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A novel numerical method is developed for solving two-dimensional linear Fredholm integral equations of the second kind by
integral mean value theorem. In the proposed algorithm, each element of the generated discrete matrix is not required to calculate
integrals, and the approximate integral operator is convergent according to collectively compact theory. Convergence and error
analyses of the approximate solution are provided. In addition, an algorithm is given. The reliability and efficiency of the proposed
method will be illustrated by comparison with some numerical results.

1. Introduction

This paper proposes a novel numerical method based on
integral mean value theorem (IMVT) for solving two-
dimensional linear Fredholm integral equations (FIE) of the
second kind. The linear integral equation is considered as

𝑢−𝐾𝑢 = 𝑓, (1)

where linear integral operator𝐾 is defined as

(𝐾𝑢) (𝑥, 𝑦) = ∫

𝑑

𝑐

∫

𝑏

𝑎

𝑘 (𝑥, 𝑦, 𝑠, 𝑡) 𝑢 (𝑠, 𝑡) 𝑑𝑠 𝑑𝑡,

(𝑥, 𝑦) ∈ 𝐷,

(2)

𝑓(𝑥, 𝑦) and 𝑘(𝑥, 𝑦, 𝑠, 𝑡) are given continuous functions
defined on 𝐷 = [𝑎, 𝑏] × [𝑐, 𝑑] and 𝐸 = 𝐷 × 𝐷, respectively,
and 𝑢(𝑥, 𝑦) is an unknown function on𝐷.

Equation (1) is a useful tool for a large amount of
modeling problems which arise in computer graphics manip-
ulations [1], aerodynamics, fracture mechanics, and electro-
magnetic scattering [2, 3]. Their historical development is
closely related to the solutions of boundary value problems.
Generally, the boundary value problems of the differential

equations are converted to integral equations [4, 5]. For
example, Laplace equation of boundary conditions is reduced
to FIE of the second kind by direct boundary elementmethod
[5].

There exist many methods dealing with one-dimensional
integral equation [1, 2, 4, 6–8]. However, high dimensional
problem is still a challenge, a few numerical approaches deal-
ing with high dimensional problems [9–22]. The generically
significant numerical methods include collocation method
[2, 9–15], Galerkin method [16, 19], and the wavelets method
[17, 20]. In [9, 10, 13], several authors used orthogonal poly-
nomials as the collocation method’s basis functions, instead
of polynomials, block-pulse functions (BFS) [2] and radial
basis functions [11–14], and modification of hat functions
(2D-MHFs) [15]. Furthermore, the authors compared the
traditional collocation method by the orthogonal polynomi-
als with radial basis functions (RBF) methods [14]. In [19],
the authors proposed Richardson extrapolation of iterated
discrete Galerkin method to achieve better accuracy. In
[16], researchers presented some orthogonal polynomials as
Galerkin method’s basis functions to solve the linear FIE of
the second kind. Both of the collocationmethod andGalerkin
method belong to the projection method, and the key is to
come up with good basis functions.
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Unlike the projection method, integral mean value
method was proposed for one-dimensional integrals [7] and
multiple integrals [18]. They transform integral equations to
nonlinear systems of equations without any basis functions.
Based on IMVT, they solved systems by iterative method.
However, convergence analysis is not given in those papers.
This paper introduces a new method by changing FIE to
systems of linear algebraic equations through IMVT. Each
element of generated discrete matrix does not need calcu-
lation of integrals, which has an advantage in decreasing
the computation, and approximation integral operator is
convergent under collectively compact theory. Finally, an
algorithm is implemented.

This paper is organized into four sections. In Section 2,
a numerical method based on the idea of IMVT is given.
In Section 3, the convergence and error analyses of the
numerical solution are provided. In Section 4, numerical
examples are carried out.

2. A Numerical Method

We review the two-dimensional IMVT as follows.

Lemma 1 (IMVT for double integrals [18]). If 𝑔(𝑥, 𝑦) is
continuous on [𝑎, 𝑏] × [𝑐, 𝑑], then there exists a point (𝛼, 𝛽) ∈

[𝑎, 𝑏] × [𝑐, 𝑑], such that

𝑄 (𝑔) = ∬

𝐷

𝑔 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 = (𝑏 − 𝑎) (𝑑 − 𝑐) 𝑔 (𝛼, 𝛽) . (3)

Let ℎ1 = (𝑏 − 𝑎)/𝑚 and ℎ2 = (𝑑 − 𝑐)/𝑛, 𝑚, 𝑛 ∈ 𝑁, and
𝑥𝑖 = 𝑎+𝑖ℎ1 (𝑖 = 0, . . . , 𝑚−1) and𝑦𝑗 = 𝑐+𝑗ℎ2 (𝑗 = 0, . . . , 𝑛−1).
By (3), a sequence of quadrature formula can be constructed
as follows:

𝑄(𝑔, 𝛼𝑖, 𝛽𝑗) =

𝑚−1
∑

𝑖=0

𝑛−1
∑

𝑗=0
∫

𝑥𝑖+1

𝑥𝑖

∫

𝑦𝑗+1

𝑦𝑗

𝑔 (𝑥, 𝑦) 𝑑𝑦 𝑑𝑥

= ℎ1ℎ2

𝑚−1
∑

𝑖=0

𝑛−1
∑

𝑗=0
𝑔 (𝑥𝑖 + ℎ1𝛼𝑖, 𝑦𝑗 + ℎ2𝛽𝑗) ,

(4)

where 𝛼𝑖 and 𝛽𝑗 are constants with 0 ≤ 𝛼𝑖 ≤ 1 and 0 ≤ 𝛽𝑗 ≤

1. Once 𝛼𝑖 and 𝛽𝑗 (𝑖 = 0, . . . , 𝑚 − 1, 𝑗 = 0, . . . , 𝑛 − 1) are
determined, (4) could be accurately calculated. According to
(4), we have

