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Object tracking has always been a hot research topic in the field of computer vision; its purpose is to track objects with specific
characteristics or representation and estimate the information of objects such as their locations, sizes, and rotation angles in the
current frame. Object tracking in complex scenes will usually encounter various sorts of challenges, such as location change,
dimension change, illumination change, perception change, and occlusion. This paper proposed a novel object tracking algorithm
based on compressed sensing and information entropy to address these challenges. First, objects are characterized by the Haar
(Haar-like) and ORB features. Second, the dimensions of computation space of the Haar and ORB features are effectively reduced
through compressed sensing. Then the above-mentioned features are fused based on information entropy. Finally, in the particle
filter framework, an object location was obtained by selecting candidate object locations in the current frame from the local context
neighboring the optimal locations in the last frame. Our extensive experimental results demonstrated that this method was able to
effectively address the challenges of perception change, illumination change, and large area occlusion, which made it achieve better
performance than existing approaches such as MIL and CT.

1. Introduction

Recognition and tracking of moving objects through com-
puter vision technology have been widely applied in various
fields such as food quality control [1], traffic flow monitoring
[2], and illegal surveillance [3]. At present, the methods
of detecting moving object mainly include model-based
tracking [4], region-based tracking [5], and contour-based
tracking [6]. Representative object tracking algorithms have
been proposed in recent years by a series of studies [7–13].
Although object tracking algorithms have been studied for
decades, many challenging problems are still to be solved.
Many factors affect the performance of object tracking
algorithms, including illumination change, occlusion change,
and complex background. However, so far, to the best of our
knowledge, no robust algorithm has been developed to effec-
tively address all the challenges caused by the aforementioned
factors. Therefore, the proposed tracking algorithm in this
research attempts to partially solve the problems caused by
these influencing factors.

Characterization of an object is an extremely important
component for any type of object tracking algorithms. The
overall object template is widely used in tracking [14–16].
Mei et al. [17] utilized sparse representation to overcome the
object appearance changes. Besides template, many features
have been used in tracking algorithms, including color
histogram [8], histograms of oriented gradients (HOG) [18],
Region Covariance descriptor [19–21], Haar-like features
[22, 23], and ORB [24]. In addition, search strategies are
also critical for tracking algorithms, and examples of search
strategies include both definite and random methods [25].
Furthermore, due to high efficiency of calculation, particle
filter is widely applied in object tracking algorithms [7, 26].

In this paperwepropose a novel object tracking algorithm
based on compressed sensing and information entropy. The
rest of this paper is organized as follows: particle filter,
ORB feature, Haar feature, sparsification, local area, and
entropy of information are introduced in Section 2. The
detailed description of the new object tracking algorithm
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is presented in Section 3. This is followed by the report of
experimental results to validate the proposed algorithm in
Section 4. Finally, Section 5 concludes the paper.

2. Related Work

2.1. Particle Filter. Particle filter [27] simulates the state space
by using a certain number of particles. Each particle is given a
weight through approximating probability density function,
thereby resulting in the minimum variance estimation of
system state.

There commonly exists the degeneracy problem in par-
ticle filter; that is, after several states all but one particle has
significant weight [28]. A number of approaches have been
used to avoid particle degeneracy [29]. One solution [30] is to
generate several offspring for each particle, and the number
of offspring of each particle is proportional to its weight.Thus
those particles with higher weights will be more likely to be
chosen, which avoids the degeneracy to a great extent.

When applying particle filter, the state transition model
and observation model are defined first. Suppose 𝑡 is the
frame index of a video. V(𝑖)𝑡−1 is the velocity of the 𝑖th particle
in frame 𝑡, 𝑥(𝑖)𝑡 is the position of the 𝑖th particle in frame 𝑡,
𝑧
(𝑖)
𝑡 is the observation of the 𝑖th particle in frame 𝑡, 𝑤(𝑖)𝑡 is
the weight of the 𝑖th particle in frame 𝑡, and the problems are
solved according to the process described below.

Step 1. When time 𝑡 = 1, effective sampling of prior
knowledge 𝑝(𝑥1) is taken. Thus the sampling particle set
{𝑥
(𝑖)
1 }
𝑁
𝑖=1 is generated, where𝑁 is the number of particles.

Step 2. From 𝑡 = 2, new particle set is generated by using the
state transition function 𝑥

(𝑖)
𝑡 = 𝑓(𝑥

(𝑖)
𝑡−1, V
(𝑖)
𝑡−1), 𝑓(𝑥

(𝑖)
𝑡−1, V
(𝑖)
𝑡−1) =

𝑥
(𝑖)
𝑡−1 + V(𝑖)𝑡−1 + rand, where rand is a random number matrix.

