 10: Effect of order of chemical reaction 𝑛 on the dimension-
less velocity, temperature, and nanoparticle volume fraction profiles.

For larger diameter nanoparticles, Nb is small and Brownian
motion is weak; the converse is the case for small diameter
nanoparticles (Nb is high andBrownianmotion vigorous). As
also observed in Figure 4, increasing Nb values significantly
reduce the nanoparticle volume fraction. This concurs with
many other studies of nanofluid transport including Ismoen
et al. [40], Makinde and Aziz [28], and Yacob et al. [29].
Figure 5 illustrates that an increase in thermophoresis param-
eter (Nt) consistently enhances velocity, temperature, and
nanoparticle volume fraction of the nanofluid. With greater
Nt values the nanoparticle deposition away from the plate is
encouraged. Species diffusion in the boundary layer regime
is therefore assisted as is thermal (energy) diffusion. Both
effects aid in momentum development leading to a reduction
in velocity boundary layer thickness with acceleration in the
flow. The velocity peak near the sheet is again witnessed
and the pattern is similar to that reported by Chamkha
and Aly [25]. We further note that the presence of suction
at the sheet (𝑓

𝑤

> 0) discourages the possibility of flow
reversal since it ensures strong adherence of the boundary
layer to the wall. Figure 6 shows that an increase in magnetic
parameter (𝑀) markedly decelerates the boundary layer flow
and that no backflow is generated even in the presence
of an impermeable sheet (𝑓

𝑤

= 0, i.e., solid wall). The
transverse magnetic field produces a Lorentzian magnetohy-
drodynamic drag force perpendicular to the direction of the
applied magnetic field, that is, antiparallel to the free stream.
This inhibits momentum development and retards the flow,
increasing momentum boundary layer thickness. Conversely
the temperature is found to be noticeably elevated with
increasing𝑀 values. Supplementarywork has to be expended
in dragging the fluid against the action of the magnetic field
and this is expended as thermal energy, heating the regime.
Thermal boundary layer thickness is therefore enhanced with

increasing magnetic field. The assistive effect of magneto-
hydrodynamics body force on the thermal diffusion also
acts to promote species diffusion leading to an elevation in
nanoparticle volume fraction values. Stronger magnetic field
therefore regulates the flow field but boosts thermal and
species diffusion.However themagnitudes of temperature are
evidently much greater than nanoparticle volume fraction at
all locations in the boundary layer, transverse to the sheet. It
is also pertinent to note that the present simulations are valid
for small magnetic Reynolds numbers (which relates the ratio
of the fluid flux to the magnetic diffusivity) is not adequately
large for the magnetic field to be distorted by the flow. For
cases where there is a large magnetic Reynolds number,
magnetic induction effects must be considered and these
are presently under investigation [63]. Figure 7 indicates that
velocity is depressed (all profiles decrease monotonically)
with an increase in suction parameter (𝑓

𝑤

> 0, i.e., lateral
mass flux through the sheet from the fluid regime). Suction
therefore thickens the momentum boundary layer since it
decelerates the flow, stabilizes the boundary layer growth,
and prevents boundary layer separation. Similarly, tempera-
ture and nanoparticle volume fraction values also decrease
continuously with an increase of suction parameter 𝑓

𝑤

. The
opposite behavior is observed for increasing injection (𝑓

𝑤

<

0).With injection,more nanofluid is blown through the sheet
pores and this accelerates the flow leading to a decrease in
momentum boundary layer thickness. However thermal and
concentration boundary layer thicknesses will be elevated
with injection. Figure 8 illustrates that an increase in Lewis
number enhances velocity whereas it causes a decrease in
temperature and nanoparticle volume fraction. As featured in
other plots, there is also a faster decay of nanoparticle volume
fraction profiles from the maximum values at the sheet than
there is with temperature profiles. Lewis number is defined
to be the ratio of thermal diffusivity to mass (nanoparticle
species) diffusivity and characterizes transport phenomena
where there were simultaneous heat and mass transfer by
convection.The Lewis number also represents the ratio of the
Schmidt number to the Prandtl number.WhenLewis number
is unity, thermal and nanoparticle volume fraction (species)
boundary layer thicknesses are equal as are the thermal
and species diffusion rates. For values of Lewis number
greater than unity, thermal diffusion is faster than species
diffusion and species (concentration) boundary layer thick-
ness is exceeded by thermal boundary layer thickness. Thus,
the nanoparticle volume fraction magnitudes are expected
to decrease with increasing Lewis number. Furthermore, a
greater value of Lewis number implies a lower Brownian
motion coefficient, 𝐷