(𝐾𝑢) (𝑥, 𝑦)

=

𝑚−1
∑

𝑖=0

𝑛−1
∑

𝑗=0
∫

𝑥𝑖+ℎ1

𝑥𝑖

∫

𝑦𝑗+ℎ2

𝑦𝑗

𝑘 (𝑥, 𝑦, 𝑠, 𝑡) 𝑢 (𝑠, 𝑡) 𝑑𝑠 𝑑𝑡

= ℎ1ℎ2

𝑚−1
∑

𝑖=0

𝑛−1
∑

𝑗=0
𝑘 (𝑥, 𝑦, 𝑥𝑖 + ℎ1𝛼𝑖 (𝑥) , 𝑦𝑗 + ℎ2𝛽𝑗 (𝑦))

⋅ 𝑢 (𝑥𝑖 + ℎ1𝛼𝑖 (𝑥) , 𝑦𝑗 + ℎ2𝛽𝑗 (𝑦)) , (𝑥, 𝑦) ∈ 𝐷,

(5)

where 𝛼𝑖(𝑥) and 𝛽𝑗(𝑦) are functions that depend on 𝑥 and
𝑦 separately with 0 ≤ 𝛼𝑖(𝑥) ≤ 1 and 0 ≤ 𝛽𝑗(𝑦) ≤ 1 (𝑖 =

0, . . . , 𝑚− 1 and 𝑗 = 0, . . . , 𝑛 −1). To simplify, 𝛼𝑖(𝑥) and 𝛽𝑗(𝑦)

are assumed to be constants, namely, 𝛼𝑖(𝑥) = 𝛼𝑖 and 𝛽𝑗(𝑦) =

𝛽𝑗. Then an approximate integral equation can be formulated
as follows:

(𝐾𝑚𝑛𝑢) (𝑥, 𝑦)

= ℎ1ℎ2

𝑚−1
∑

𝑖=0

𝑛−1
∑

𝑗=0
𝑘 (𝑥, 𝑦, 𝑥𝑖 + ℎ1𝛼𝑖, 𝑦𝑗 + ℎ2𝛽𝑗)

⋅ 𝑢 (𝑥𝑖 + ℎ1𝛼𝑖, 𝑦𝑗 + ℎ2𝛽𝑗) .

(6)

Thus, (1) is rewritten as

𝑢𝑚𝑛 (𝑥, 𝑦) − ℎ1ℎ2

𝑚−1
∑

𝑖=0

𝑛−1
∑

𝑗=0
𝑘 (𝑥, 𝑦, 𝑥𝑖 + ℎ1𝛼𝑖, 𝑦𝑗 + ℎ2𝛽𝑗)

⋅ 𝑢𝑚𝑛 (𝑥𝑖 + ℎ1𝛼𝑖, 𝑦𝑗 + ℎ2𝛽𝑗) = 𝑓 (𝑥, 𝑦) .

(7)

Let 𝑥 = 𝑥𝑘 + ℎ1𝛼𝑘 and 𝑦 = 𝑦𝑙 + ℎ2𝛽𝑙 in (7); one can get the
following linear system:

𝑢𝑚𝑛 (𝑥𝑘 + ℎ1𝛼𝑘, 𝑦𝑙 + ℎ2𝛽𝑙) = ℎ1ℎ2

𝑚−1
∑

𝑖=0

𝑛−1
∑

𝑗=0
𝑘 (𝑥𝑘

+ ℎ1𝛼𝑘, 𝑦𝑙 + ℎ2𝛽𝑙, 𝑥𝑖 + ℎ1𝛼𝑖, 𝑦𝑗 + ℎ2𝛽𝑗) 𝑢𝑚𝑛 (𝑥𝑖

+ ℎ1𝛼𝑖, 𝑦𝑗 + ℎ2𝛽𝑗) +𝑓 (𝑥𝑘 + ℎ1𝛼𝑘, 𝑦𝑙 + ℎ2𝛽𝑙) ,

(8)

with 𝑘 = 0, . . . , 𝑚 − 1 and 𝑙 = 0, . . . , 𝑛 − 1. Hence, the
approximate operator of (1) is

𝑢𝑚𝑛 −𝐾𝑚𝑛𝑢𝑚𝑛 = 𝑓. (9)

Once we find the value of 𝑢𝑚𝑛(𝑥𝑘 + ℎ1𝛼𝑘, 𝑦𝑙 + ℎ2𝛽𝑙) in
(8), we can get approximate solution of (1). In a word, we
can obtain value of 𝑢(𝑥, 𝑦) at any point of the region 𝐷 by
𝑢(𝑥, 𝑦) = 𝐾𝑢𝑚𝑛 + 𝑓(𝑥, 𝑦).

When 𝛼𝑖 = 𝛽𝑗 = 1/2 in (8), the formula is considered as
the midpoint rule for solving two-dimensional FIE.

3. Convergence and Error Analysis

In this section, we give the convergence analysis of 𝐾𝑚𝑛.
Furthermore, we prove the existence and uniqueness of
solution in (9) and give the error analysis of the approximate
solution.

Lemma 2. If 𝑘(𝑥, 𝑦, 𝑠, 𝑡) is continuous function on 𝐸 = 𝐷×𝐷,
then the norm of 𝐾𝑚𝑛 is





𝐾𝑚𝑛




∞

= ℎ1ℎ2 max
(𝑥,𝑦)∈𝐷

𝑚−1
∑

𝑖=0

𝑛−1
∑

𝑗=0






𝑘 (𝑥, 𝑦, 𝑥𝑖 + ℎ1𝛼𝑖, 𝑦𝑗 + ℎ2𝛽𝑗)






.