The weight of particle is calculated and normalized by using
the observation model 𝑤(𝑖)𝑡 = 𝑝(𝑧

(𝑖)
𝑡 | 𝑥
(𝑖)
𝑡 ).

Step 3. The system output is obtained by calculating weighted
average of particles’ position. Then the system state at time 𝑡
is estimated by 𝑥𝑡 = ∑

𝑁

𝑖=1 𝑥
(𝑖)
𝑡 𝑤
(𝑖)
𝑡 , which is considered as the

solution of the problem at time 𝑡.

Step 4. The original particle set {𝑥(𝑖)𝑡 , 𝑤
(𝑖)
𝑡 }
𝑁
𝑖=1 is resampled to

get new particle set.

Step 5. 𝑡 = 𝑡 + 1, return to Step 2 and continuously running
until 𝑡 = 𝑇.

As a rule of thumb, the particle number in this study
is set as 200. The state transition function is set to be
translation transformation in affine transformation.Theprior
probability model is assumed to be normal distribution. The
mean and variance are obtained by using the vectors of ORB
and Haar features.

2.2. Extraction of ORB Feature. The ORB feature [24]
extracted for each sample image in the previous step is taken

as the input characteristic of our tracking algorithm.TheORB
feature is extracted according to the following equation:

feature

= ORB (image, scale factor, 𝑛levels, edge threhod) ,
(1)

where image stands for the image data, scale factor stands
for scale factor, 𝑛levels is the scale layers of the pyramid,
and edge threshold is the threshold of marginalization.
In the implementation, the ORB class of OPENCV 2.3.1
(http://opencv.org/downloads.html) is called to extract the
ORB feature. The parameter scale factor is set to 1.2, 𝑛levels
takes 1, and edge threshold takes 31. After extracting the ORB
feature fromeach image, the classifier is ready for training and
application.

2.3. Extraction of the Haar Feature. The characteristic value
of Haar-like feature equals the difference between the sum of
pixel value in black filled area and that in white area. When
extracting the Haar feature, only the following parameters
are required: image (the image used to extract Haar feature),
window size (the area of the search window), and rectangle
number (Haar feature’s model). The equation to extract the
Haar features is given as follows:

feature = Haar (image,width, height,minNumRect,

maxNumRect,𝑀) ,

(2)

where image is the image fromwhich the Haar feature will be
extracted, width and height are the width and height of the
searchwindow, respectively,minNumRect andmaxNumRect
are the minimum and maximum numbers of feature rectan-
gles, respectively, and𝑀 is the number of times for extracting
Haar features (as a rule of thumb,𝑀 is set as 50), namely, the
dimension of vector.

In the current study, width and height are the width
and height of the search area, respectively. minNumRect and
maxNumRect are 2 and 4, respectively.

2.4. Sparsification. In this study, the ORB and Haar features
are sparsified by using the following sparsification transition
equation:

𝑉 = 𝑅 ∗ 𝑋, (3)

where 𝑋 stands for the vector which needs to be sparsified,
𝑉 is the vector after sparsification, and 𝑅 is the sparse matrix.
Two methods are available for generating each element 𝑟𝑖𝑗 of
𝑅, which are shown in (4) and (5), respectively.

The Haar feature is processed by using the method given
in [31], where sparsifying the Haar feature is through using
(4) [31]. In (4), Achlioptas [32] proved that this type of matrix
with 𝑠 = 2 or 3 satisfied the Johnson-Lindenstrauss lemma,
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Figure 1: A comparison of results from (4) and (5) (image is taken from the Biker Video sequences [33]).

as shown in the following, where 𝑠 = 𝑀/4 [31] and 𝑀 is the
column number of 𝑅:

𝑟𝑖𝑗 =
√𝑠 ×

{{{{{{

{{{{{{

{

1, according to probability 1

2𝑠

0, according to probability 1 −
1

𝑠

−1, accordingt o probability 1

2𝑠
.

(4)

Different from (4), the generated randommatrix accord-
ing to (5) has a higher sparsity. The ORB feature is sparsified
by using (5), where 𝑘 takes 3. When 𝑘 = 3, it is very sparse
where two-thirds of the computation can be avoided:

𝑟𝑖𝑗 =

{{{{{{

{{{{{{

{

1, according to probability 1

2𝑘

0, according to probability 1 −
1

𝑘

−1, according to probability 1

2𝑘
.