𝐵

, for a base fluid having kinematic
viscosity, ]. Consequently, the higher Lewis number reduces
concentration and its boundary layer thickness. Figure 9
demonstrates that with increasing values of chemical reaction
parameter, 𝐾, the nanoparticle volume fraction is strongly
reduced whereas the velocity and temperature are slightly
enhanced. With greater values of 𝐾, the nanoparticles are
destroyed in concentration, via chemical reaction and this
suppresses nanoparticle diffusion rates. Nanoparticle volume
fraction (species) boundary layer thickness will therefore be
increased. The increasing effect of chemical reaction also
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adds thermal energy to the flow and this heats the boundary
layer and accelerates the flow. Effectively nanoparticle volume
fraction is a maximum in the absence of chemical reaction;
that is, 𝐾 = 0, for which the reactive term, Le𝐾𝜙𝑛, vanishes
in (15). Finally Figure 10 implies that with an increase in
the order of the chemical reaction parameter, 𝑛, there is
a corresponding decrease in velocity. The flow is therefore
decelerated as the nature of the chemical reaction alters from
first order to second and then third order. Conversely there
is a little increase in temperatures and nanoparticle volume
fractions with greater order of chemical reaction. Higher
order chemical reactions of the homogenous type would
therefore appear to assist in thermal and species diffusion
whereas increasing chemical reaction rates (higher 𝐾) have
the adverse influence.

5. Conclusions

In the current study a mathematical model has been pre-
sented for chemically reactive magneto-nanofluid transport
phenomena from a vertical plate in the presence of buoyancy
forces and wall mass flux effects utilizing the Aziz convective
boundary condition. The nonlinear boundary value problem
has been transformed into a dimensionless seventh-order
ordinary differential equation system via Lie group theoreti-
calmethods and solved usingMAPLE 17 quadrature routines.
Excellent validation of solutions has been demonstrated with
previous studies and convergence of solutions has been
properly achieved.The present computations have shown the
following.

(i) Dimensionless velocity is depressed whereas the tem-
perature and the nanoparticle volume fraction are
increased with an increase in magnetohydrodynamic
parameter,𝑀.

(ii) Dimensionless temperature is enhanced slightly, and
nanoparticle volume fraction is elevated whereas
velocity is reduced with a rise in the order of chemical
reaction, 𝑛.

(iii) Dimensionless velocity is enhanced whereas tem-
perature and concentration are suppressed with an
increase in Lewis number, Le.

(iv) Dimensionless velocity, temperature, and nanopar-
ticle volume fraction are increased with a rise in
injection (wall blowing, i.e., 𝑓

𝑤

< 0) parameter,
whereas they are decreasedwith greater suction (𝑓

𝑤

>

0).

(v) Dimensionless velocity is boosted and temperature
is enhanced slightly whereas nanoparticle volume
fraction is reduced with increasing chemical reaction
parameter,𝐾.

(vi) Dimensionless velocity and temperature are boosted
whereas the nanoparticle volume fraction is
depressed with increasing Brownian motion param-
eter, Nb.

(vii) Dimensionless velocity, temperature, and nanoparti-
cle volume fraction are elevated with an increase in
thermophoresis parameter, Nt.

(viii) Dimensionless velocity, temperature, and nanopar-
ticle volume fraction are enhanced with increasing
convective boundary parameter, 𝛾.

The present study has considered purely fluid media and
magnetic field effects. Future studies will consider electrical
field aspects [63] and also permeable media flows [64] for the
case of nanofluids.
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