(10)

Proof. For ∀𝑢(𝑥, 𝑦) ∈ 𝐶([𝑎, 𝑏]× [𝑐, 𝑑]) and ‖𝑢‖∞ ≤ 1, one has
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𝐾𝑚𝑛𝑢




∞

= ℎ1ℎ2 max
(𝑥,𝑦)∈𝐷













𝑚−1
∑

𝑖=0

𝑛−1
∑

𝑗=0
𝑘 (𝑥, 𝑦, 𝑥𝑖 + ℎ1𝛼𝑖, 𝑦𝑗 + ℎ2𝛽𝑗) 𝑢 (𝑥𝑖 + ℎ1𝛼𝑖, 𝑦𝑗 + ℎ2𝛽𝑗)













≤ ℎ1ℎ2 max
(𝑥,𝑦)∈𝐷

𝑚−1
∑

𝑖=0

𝑛−1
∑

𝑗=0






𝑘 (𝑥, 𝑦, 𝑥𝑖 + ℎ1𝛼𝑖, 𝑦𝑗 + ℎ2𝛽𝑗) 𝑢 (𝑥𝑖 + ℎ1𝛼𝑖, 𝑦𝑗 + ℎ2𝛽𝑗)







≤ ℎ1ℎ2 max
(𝑥,𝑦)∈𝐷

𝑚−1
∑

𝑖=0

𝑛−1
∑

𝑗=0






𝑘 (𝑥, 𝑦, 𝑥𝑖 + ℎ1𝛼𝑖, 𝑦𝑗 + ℎ2𝛽𝑗)






.

(11)

Since kernel function 𝑘(𝑥, 𝑦, 𝑠, 𝑡) is continuous on𝐷×𝐷, there
exists (𝑥0, 𝑦0) ∈ 𝐷 such that

𝑚−1
∑

𝑖=0

𝑛−1
∑

𝑗=0






𝑘 (𝑥0, 𝑦0, 𝑥𝑖 + ℎ1𝛼𝑖, 𝑦𝑗 + ℎ2𝛽𝑗)







= ℎ1ℎ2 max
(𝑥,𝑦)∈𝐷

𝑚−1
∑

𝑖=0

𝑛−1
∑

𝑗=0






𝑘 (𝑥, 𝑦, 𝑥𝑖 + ℎ1𝛼𝑖, 𝑦𝑗 + ℎ2𝛽𝑗)






.

(12)

We choose 𝑢0 ∈ 𝐶([𝑎, 𝑏] × [𝑐, 𝑑]) with ‖𝑢0‖∞ = 1 and give

𝑘 (𝑥0, 𝑦0, 𝑥𝑖 + ℎ1𝛼𝑖, 𝑦𝑗 + ℎ2𝛽𝑗)

⋅ 𝑢0 (𝑥𝑖 + ℎ1𝛼𝑖, 𝑦𝑗 + ℎ2𝛽𝑗)

= 𝑘 (𝑥0, 𝑦0, 𝑥𝑖 + ℎ1𝛼𝑖, 𝑦𝑗 + ℎ2𝛽𝑗) ,

(13)

with 𝑘 = 0, . . . , 𝑚 − 1 and 𝑙 = 0, . . . , 𝑛 − 1.

On the other hand, we have




𝐾𝑚𝑛




∞

≥




𝐾𝑚𝑛𝑢0




∞

≥




(𝐾𝑚𝑛𝑢0) (𝑥0, 𝑦0)






= ℎ1ℎ2 max
(𝑥,𝑦)∈𝐷

𝑚−1
∑

𝑖=0

𝑛−1
∑

𝑗=0






𝑘 (𝑥, 𝑦, 𝑥𝑖 + ℎ1𝛼𝑖, 𝑦𝑗 + ℎ2𝛽𝑗)






,

(14)

and the proof of Lemma 2 is completed.

Let 𝛼𝑖 = 𝛼 (𝑖 = 0, . . . , 𝑚 − 1) and 𝛽𝑗 = 𝛽 (𝑗 = 0, . . . , 𝑛 − 1)
in (4), where 𝛼 and 𝛽 are constants, such that

𝑄𝑚𝑛 (𝑔, 𝛼, 𝛽) = ℎ1ℎ2

𝑚−1
∑

𝑖=0

𝑛−1
∑

𝑗=0
𝑔 (𝑥𝑖 + ℎ1𝛼, 𝑦𝑗 + ℎ2𝛽) ,

0 ≤ 𝛼, 𝛽 ≤ 1.

(15)

The following theorem gives the convergence analysis of (15).

Theorem 3. Let 𝑔(𝑥, 𝑦) ∈ 𝐶([𝑎, 𝑏]× [𝑐, 𝑑]) and 𝑔(𝑥, 𝑦) satisfy
Lipschitz condition; that is, ∃𝐿1 > 0 and 𝐿2 > 0:





𝑔 (𝑥1, 𝑦) − 𝑔 (𝑥2, 𝑦)




∞

≤ 𝐿1




𝑥1 −𝑥2




∞

,





𝑔 (𝑥, 𝑦1) − 𝑔 (𝑥, 𝑦2)




∞

≤ 𝐿2




𝑦1 −𝑦2




∞

.

(16)

Thequadrature operator𝑄𝑚𝑛(𝑔, 𝛼, 𝛽) is a uniform convergence
sequence: namely, ‖𝑄𝑚𝑛(𝑔, 𝛼, 𝛽) − 𝑄(𝑔)‖∞ → 0, as 𝑚, 𝑛 →

∞.