(5)

Take Figure 1 as an example: Image is the experimental figure;
ORBof the Image is the extraction ofORB feature dimensions
on the Image. The dimension of the ORB feature is high, and
the nonlinear variation is complex and thus is not conducive
for the processing of classifier. The sparse result of the figure,
“sparse based on (4)” is based on (4), and the dimension is
40 times reduced. At the same time, the difference features
extracted from the image are retained, which greatly reduces
the processing burden of the classifier. Consider the 3D
map shown in Figure 1; we can see that, compared to the

sparse result calculated from (5) (sparse based on (5)), results
obtained from (4) have larger variance; after normalization
the part dimensions of information accounted for the total
information are larger and in aspect of describing the features
of diversity is not as good as the results from (5). In
comparison, the sparsification method based on (5) can
achieve dimension reduction and at the same time reduce as
much as possible the loss of difference between features. So
we choose (5) in this research.

2.5. Local Context. Themovement of an object being tracked
is a continuous process from the previous frame to the
next one. Thus, the object displacement difference between
adjacent frames is necessary to bewithin a limited range. Take
Figure 2 as an example: in the current frame, the object region
is enclosed by a red rectangle. Then, in the next frame, the
object region will naturally not exceed the limit of the blue
rectangle, which is defined as local context in [34]. When
generating particles, the coordinates of particles need to be
placed within a limit. For those particles beyond the local
context, we transfer the particles to the restricted region.
Reasonably adjusting the size of the local context according
to the motion speed of an object can increase the accuracy of
the object location detection to a certain extent. In this study,
the width and length of local context are twice as those of the
original object region.

The red rectangle stands for object location in the previ-
ous frame; the green rectangles are those generated particles;
the blue rectangle is the restricted local context.
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Figure 2: The illustration of local context (source taken from the
David2 video sequences [33]).

2.6. Self-Adaptive Fusion Based on Entropy of Information.
The concept of information entropy [35] is used to quantita-
tively measure the amount of information contained by data.
The entropy of information is defined in the following:

𝐻 = −𝐾

𝑛

∑

𝑖=1
𝑝𝑖log𝑝𝑖, (6a)

where𝐾 is a positive constant. If 𝐾 = 1, we get

𝐻(𝑋) = −

𝑛

∑

𝑖=1
𝑝 (𝑥
𝑖
) log𝑝 (𝑥

𝑖
) , (6b)

where 𝐻(𝑋) is the entropy of information for the feature
(Haar or ORB feature), 𝑝(𝑥𝑖) is the probability of 𝑥𝑖, and 𝑥

𝑖

is the 𝑖th particle.
In feature fusion, the weight of a feature can be deter-

mined by the amount of information contained by data,
namely, the entropy of information. After discretization and
taking logarithm, (6a) and (6b) are transformed to the
following equation:

𝐻(𝑥) = −

𝑁

∑

𝑗=1
(𝑝 (𝑥

𝑗
) log𝑝(𝑥

𝑗
)

2 ) . (7)

Then the observation probability value of Haar feature,
namely, the weight of Haar feature, is expressed in

𝐻(𝑧haar) = −

𝑁

∑

𝑗=1
(𝑝 (𝑧haar | 𝑥

𝑗
) log𝑝(𝑧haar|𝑥

𝑗
)

2 ) , (8)

where 𝐻(𝑧haar) is the entropy of information for the Haar
feature; 𝑝(𝑧haar | 𝑥

𝑗
) is the conditional probability of the

𝑗th particle with observation value 𝑧haar; 𝑁 is the particle
number.

The observation density of ORB feature, namely, the
weight of ORB feature, is shown in

𝐻(𝑧orb) = −

𝑁

∑

𝑗=1
(𝑝 (𝑧

𝑗

orb | 𝑥
𝑗
) log𝑝(𝑧

𝑗

orb|𝑥
𝑗
)

2 ) , (9)

where 𝐻(𝑧orb) is the information entropy of ORB feature;
𝑝(𝑧orb | 𝑥

𝑗
) is the probability of the 𝑗th particle with

observation value 𝑧orb;𝑁 is the particle number.
According to the definition of entropy of information, the

fused weight of Haar feature is computed by the following
equation:

𝛽haar =
𝐻 (𝑧haar)

𝐻 (𝑧haar) + 𝐻 (𝑧orb)
. (10)

The fused weight of ORB feature is obtained by

𝛽orb =
𝐻 (𝑧orb)

𝐻 (𝑧haar) + 𝐻 (𝑧orb)
. (11)

The illustration of fused weight of ORB feature and Haar
feature is shown in Figure 3. In Figure 3, the number of differ-
ent color squares represents different fused weights. Among
them, the small red squares represent the Haar feature,
while the small green squares stand for the ORB feature. As
illustrated, fused weight of Haar feature accounts for a bigger
proportion when the object is not being covered. However,
when the object is covered, ORB feature dominates in the
fusion.