Proof. From (4) and (15), one can find





𝑄𝑚𝑛 (𝑔, 𝛼, 𝛽) −𝑄 (𝑔)




∞

=






𝑄𝑚𝑛 (𝑔, 𝛼, 𝛽) −𝑄 (𝑔, 𝛼𝑖, 𝛽𝑗)





∞

≤ ℎ1ℎ2

𝑚−1
∑

𝑖=0

𝑛−1
∑

𝑗=0






(𝑔 (𝑥𝑖 + ℎ1𝛼, 𝑦𝑗 + ℎ2𝛽) −𝑔 (𝑥𝑖 + ℎ1𝛼𝑖, 𝑦𝑗 + ℎ2𝛽𝑗))





∞

= ℎ1ℎ2

𝑚−1
∑

𝑖=0

𝑛−1
∑

𝑗=0






𝑔 (𝑥𝑖 + ℎ1𝛼, 𝑦𝑗 + ℎ2𝛽) −𝑔 (𝑥𝑖 + ℎ1𝛼𝑖, 𝑦𝑗 + ℎ2𝛽) +𝑔 (𝑥𝑖 + ℎ1𝛼𝑖, 𝑦𝑗 + ℎ2𝛽) −𝑔 (𝑥𝑖 + ℎ1𝛼𝑖, 𝑦𝑗 + ℎ2𝛽𝑗)





∞

≤ ℎ1ℎ2

𝑚−1
∑

𝑖=0

𝑛−1
∑

𝑗=0
(𝐿1ℎ1





𝛼 − 𝛼𝑖




∞

+𝐿2ℎ2





𝛽 −𝛽𝑗





∞

) ≤

𝐿1 (𝑏 − 𝑎)
2
(𝑑 − 𝑐)

𝑚

+

𝐿2 (𝑏 − 𝑎) (𝑑 − 𝑐)
2

𝑛

,

(17)
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where 0 ≤ 𝛼,𝛽 ≤ 1 and 0 ≤ 𝛼𝑖,𝛽𝑗 ≤ 1. When 𝑚, 𝑛 →

∞, ‖𝑄𝑚𝑛(𝑔, 𝛼, 𝛽) − 𝑄(𝑔)‖∞ → 0. The proof of Theorem 3
is achieved.

Next we give the convergence analysis of (6).

Theorem 4. Let 𝑘(𝑥, 𝑦, 𝑠, 𝑡) ∈ 𝐶(𝐷 ×𝐷), 𝑢(𝑥, 𝑦) ∈ 𝐶(𝐷) and
∃𝐿1 > 0, 𝐿2 > 0 satisfy the following conditions such that





𝑘 (𝑥, 𝑦, 𝑠1, 𝑡1) − 𝑘 (𝑥, 𝑦, 𝑠2, 𝑡2)




∞

≤ 𝐿1 (




𝑠1 − 𝑠2




∞

+




𝑡1 − 𝑡2




∞

) ,





𝑢 (𝑠1, 𝑡1) − 𝑢 (𝑠2, 𝑡2)




∞

≤ 𝐿2 (




𝑠1 − 𝑠2




∞

+




𝑡1 − 𝑡2




∞

) .

(18)

Then quadrature operator (𝐾𝑚𝑛𝑢)(𝑥, 𝑦) is a uniform conver-
gence sequence: namely, ‖(𝐾𝑚𝑛𝑢)(𝑥, 𝑦) − (𝐾𝑢)(𝑥, 𝑦)‖∞ → 0,
as𝑚, 𝑛 → ∞.

Proof. From (5) and (6), we have





(𝐾𝑚𝑛𝑢) (𝑥, 𝑦) − (𝐾𝑢) (𝑥, 𝑦)




∞

≤ ℎ1ℎ2

𝑚−1
∑

𝑖=0

𝑛−1
∑

𝑗=0






𝑘 (𝑥, 𝑦, 𝑥𝑖 + ℎ1𝛼𝑖, 𝑦𝑗 + ℎ2𝛽𝑗)

⋅ 𝑢 (𝑥𝑖 + ℎ1𝛼𝑖, 𝑦𝑗 + ℎ2𝛽𝑗)

− 𝑘 (𝑥, 𝑦, 𝑥𝑖 + ℎ1𝛼𝑖 (𝑥) , 𝑦𝑗 + ℎ2𝛽𝑗 (𝑦))

⋅ 𝑢 (𝑥𝑖 + ℎ1𝛼𝑖 (𝑥) , 𝑦𝑗 + ℎ2𝛽𝑗 (𝑦))




∞

= ℎ1ℎ2

𝑚−1
∑

𝑖=0

𝑛−1
∑

𝑗=0






𝑘 (𝑥, 𝑦, 𝑥𝑖 + ℎ1𝛼𝑖, 𝑦𝑗 + ℎ2𝛽𝑗)

⋅ 𝑢 (𝑥𝑖 + ℎ1𝛼𝑖, 𝑦𝑗 + ℎ2𝛽𝑗)

− 𝑘 (𝑥, 𝑦, 𝑥𝑖 + ℎ1𝛼𝑖 (𝑥) , 𝑦𝑗 + ℎ2𝛽𝑗 (𝑦))

⋅ 𝑢 (𝑥𝑖 + ℎ1𝛼𝑖, 𝑦𝑗 + ℎ2𝛽𝑗)

+ 𝑘 (𝑥, 𝑦, 𝑥𝑖 + ℎ1𝛼𝑖 (𝑥) , 𝑦𝑗 + ℎ2𝛽𝑗 (𝑦))

⋅ 𝑢 (𝑥𝑖 + ℎ1𝛼𝑖, 𝑦𝑗 + ℎ2𝛽𝑗)