In multiple feature fusion, the additive fusion and mul-
tiplicative fusion are the most widely used methods [36].
Additive fusion can relatively reduce system noise, while
multiplicative fusion can increaseweight identification ability
but amplify the system noise. In the current study, two
types of fusion are combined through adaptive adjustment of
weight allocation by using

𝑝 (𝑧𝑖 | 𝑥)

=
1

(1 + 𝛽haar) (1 + 𝛽orb)
[𝑝 (𝑧haar | 𝑥) 𝑝 (𝑧orb | 𝑥)

+ 𝛽haar𝑝 (𝑧haar | 𝑥) + 𝛽orb𝑝 (𝑧orb | 𝑥) + 𝛽haar𝛽orb] ,

(12)

where 𝛽haar and 𝛽orb are weights of the two features, respec-
tively, and they are also called adaptive adjustment factors
determined by the amount of entropy of information of the
two features. According to (12), when 𝛽haar approaches 0,
namely, the entropy of information of Haar feature reaches
minimum, (12) is equivalent to additive fusion, where only
ORB feature plays a role in tracking. However, when 𝛽orb
approaches 0, namely, the entropy of information of ORB
feature reaches minimum, (12) is equivalent to multiplicative
fusion, where only Haar feature plays a role. Finally, 𝑝(𝑧𝑖 | 𝑥)
will be the particle weight 𝑤.

3. Algorithm Description (HOPEF: Haar-ORB-
Particle-Entropy-Information)

See Figures 4 and 5
The description of our algorithm is shown as follows.

The Initial Condition. In the first frame 𝑓(1), the location of
tracking object is provided.

Initial Operation. The observation of the first frame is calcu-
lated as the estimated observation of the second frame.
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Figure 3: Illustration of fusedweight of theORB feature andHaar feature (video source:David video sequences andFaceOcc2 video sequences
[33]).
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Tracking starts from the second frame (𝑡 = 2, 3, . . . , 𝑁).

Input. Frame 𝑓(𝑡).

Step 1. In 𝑓(𝑡), particles are sampled. The vector of the Haar
feature and ORB feature are extracted from each particle
image to form the observation matrix. The prior probability
of each particle is computed as weight according to normal
distribution.

Step 2. Theentropy of information of particle weightH h and
H o is calculated.

Step 3. The fused weights beita h and beita o are computed.

Step 4. The location of the object is obtained (selecting
candidate object locations in the current frames from the
local areas neighbouring the optimal locations in the last
frames) by calculating weighted average fusion of all particle
locations.

Step 5. Resampling is conducted. The particle degeneracy is
compensated as described in Section 2.1.

Step 6. Steps 1∼5 are repeated for 8 times (based on the rule
of thumb). The 𝑘th estimated object location is saved as the
object location of the 𝑡th frame.

Step 7. Loc(𝑡) is the estimated observation of (𝑡 + 1)th frame.
The update rate is 0.2.

Step 8. If 𝑡 < 𝑁, 𝑡 = 𝑡 + 1, return to Step 1 and continue
running. If 𝑡 = 𝑁, the tracking is finished.The tracking results
and location of each frame are returned.

The corresponding algorithm flow chart is shown in
Figure 6.

4. Experiments

To verify the performance of the algorithm, an OpenCV and
MATLAB-based object tracking prototype framework have
been developed according to the proposed algorithm. In this
prototype framework, the ORB feature is extracted from the
OpenCV library, while the Haar feature and adaptive fusion
of entropy of information are implemented by MATLAB
scripts. In this study, open video datasets are utilized as
experimental data including twelve video sequences: Basket-
ball, David2, dollar, Dudek, OccFace2 Freeman1, Mhyang,
Sylvester, Gym, Jumping, Jogging, Trellis from [33], and
EnterPaths1 from [37].The algorithm is compared with other
algorithms such as BSBT [38], SBT [39], CT [31], MIL [10],
and BT [23] in terms of performance from the following
three aspects: average pixel distance error, average overlap
area, and success rate (the overlap of object tracking results
with rectangle area > 50%). All experiments reported in
this research were performed on a computer with an Intel
i5 CPU (2.67GHz basic frequency) and 4GB memory. The
parameters have been given in Sections 2 and 3.

Table 1: A comparison of the six algorithms on average pixel
distance error.

BSBT SBT CT MIL BT HOPEF
Basketball 303.01 278.57 121.56 103.80 71.56 16.82
David2 101.85 142.60 15.67 11.42 3.51 5.88
Dollar 63.86 115.76 17.91 73.67 29.00 15.02
Dudek 78.52 204.26 31.93 32.88 22.59 18.21
OccFace2 110.14 38.47 20.15 23.04 17.51 22.27
Freeman1 185.76 157.49 12.02 19.31 119.11 11.44
Mhyang 63.80 63.66 22.65 36.10 10.89 10.50
Sylverter 55.31 104.01 21.58 46.05 52.93 35.17
Gym 102.38 55.23 31.05 66.28 21.04 16.78
Trellis 117.48 49.21 17.39 78.26 105.23 12.32
Jumping 185.17 115.68 47.16 41.75 26.27 9.77
EnterPaths1 23.49 21.14 114.99 169.69 2.98 6.72
Jogging 45.74 95.93 91.61 98.61 11.66 14.47

Table 2: A comparison of the six algorithms on average overlapping
area.

BSBT SBT CT MIL BT HOPEF
Basketball 0.103 0.04 0.26 0.28 0.40 0.70
David2 0.50 0.21 0.46 0.60 0.87 0.79
Dollar 0.40 0.16 0.78 0.30 0.68 0.82
Dudek 0.62 0.41 0.74 0.75 0.78 0.82
OccFace2 0.40 0.65 0.80 0.76 0.81 0.76
Freeman1 0.11 0.18 0.42 0.29 0.25 0.40
Mhyang 0.56 0.55 0.59 0.44 0.75 0.77
Sylverter 0.63 0.40 0.66 0.39 0.59 0.50
Gym 0.49 0.67 0.67 0.35 0.78 0.81
Trellis 0.22 0.41 0.90 0.18 0.16 0.89
Jumping 0.13 0.09 0.08 0.07 0.39 0.64
EnterPaths1 0.84 0.33 0.26 0.004 0.94 0.82
Jogging 0.61 0.46 0.21 0.02 0.73 0.59

4.1. The General Tracking Results. The proposed algorithm,
which we nameHOPEF (Haar-ORB-Particle-Entropy- Infor-
mation), is compared with other algorithms in analyzing ten
videos sequences from three aspects: average pixel distance
error, average overlap area, and success rate.

The comparison results are shown in Tables 1–3.
The data in Table 1 represent the average error, which

is the average of distances between the tracking result and
the actual center of the tracking object in all images. The
data in Table 2 are evaluated in terms of average overlapping
area, namely, the ratio of the overlapping area between the
object tracking rectangle and the groundtruth rect rectangle,
in which each row represents the bounding window of the
actual object in that frame, that is, (𝑥, 𝑦, window-width,
and window-height), where (𝑥, 𝑦) is the left upper corner
coordinates of the window. The data in Table 3 are average
success rates. The success of tracking in one image is defined
as the ratio of the overlapping area exceeding 0.5.The success
rate is defined as the proportion of successfully tracked image
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Figure 6: The flow chart of Haar-ORB-Entropy of Information algorithm (HOPEF).

among the total images. In Table 3, red color stands for
optimal results, while blue stands for the suboptimal results.

From a further examination of all the tracking results in
Tables 1∼3 for all ten videos, we can see that our algorithm
shows the minimum average error in 8 videos, the maximum
average overlapping area in 7 videos, and the highest success
rate in 9 videos, respectively. In general, our proposed
HOPEF ismore accurate in tracking the location of the object
than other algorithms such as BSBT, SBT, BT, CT, and MIL.

4.2.TheAnalysis of Algorithm Performance on Key Frames. In
this section, we analyze the performance of the six algorithms
based on some key frames. First, the algorithms and their
corresponding colors used in this section are listed in Table 4.

4.2.1. Basketball Video. Basketball video sequences describe
an NBA basketball game where the tracking object is a
basketball player. The foreground of the video contains the
players from two teams, while the background is the audience
in the stands. Besides the complex background, another
tracking difficulty in this video is that the uniforms of the
players. The performance of the six algorithms is shown in
Figure 7. BSBT (black) and SBT (blue) lost the object in the
180th frame. MIL (purple) mistakenly tracked the wrong
player who wore the same uniform from the same team.
CT (yellow) lost the object in the 508th frame; meanwhile,
BT (green) made the same mistake. However, our proposed
algorithm was able to basically cover the object across all
frames. The error curve of HOPEF (red) is found to lie in a
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The 2nd frame The 50th frame The 129th frame The 323rd frame
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Figure 7: A performance comparison of the six algorithms in the 2nd, 50th, 129th, 323rd, 473rd, 508th, 640th, and 723rd frames in Basketball
video sequence [33].