− 𝑘 (𝑥, 𝑦, 𝑥𝑖 + ℎ1𝛼𝑖 (𝑥) , 𝑦𝑗 + ℎ2𝛽𝑗 (𝑦))

⋅ 𝑢 (𝑥𝑖 + ℎ1𝛼𝑖 (𝑥) , 𝑦𝑗 + ℎ2𝛽𝑗 (𝑦))




∞

≤ ℎ1ℎ2

𝑚−1
∑

𝑖=0

𝑛−1
∑

𝑗=0






𝑘 (𝑥, 𝑦, 𝑥𝑖 + ℎ1𝛼𝑖, 𝑦𝑗 + ℎ2𝛽𝑗)

⋅ 𝑢 (𝑥𝑖 + ℎ1𝛼𝑖, 𝑦𝑗 + ℎ2𝛽𝑗)

− 𝑘 (𝑥, 𝑦, 𝑥𝑖 + ℎ1𝛼𝑖 (𝑥) , 𝑦𝑗 + ℎ2𝛽𝑗 (𝑦))

⋅ 𝑢 (𝑥𝑖 + ℎ1𝛼𝑖, 𝑦𝑗 + ℎ2𝛽𝑗)




∞

+ ℎ1ℎ2

𝑚−1
∑

𝑖=0

𝑛−1
∑

𝑗=0






𝑘 (𝑥, 𝑦, 𝑥𝑖 + ℎ1𝛼𝑖 (𝑥) , 𝑦𝑗 + ℎ2𝛽𝑗 (𝑦))

⋅ 𝑢 (𝑥𝑖 + ℎ1𝛼𝑖, 𝑦𝑗 + ℎ2𝛽𝑗)

− 𝑘 (𝑥, 𝑦, 𝑥𝑖 + ℎ1𝛼𝑖 (𝑥) , 𝑦𝑗 + ℎ2𝛽𝑗 (𝑦))

⋅ 𝑢 (𝑥𝑖 + ℎ1𝛼𝑖 (𝑥) , 𝑦𝑗 + ℎ2𝛽𝑗 (𝑦))




∞

≤ ℎ1ℎ2 (𝐿1

⋅ max
(𝑥,𝑦)∈𝐷





𝑢 (𝑥, 𝑦)





+ 𝐿2 max
(𝑥,𝑦,𝑠,𝑡)∈𝐷×𝐷





𝑘 (𝑥, 𝑦, 𝑠, 𝑡)





)

⋅

𝑚−1
∑

𝑖=0

𝑛−1
∑

𝑗=0
(




ℎ1 (𝛼𝑖 − 𝛼𝑖 (𝑥))




∞

+






ℎ2 (𝛽𝑗 − 𝛽𝑗 (𝑦))





∞

) ≤ (

(𝑏 − 𝑎)
2
(𝑑 − 𝑐)

𝑚

+

(𝑑 − 𝑐)
2
(𝑏 − 𝑎)

𝑛

)(𝐿1 max
(𝑥,𝑦)∈𝐷





𝑢 (𝑥, 𝑦)





+ 𝐿2

⋅ max
(𝑥,𝑦,𝑠,𝑡)∈𝐷×𝐷





𝑘 (𝑥, 𝑦, 𝑠, 𝑡)





) ,

(19)

where 0 ≤ 𝛼𝑖,𝛽𝑗 ≤ 1 and 0 ≤ 𝛼𝑖(𝑥),𝛽𝑗(𝑦) ≤ 1.
Thus, ‖(𝐾𝑚𝑛𝑢)(𝑥, 𝑦) − (𝐾𝑢)(𝑥, 𝑦)‖∞ → 0 as𝑚, 𝑛 → ∞.

The proof of Theorem 4 is finished.

Theorem5. Based on the conditions ofTheorem 4, quadrature
operator𝐾𝑚𝑛 is collectivity compact convergence to K: namely,
𝐾𝑚𝑛

𝑐𝑐

→ 𝐾, as𝑚, 𝑛 → ∞.

Proof. Based on Theorem 4, we can easily get 𝐾𝑚𝑛
P
→ 𝐾, as

𝑚, 𝑛 → ∞. And from [23], we only need to prove that 𝑆 =

⋃
∞

𝑚,𝑛=1(𝐾 − 𝐾𝑚𝑛)𝐵 (𝐵 is unit sphere) is a relatively compact
set. We need to show that function in 𝑆 is uniformly bounded
and equicontinuous by Ascoli-Arzela theorem. So ∀𝑢 ∈ 𝐵,





𝐾𝑚𝑛𝑢





≤

𝑚−1
∑

𝑖=0

𝑛−1
∑

𝑗=0
ℎ1ℎ2






𝑘 (𝑥, 𝑦, 𝑥𝑖 + ℎ1𝛼𝑖, 𝑦𝑗 + ℎ2𝛽𝑗)

⋅ 𝑢 (𝑥𝑖 + ℎ1𝛼𝑖, 𝑦𝑗 + ℎ2𝛽𝑗)






≤ max
(𝑥,𝑦,𝑠,𝑡)∈𝐷×𝐷





𝑘 (𝑥, 𝑦, 𝑠, 𝑡)





⋅ ‖𝑢‖∞

𝑚−1
∑

𝑖=0

𝑛−1
∑

𝑗=0
ℎ1ℎ2

≤ 𝐶 (𝑏 − 𝑎) (𝑑 − 𝑐) max
(𝑥,𝑦,𝑠,𝑡)∈𝐷×𝐷





𝑘 (𝑥, 𝑦, 𝑠, 𝑡)





.