Table 3: A comparison of six algorithms on success rates.

BSBT SBT CT MIL BT HOPEF
Basketball 0.10 0.05 0.299 0.310 0.417 0.903
David2 0.529 0.233 0.227 0.959 0.935 1
Dollar 0.394 0.152 1 0.393 1 1
Dudek 0.788 0.499 0.979 0.951 0.924 0.988
OccFace2 0.417 0.674 1 0.922 0.899 0.913
Freeman1 0.129 0.187 0.215 0.018 0.212 0.212
Mhyang 0.657 0.646 0.782 0.314 0.807 0.960
Sylverter 0.707 0.439 0.792 0.473 0.687 0.523
Gym 0.62 0.84 0.87 0.27 0.97 0.99
Trellis 0.20 0.41 1 0.88 0.16 1
Jumping 0.18 0.1 0.07 0.02 0.45 0.85
EnterPaths1 0.89 0.29 0.29 0.005 1 1
Jogging 0.78 0.56 0.23 0.007 0.95 0.68

Table 4: The algorithms and corresponding colors.

Algorithms SBT BSBT BT MIL CT HOPEF
Color of
rectangle Blue Black Green Purple Yellow Red

small area during all the time when referencing error chart
frame by frame.

4.2.2. David2 Video Sequences. The background in David2
video sequence is a laboratory bench and walls, which are
all fixed. The tracking difficulty in this video is that the dark
plate painting on the wall has similar color with that of
the object, which produces interference. The performance of
the six algorithms is shown in Figure 8. In the 61st frame,
influenced by the background dark painting plate, a large
tracking deviation appeared and this error cumulated and
affected the performance of CT (yellow) and MIL (purple)

following this frame. During the entire tracking process, SBT
(blue) and BSBT (black) lost object frequently. However, BT
(green) and HOPEF (red) show a relatively smaller deviation
in each frame, thereby avoiding losing the object.

4.2.3. Dollar Video Sequences. The tracking objects in the
dollar video sequence are a pile of dollars on the surface
of a table. The interference is all set on the foreground
including 2 aspects. On one hand, one dollar bill was folded
up. On the other hand, one pile of bills was divided into two
piles, namely, splitting and merging of two stacks of money
repeated during the entire video. The performance of the
six algorithms is shown in Figure 8. In general, only BSBT
algorithm (black) is not affected by the action of the dollar
bill being folded up. However, the interleaving movement
of the two piles of money made BSBT (black) mistakenly
follows the wrong pile, thereby leading to the subsequent
false tracking. However, although HOPEF (red) is influenced
by the bill folding up action, it is not affected by alternating
interference. In addition, HOPEF (red) shows the minimum
deviation error among all the algorithms, whichmeans that it
is less affected by alternating inference.The frames in Figure 9
demonstrated that ourHOPPEF (red) algorithm achieved the
highest accuracy.

4.2.4. Dudek Video Sequences. The object in Dudek video
sequence is the head of a moving person in the laboratory.
In the process of shooting, the person took off his glasses
and moved along the laboratory. In addition, both back-
ground and illumination changed.The performance of the six
algorithms is shown in Figure 10. SBT (blue) lost the object
from time to time. In the 250th frame, CT (yellow) and MIL
(purple) show an upper right deviation and BSBT (black)
and BT (green) show a lower left deviation, which results in
the loose of the tracking object in the subsequent frames for
all these four algorithms. Only our HOPEF (red) algorithm
shows a relatively small deviation from these frames.
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The 2nd frame The 61st frame The 138th frame The 194th frame

The 246th frame The 319th frame The 380th frame The 535th frame

Figure 8: A performance comparison of the six algorithms in the 2nd, 61st, 138th, 194th, 246th, 319th, 380th, and 535th frames of David2
video sequences [33].

The 1st frame The 51st frame The 126th frame The 131st frame

The 136th frame The 226th frame The 241st frame The 251st frame

Figure 9: A performance comparison of the six algorithms in the 1st, 51st, 126th, 131st, 136th, 226th, 241st, and 251st frames in the dollar video
[33].