(20)
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Hence, 𝐾𝑚𝑛𝑢 is uniformly bounded. Then ∀(𝑥1, 𝑦1),
(𝑥2, 𝑦2) ∈ 𝐷:





𝐾𝑚𝑛𝑢 (𝑥1, 𝑦1) −𝐾𝑚𝑛𝑢 (𝑥2, 𝑦2)






≤ 𝐶 ‖𝑢‖∞ max
(𝑥,𝑦)∈𝐷





𝑘 (𝑥, 𝑦, 𝑥1, 𝑦1) − 𝑘 (𝑥, 𝑦, 𝑥2, 𝑦2)





.

(21)

When √(𝑥1 − 𝑥2)
2
+ (𝑦1 − 𝑦2)

2
→ 0, the right side of the

above formula converges to zero independent of 𝑢(𝑥) and
𝑛. So 𝐾𝑚𝑛𝑢 is equicontinuous. We can obtain that 𝑆 =

⋃
∞

𝑚,𝑛=1(𝐾𝑚𝑛)𝐵 is a relatively compact set. Furthermore, 𝑆 =

⋃
∞

𝑚,𝑛=1(𝐾 − 𝐾𝑚𝑛)𝐵 is a relatively compact set because 𝐾 is
compact operator. We can obtain the desired result.

Theorem 6. If integral operator 𝐾 satisfies the conditions of
Theorem 4 and 1 is not eigenvalue of (1), the solution of
approximate equation (17) is convergent to the solution of (1).

Proof. First, we prove the existence and uniqueness of the
solution in (9). From Theorem 5 and the properties of
collectively compact operator convergence [23], we know
‖𝐾

2
− 𝐾𝑚𝑛𝐾‖ → 0 and ‖𝐾

2
− 𝐾𝐾𝑚𝑛‖ → 0, as 𝑚, 𝑛 → ∞.

Then we use the following identity:

(𝐼 −𝐾+𝐾𝑚𝑛) (𝐼 −𝐾𝑚𝑛) = 𝐼 −𝐾+ (𝐾𝐾𝑚𝑛 −𝐾
2
𝑚𝑛

)

= (𝐼 −𝐾) [𝐼 + (𝐼 −𝐾)
−1

(𝐾𝐾𝑚𝑛 −𝐾
2
𝑚𝑛

)]

= (𝐼 −𝐾) [𝐼 − (𝐼 −𝐾)
−1

(𝐾
2
𝑚𝑛

−𝐾𝐾𝑚𝑛)] .

(22)

Therefore, there exist sufficiently large𝑚, 𝑛 such that






𝐼 − (𝐼 −𝐾)

−1
(𝐾

2
𝑚𝑛

−𝐾𝐾𝑚𝑛)





∞

< 1. (23)

Thus, the right side of (22) is inverse, and the left side of (22)
is also inverse. Furthermore,

(𝐼 −𝐾𝑚𝑛)
−1

= [𝐼 − (𝐼 −𝐾)
−1

(𝐾
2
𝑚𝑛

−𝐾𝐾𝑚𝑛)]

−1

⋅ (𝐼 −𝐾)
−1

(𝐼 −𝐾+𝐾𝑚𝑛) .

(24)

That is, there exists a unique solution of (9) and (𝐼 − 𝐾𝑚𝑛)
−1

is uniformly bounded. From (1) and (9), we have

(𝐼 −𝐾𝑚𝑛) (𝑢 − 𝑢𝑚𝑛) = (𝐼 −𝐾𝑚𝑛) 𝑢 −𝑓

= (𝐼 −𝐾𝑚𝑛) 𝑢 − (𝐼 −𝐾) 𝑢

= (𝐾−𝐾𝑚𝑛) .

(25)

According to Theorem 4 and the fact that (𝐼 − 𝐾𝑚𝑛)
−1 is

uniformly bounded, the following inequality holds:





𝑢 − 𝑢𝑚𝑛




∞

≤






(𝐼 −𝐾𝑚𝑛)

−1


∞





(𝐾−𝐾𝑚𝑛) 𝑢




∞

→ 0, as 𝑚, 𝑛 → ∞.

(26)

Thus, we obtain the desired result of Theorem 6.

FromTheorem 4, the error of the approximate solution in
(9) can be estimated. So we can get a corollary as follows.

Corollary 7. Under the assumption of Theorem 4, the error of
the approximate solution can be estimated:





𝑢𝑚𝑛 (𝑥, 𝑦) − 𝑢 (𝑥, 𝑦)




∞

≤ (

(𝑏 − 𝑎)
2
(𝑑 − 𝑐)

𝑚

+

(𝑑 − 𝑐)
2
(𝑏 − 𝑎)

𝑛

)(𝐿1 max
(𝑥,𝑦)∈𝐷





𝑢 (𝑥, 𝑦)






+ 𝐿2 max
(𝑥,𝑦,𝑠,𝑡)∈𝐷×𝐷





𝑘 (𝑥, 𝑦, 𝑠, 𝑡)





) .

(27)

4. Numerical Examples

Below we provide an improvement algorithm.

Step 1. Select 𝑚, 𝑛, 𝛼𝑖 = 𝛽𝑗 = 𝜃, where 𝜃 is constant in
(7). And choose a series of arbitrary 𝜃𝑝 such that 0 ≤ 𝛼 =

𝛽 = 𝜃𝑝 ≤ 1, (𝑝 = 0, . . . , 𝑞).

Step 2. Solve linear system (8).

Step 3. Get an approximation 𝑢𝑚𝑛(𝑥, 𝑦, 𝜃𝑝) from (7).