The 105th frame The 250th frame The 325th frame The 361st frame

The 424th frame The 519th frame The 821st frame The 974th frame

Figure 10: A performance comparison of the six algorithms in the 105th, 250th, 325th, 361st, 424th, 519th, 821st, and 974th frames in video
Dudek sequences [33].
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The 103rd frame The 150th frame The 268th frame The 371st frame

The 424th frame The 556th frame The 632nd frame The 692nd frame

Figure 11: A comparison of the performance of the six algorithms in 103rd, 150th, 268th, 371st, 424th, 556th, 632nd, 692nd frames in video
OccFace2 [33].

The 1st frame The 60th frame The 122nd frame The 203rd frame

The 233rd frame The 287th frame The 303rd frame The 314th frame

Figure 12: The performance comparison of the six algorithms in the first, 60th, 122nd, 203rd, 233rd, 287th, 303rd, and 314th frames in video
Freeman [33].

4.2.5. OccFace2 Video Sequences. The purpose in video Occ-
Face2 is also tracking a person’s head. In the video, the per-
son’s head was covered by a book or a cap. The performance
of the six algorithms is shown in Figure 11. After the 371st
frame, BSBT (black) lost object all the time. Comparing the
detection effect in the 371st and 556th frames, the influence
of covering by book and cap shows a relatively large effect on
SBT (blue) and a small effect on other algorithms. Therefore,
the performance of CT (yellow), MIL (purple), BT (green),
and HOPEF (red) is close in this video.

4.2.6. Freeman Video Sequences. The Freeman video records
a person walking from right to left and from far to near.
The person took off his glasses and looked around from time
to time. The performance of the six algorithms is shown in

Figure 12. Before the 303rd frame,MIL (purple), CT (yellow),
and HOPEF (red) did not lose the object and basically
covered the person’s head. After the 303rd frame, only CT
(yellow) can capture the object.

4.2.7. Mhyang Video Sequences. The person in the Mhyang
video moved around inside the lens. The illumination and
the head size slightly changed along with the movement.
In the 138th frame, CT (yellow) shifted to the left, which
influenced the detection in all the subsequent frames. In the
482nd frame, ML (purple) shifted to the lower left. After
the 575th frame, BSBT (black) lost the object from time
to time. BT (green) offset in the top right-hand corner of
the object. However, the proposed algorithm in this study
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The 2nd frame The 138th frame The 259th frame The 482nd frame
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Figure 13: The performance comparison of the six algorithms in the 2nd, 138th, 259th, 482nd, 575th, 863rd, 1327th, and 1445th frames in
video Mhyang [33].

The 91st frame The 195th frame The 287th frame The 401st frame

The 478th frame The 568th frame The 783rd frame The 835th frame

Figure 14:The performance comparison of the six algorithms in the 91st, 195th, 287th, 401st, 478th, 568th, 783rd, and 835th frames in Sylvester
video [33].

HOPEF (red) continuously captured the object and showed
the least deviation during the entire video (see Figure 13).

4.2.8. Sylvester Video Sequences. The tracking object in
Sylvester video sequence is an animal doll with many edges
randomly rotating under a lamp. The tracking difficulties
of this video are the drastic change of the illumination
and big rotation angle. In the 91st, 195th, 287th, and 401st
frame, all algorithms could basically capture the object since
there were only slight rotation of the animal doll and small
illumination change. Compared to the previous ones, in the
478th frame, BSBT (black) lost the object; meanwhile, MIL
(purple) began to shift. Between the 478th and 835th frames,
the performance of CT (yellow), BT (green), and HOPEF
(red) is close. After the 835th frame, the performance of
HOPEF (red) is inferior to that of CT (yellow) (see Figure 14).

4.2.9. Gym Video Sequences. The tracking object in Gym
video sequence is an athlete. This video proves that our
algorithm is robust to pose and illumination changes
(see Figure 15).

4.2.10. Trellis Video Sequences. In the video of Trellis, there
is a man walking in a greatly varying environment. The
extraction difficulties are moving vehicles in the background
and the number of buildings surrounding the target. More-
over, when the tracking target slowly walked out from the
dim room and the light became stronger, the tracker will
face great challenge. According to the experimental result,
it can be seen that the tracking effects are ideal with our
tracking algorithm. The features used in the study are not
sensitive to these factors (especially illumination change), and
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The 2nd frame The 148th frame The 212nd frame The 323rd frame

The 498th frame The 605th frame The 674th frame The 753rd frame

Figure 15: The performance comparison of the six algorithms in the 2nd, 148th, 212nd, 323rd, 498th, 605th, 674th, and 753rd frames in Gym
video [33].

The 2nd frame The 33rd frame The 66th frame The 97th frame

The 125th frame The 189th frame The 217th frame The 245th frame

Figure 16: The performance comparison of the six algorithms in the 2nd, 33rd, 66th, 97th, 125th, 189th, 217th, and 245th frames in Trellis
video [33].

hence the tracking performance is good throughout the video
(see Figure 16).

4.2.11. Jumping Video Sequences. In the video of Jumping,
there is a man Jumping in a greatly varying environment.
The extraction difficulties are motion blur. The performance
of the six algorithms is shown in Figure 17. According to the
experimental result, it can be seen that the tracking effects are
ideal with our tracking algorithm.

4.2.12. Ambiguity in Detection. In this sectionwe discuss how
our approach deals with ambiguity in detection. The ORB
feature is robust to object rotation, scaling, and noise. The
Harr feature is generated statistically, which makes it resilient
to object rotation. The combination of these two features

provides a better way of describing objects and can reveal
differences between multiple objects.

When tracking objects overlap, for instance, the first
object is covered by the second, which makes it challenging
when sampling image features from the first object as features
from the second object may be sampled instead. To deal
with this issue, when updating observations for the tracking
object, we compare the similarity between the tracking object
and other objects. If in the current frame there is a high
similarity between the tracking object and a particular other
object, we can conclude that the tracking object is covered
by that particular object. In this way we can address the
ambiguity issue to some extent (see Figure 18).

4.3. The Error Comparison in Each Frame. Figure 19 shows
the tracking error comparison in Basketball, David2, dollar,
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The 3rd frame The 30th frame The 52nd frame The 79th frame

The 89th frame The 108th frame The 130th frame The 196th frame

Figure 17: The performance comparison of the six algorithms in the 3rd, 30th, 52nd, 79th, 89th, 108th, 130th, and 196th frames in Jumping
video [33].

The 90th frame The 97th frame The 109th frame The 209th frame

(a) Video source taken from [37]

The 63rd frame The 75th frame The 79th frame The 104th frame

(b) Video source taken from [33]

Figure 18: Ambiguity in detection.

Dudek, FaceOcc2, Freeman1, Mhyang, Sylvester, Gym, Trel-
lis, Singer1, man, Jumping, EnterPaths1, and Jogging video
sequences by the six algorithms. In Figure 19, the red line
stands for our proposed HOPREF algorithm. It is clear that
the red position error curve always stays in the bottom. In
addition, from the beginning to the end, the error fluctuation
of HOPREF was relatively small, which demonstrated that its
tracking performance is stable.

The performance of HOPEF and the other five models
is compared from three aspects in this research. The results
demonstrate that the proposed trackingmethod based on the
prior probability of entropy of information of the ORB and
Haar features is effective and robust.

4.4. Track for Two Objects. Our algorithm can also track for
two objects as shown in Figure 20.

In Figure 20, the red rectangle shows the location of the
first object, and the green rectangle shows the location of the
second object. Our algorithm for tracking two objects can
handle occlusion, fast motion, and change of view.

5. Conclusions

In this research we propose a novel object tracking method
based on compressed sensing and entropy of information.
First, this method adopts the Haar and ORB features to char-
acterize the object. Second, the dimensions of computational
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The 1st frame The 104th frame The 125th frame The 175th frame

(a) Video source taken from [37]

The 1st frame The 101st frame The 194th frame The 350th frame

(b) Video source taken from [37]

The 1st frame The 28th frame The 93rd frame The 188th frame

(c) Video source taken from [33]

The 1st frame The 223rd frame The 430th frame The 613rd frame

(d) Video source taken from [33]

Figure 20: Track for two objects.

space of the Haar and ORB features were effectively reduced
through compressed sensing.Then the above-mentioned fea-
tures were fused based on entropy of information. Finally, in
the particle filter framework, the object locationwas obtained
by selecting candidate object locations in the current frame
from the local areas neighboring the optimal locations
in the last frame. Experimental results demonstrated that
this method was able to effectively address the challenges
of perception change, illumination change, and large area
collocation.

However, there is still room for improvement in our
algorithm, which will be considered in the future work. First,
the situation of losing track of the fast moving object still
exists. A self-adaptivemethod needs to be designed to further
improve the tracking performance. Second, according to the
experimental results, the detection effect is not satisfactory

when the size of tracking object changes dramatically due to
the fixed size of identifying window in the entire tracking
process. Furthermore, this algorithm cannot take multiple
objects (more than two) into consideration, and we aim to
address this issue in the next step of our research.
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