Step 4. Calculate the average value of 𝑢𝑚𝑛(𝑥, 𝑦, 𝜃𝑝) as the final
approximate solution:

𝑢𝑚𝑛 (𝑥, 𝑦) =

𝑞

∑

𝑝=0

𝑢𝑚𝑛 (𝑥, 𝑦, 𝜃𝑝)

𝑞 + 1
. (28)

To verify the algorithm developed above, three examples
are studied. The error used is defined by

Absolute error = 



𝑢𝑚𝑛 (𝑥, 𝑦) − 𝑢 (𝑥, 𝑦)





, (29)

where 𝑢𝑚𝑛(𝑥, 𝑦) and 𝑢(𝑥, 𝑦) denote the numerical and exact
solution at the point (𝑥, 𝑦), respectively.

Example 1. Consider the following equation:

𝑢 (𝑥, 𝑦) = 𝑓 (𝑥, 𝑦) −∬

1

0

𝑥𝑦 exp (𝑠 + 𝑡) 𝑢 (𝑠, 𝑡) 𝑑𝑠 𝑑𝑡, (30)

where 𝑓(𝑥, 𝑦) = exp(−𝑥 − 𝑦) and 𝑢(𝑥, 𝑦) = exp(−𝑥 − 𝑦) −

(1/2)𝑥𝑦, (𝑥, 𝑦) ∈ ([0, 1) × [0, 1)).
For the sake of simplicity, 𝜃𝑝 is given as 𝜃𝑝 = 𝑝/10 (𝑝 =

0, 1, . . . , 10) in Tables 1 and 2. The first three columns of
Table 1 display absolute error for 𝑚 = 𝑛 = 4, 8, 16, respec-
tively, and the approximate solution more accurate than the
last columns of midpoint rule. In Table 2, the absolute error
of present method compares with 2D-TFs method [10]. It can
be concluded that the proposed method is more accurate,
rapidly convergent than method [10]. And Figure 1 shows the
surfaces of the absolute error in a square on three different
situations. When 𝑚 < 𝑛 with 𝜃𝑝 = 𝑝/10 (𝑝 = 0, 1, . . . , 10),
the absolute error surfaces have been obtained for 𝑢𝑚𝑛,
as depicted in Figure 1(a). Similarly Figures 1(b) and 1(c)
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Table 1: Absolute errors of Example 1, 𝑞 = 10.

(𝑥, 𝑦) = (1/2𝑙, 1/2𝑙) 𝑚 = 𝑛 = 4 𝑚 = 𝑛 = 8 𝑚 = 𝑛 = 16 Midpoint rule
𝑙 = 1 2.6643𝑒 − 03 6.8809𝑒 − 04 1.7377𝑒 − 04 2.3848𝑒 − 02

𝑙 = 2 6.6084𝑒 − 04 1.7702𝑒 − 04 4.3443𝑒 − 05 5.9619𝑒 − 03

𝑙 = 3 1.6521𝑒 − 04 4.3006𝑒 − 05 1.0861𝑒 − 05 1.4905𝑒 − 03

𝑙 = 4 4.1303𝑒 − 05 1.0751𝑒 − 05 2.7152𝑒 − 06 3.7262𝑒 − 04

𝑙 = 5 1.0326𝑒 − 05 2.6879𝑒 − 06 6.7879𝑒 − 07 9.3155𝑒 − 05

𝑙 = 6 2.5814𝑒 − 06 6.7196𝑒 − 07 1.6970𝑒 − 07 2.3289𝑒 − 05

Table 2: Errors result of Example 1, 𝑞 = 10.

(𝑥, 𝑦) 𝑚 = 𝑛 = 16 𝑚 = 𝑛 = 32 [10]𝑚 = 𝑛 = 16 [10]𝑚 = 𝑛 = 32
(0.2, 0.2) 2.5901𝑒 − 05 6.4892𝑒 − 06 9.0644𝑒 − 03 9.3553𝑒 − 03

(0.4, 0.4) 1.0362𝑒 − 04 2.5957𝑒 − 05 1.3283𝑒 − 02 1.4788𝑒 − 02

(0.6, 0.6) 2.3311𝑒 − 04 5.8402𝑒 − 05 1.5467𝑒 − 02 6.6765𝑒 − 05

(0.8, 0.8) 4.1442𝑒 − 04 1.0383𝑒 − 05 1.7192𝑒 − 02 4.5846𝑒 − 03

Table 3: Absolute errors of Example 2, 𝑞 = 10.

(𝑥, 𝑦) = (1/2𝑙, 1/2𝑙) 𝑚 = 𝑛 = 4 𝑚 = 𝑛 = 8 𝑚 = 𝑛 = 16 Midpoint rule
𝑙 = 1 3.9568𝑒 − 04 9.9521𝑒 − 05 2.4919𝑒 − 05 2.5252𝑒 − 03

𝑙 = 2 2.0383𝑒 − 04 5.1268𝑒 − 05 1.2837𝑒 − 05 1.3009𝑒 − 03

𝑙 = 3 1.0249𝑒 − 04 2.6029𝑒 − 05 6.5174𝑒 − 06 6.6045𝑒 − 04

𝑙 = 4 5.2144𝑒 − 05 1.3115𝑒 − 05 3.2839𝑒 − 06 3.3279𝑒 − 04

𝑙 = 5 2.6173𝑒 − 05 6.5831𝑒 − 06 1.6484𝑒 − 06 1.6704𝑒 − 04

𝑙 = 6 1.3112𝑒 − 05 3.2980𝑒 − 06 8.2579𝑒 − 07 8.3683𝑒 − 05

Table 4: Absolute errors of Example 2, 𝑞 = 10.

(𝑥, 𝑦) 𝑚 = 𝑛 = 16 𝑚 = 𝑛 = 32 [10]𝑚 = 𝑛 = 16 [10]𝑚 = 𝑛 = 32
(0.2, 0.2) 8.8102𝑒 − 06 2.5841𝑒 − 06 9.9576𝑒 − 03 9.5377𝑒 − 03

(0.4, 0.4) 1.7201𝑒 − 05 5.0452𝑒 − 06 9.4946𝑒 − 03 9.0274𝑒 − 03

(0.6, 0.6) 2.5201𝑒 − 05 7.3918𝑒 − 06 8.0291𝑒 − 03 1.5456𝑒 − 04

(0.8, 0.8) 3.2838𝑒 − 05 9.6317𝑒 − 06 6.7784𝑒 − 03 2.6186𝑒 − 04

correspond to 𝑚 > 𝑛 and 𝑚 = 𝑛. The approximate solution
becomes more accurate as 𝑚, 𝑛increase from the tables and
figure.

Example 2. Consider the following equation:
𝑢 (𝑥, 𝑦) = 𝑓 (𝑥, 𝑦)

+∬

1

0

𝑥

(8 + 𝑦) (1 + 𝑠 + 𝑡)

𝑢 (𝑠, 𝑡) 𝑑𝑠 𝑑𝑡,

(31)

where 𝑓(𝑥, 𝑦) = 1/(1 + 𝑥 + 𝑦)
2
− 𝑥/6(1 + 𝑦) and 𝑢(𝑥, 𝑦) =

1/(1 + 𝑥 + 𝑦)
2, (𝑥, 𝑦) ∈ ([0, 1) × [0, 1)).

In the first three columns of Table 3 list the absolute
error for 𝑚 = 𝑛 = 4, 8, and 16, respectively, and the
approximate solution more accurate than the last columns
of midpoint rule. The numerical results of current method
compare with 2D-TFsmethod [10] in Table 4.We can see that
the currentmethod solutions compare quitewell with 2D-TFs
[10] results at different points of the domain. And Figure 2
shows the surfaces of the absolute error in a square on three
different situations. When 𝑚 < 𝑛 with 𝜃𝑝 = 𝑝/10 (𝑝 =

0, 1, . . . , 10), the absolute error surfaces have been obtained
for 𝑢𝑚𝑛, as depicted in Figure 2(a). Similarly Figures 2(b) and
2(c) correspond to 𝑚 > 𝑛 and 𝑚 = 𝑛. It can be observed
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(a) 𝑚 = 8, 𝑛 = 12, and 𝑞 = 10
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(c) 𝑚 = 20, 𝑛 = 20, and 𝑞 = 10

Figure 1: The absolute error surfaces of Example 1.

that the approximate solution becomes more accurate with
respect to increasing𝑚, 𝑛.

Example 3. We consider exterior boundary value problem
with a potential 𝑢(𝑥), which satisfies the Laplace equation as
follows:

Δ𝑢 (𝑥) = 0, 𝑥 ∈ 𝐷
𝑒
,

𝜕𝑢 (𝑥)

𝜕𝑛

= 𝑓 (𝑥) , 𝑥 ∈ 𝜕𝐷
𝑒

𝑢 (𝑥) = 𝑂 (|𝑥|
−1
2 ) ,

𝜕𝑢 (𝑥)

𝜕𝑟

= 𝑂 (|𝑥|
−2
2 ) ,

as 𝑟 = |𝑥|2 → ∞,

(32)

where 𝐷
𝑒 = {𝑥

2
1 + 𝑥

2
2 ≥ 1} is region outside of the unit circle

and 𝜕𝐷
𝑒 = (𝑥1, 𝑥2) = (cos𝜑, sin𝜑), 𝜑 ∈ [0, 2𝜋].The boundary

condition on 𝜕𝐷
𝑒 is given: 𝑓 = ((𝑥2

1 − 𝑥
2
2)/(𝑥

2
1 + 𝑥

2
2))cos𝜑 +

Table 5: Absolute errors of Example 3, 𝑞 = 10.

(𝑥1, 𝑥2) = (2𝑙, 2𝑙) 𝑛 = 4 𝑛 = 8 𝑛 = 16
𝑙 = 1 3.1469𝑒 − 03 4.9950𝑒 − 05 1.2192𝑒 − 08

𝑙 = 2 3.6585𝑒 − 04 3.5763𝑒 − 07 3.4102𝑒 − 013

𝑙 = 3 4.4733𝑒 − 05 2.7305𝑒 − 09 0

𝑙 = 4 5.5595𝑒 − 06 2.1208𝑒 − 011 0

𝑙 = 5 6.9392𝑒 − 07 1.6544𝑒 − 013 0

𝑙 = 6 8.6708𝑒 − 08 1.2906𝑒 − 015 0

(2𝑥1𝑥2/(𝑥
2
1 +𝑥

2
2))sin𝜑 and true solution 𝑢(𝑥1, 𝑥2) = 𝑥1/(𝑥

2
1 +

𝑥
2
2).
We obtain numerical results of the field potential by

converting exterior potential problem to boundary integral
equation of the second kind. InTable 5, we report the absolute
error of field potential at selected points for various choices
according to the present method. And Figure 3 shows the
surface of the absolute error with 𝑛 = 10, 𝜃𝑝 = 𝑝/10
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Figure 2: The absolute error surfaces of Example 2.
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Figure 3: The absolute error surface of Example 3 with 𝑛 = 10, 𝑞 =

10.

(𝑝 = 0, 1, . . . , 10) in infinite plane. This algorithm has a high
rate of convergence from Table 5 and Figure 3.

5. Conclusions

In this work, we state an efficient numerical solution method
of the linear two-dimensional FIE of the second kind. Integral
mean value theorem is utilized to reduce the computation
of this problem to algebraic equation. This method is very
simple and involves lower computation. In fact, this method
is similar to the Nyström method. But Nyström method
obtains approximate solution which is based on interpolation
formula. Moreover, we can extend this approach to the
multidimensional FIE and nonlinear two-dimensional FIE.
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