Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2015, Article ID 628583, 13 pages
http://dx.doi.org/10.1155/2015/628583

Hindawi

Research Article

Cascade Probability Control to Mitigate Bufferbloat under
Multiple Real-World TCP Stacks

Hoang-Linh To,' Thuyen Minh Thi,' and Won-Joo Hwang®

! Department of Information and Communication System, Inje University, Gimhae, Gyeongnam 621-749, Republic of Korea
Department of Information and Communications Engineering, Inje University, Gimhae, Gyeongnam 621-749, Republic of Korea

Correspondence should be addressed to Won-Joo Hwang; ichwang@inje.ac.kr
Received 22 June 2015; Accepted 13 August 2015
Academic Editor: Rongwei Guo

Copyright © 2015 Hoang-Linh To et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Persistently full buffer problem, commonly known as bufferbloat, causes unnecessary additional latency and throughput
degradation whenever congestion happens in Internet. Several proposed queue management schemes, with the debloat mission,
are almost based on the modification of one-loop feedback control where the instability and bad transient behavior are still big
challenges. In this paper, we present a cascade probability control scheme using margin optimal method to address such challenges
under different kinds of real-world TCP stacks. Simulation results guarantee the measured round trip time tracking to a low value of
delay (e.g., =180 ms under TCP Reno, and =130 ms under TCP Cubic) and =50% delay reduction in comparison to current deployed

queue management schemes in network devices.

1. Introduction

Nowadays, interactive and delay-sensitive applications such
as VoIP, teleconference, and gaming often perform more
poorly than before. From the economic perspective, as the
cost of memory has decreased over the past few years,
memory with large capacity has been put into network
devices such as routers. From the engineering perspective,
as traditional analysis, a larger buffer results in less loss rate
under congestion. However, recent studies about bufferbloat
reveal some bad effects of a large buffer. It might destroy
interactivity of transport control protocols (TCP) under load
and often results in higher latency and lower throughput.
Nagle [1] firstly drew attention to effects of infinite buffers
in packet-switching networks. Then bufferbloat termed by
Gettys [2] firstly opens a research field to seriously reconsider
the problem of large buffers and hidden “dark” buffers which
can appear everywhere in Internet devices.

Conceptually, bufferbloat is a phenomenon firstly realized
in packet-switched networks, where excess buffering of pack-
ets might cause high latency and jitters, as well as reducing
the overall network throughput. When a router device is
equipped with a large buffer, it can become practically

unusable for many delay-sensitive applications like voice
calls, chat, or even web surfing. Traditional rule-of-thumb for
setting buffer size in an Internet route is based on bandwidth-
delay product (BDP), the product of a data linK’s capacity and
its round-trip time (RTT). The basic premise is that modern
networking kit contains too much buffer memory. In [2], it is
necessary to restrict bandwidth to improve latency and ping
times. Despite this fundamental of sacrificing bandwidth for
latency, most users keep asking how to fill their bandwidth
quota and get good VoIP/games satisfaction. Long time ago
and until now, researchers nonexhaustively attempt to reduce
dropping packets by adding more and more buffering in
routers. However, each dropped packet is essential for well-
behaved functioning of TCP in congestion.

Let us examine an interaction situation between TCP and
bufferbloat [3]. TCP relies on timely congestion notification
to adjust its transmission rate to the available bandwidth. And
bufferbloat means that new arriving packets are continued
to be buffered, instead of dropped due to large buffer size.
It causes the queue to build up longer at the bottlenecks.
Entering the dropping state, more packets are dropped than
necessary which would shrink the transmission rates of the
TCP sender. In particular, if several TCP applications are

transmitting over the same congestion point, all flows will
see drops at the same time. Therefore, all transmission rates
would be reduced simultaneously, called TCP global synchro-
nization. Certainly, suitable amount of buffering is helpful
to improve the efficiency of data transmissions to smoothen
bursts transmissions. Not dropping packets early enough,
however, leads to increasing delays for interactive real-time
communication since widely deployed congestion control
algorithms only rely on packet loss as a signal for congestion.
Not dropping packets in a timely fashion also prevents TCP
applications from reacting properly to overload.

Solutions to bufferbloat problem or debloat include queue
management algorithms, which attempt to manage queue
occupancy in passive or active ways. Passive queue manage-
ment (PQM) such as Drop Tail is the most currently deployed
queue management algorithm in Internet router devices. It
drops packets when buffer queue is overflow, so because
of this simplicity, it is widely used now. The weaknesses
of PQM such as lock-out [4] and global synchronization
[5] motivate to urgent needs of active queue management
schemes (AQMs) deployment. Several AQMs have been
deeply studied in the recent decade. The most popular one
is random early detection (RED) [5] and its variants [6,
7] with the main idea of using a probabilistic approach
to randomly dropping packets for congestion resolution.
However, most of them require careful tuning for varying
network conditions; otherwise they only work well under
a few specific scenarios with default parameters [8]. Game
theory approach, which is mainly dedicated to users (user-
aware), has also been investigated to tackle this issue [9, 10].
Recently, a new AQM named controlled delay management
(CoDel) [11] has been proposed to overcome weakness.
Parameterless and easy deployment are two among strong
points of CoDel. Even though, for larger RTTs and smaller
bandwidths, CoDel has poor link utilization than RED and
its variants, the next drop time of CoDel algorithm is derived
by using the multiplicative decrease of square root of total
number dropped packet counting, which needs more in-
depth investigation for improvement.

In this paper, we revisit AQM design problem from
control theoretical perspective but consider cascade control
to further optimize performance in user application level
while considering bufferbloat phenomenon. Control theory
is one of the most efficient tools for AQM to bring a
better system stability due to well-developed control theory
background. Several efforts have been recently put into this
direction for RED [12], PID-AQM [13, 14], and controller
design in state space [15, 16] or queuing modelling with
the impatient customer feature [17] and so forth. Based on
the fluid-flow approximation model for additive increase-
multiplicative decrease (AIMD) phase of TCP, they converted
dynamic equations of window size and queue length into
system transfer function or state space by linearization meth-
ods. Then they designed the specific controller according to
a closed-loop transfer function of the whole TCP system. We
realize that these models almost design one-loop control for
queue length only which creates some problem of difficult
adjusting controller parameters and stability guarantee. One
more loop with cascade design in control theory would

Mathematical Problems in Engineering

improve their performance, especially the bad transient
behaviour of current debloat schemes. So we consider a two-
loop control scheme for AQM, which is mainly dedicated
to bufferbloat issue. Dividing into an inner and an outer
loop, the inner one adjusts window size based on changing
of traffic and feedback window size at time t. The outer one’s
mission is to adjust queue length based on feedback queue
length value at time ¢. Each inner loop and outer loop are
designed using two transfer functions which decomposed
from the fluid-flow model and, therefore, have different
controllers. One difficulty when considering this cascade
design is the interaction in time-scale between two loops. We
see that the inner loop operates in the transport layer while
the outer one operates in link layer (faster than transport
layer). The main motivation is that solving bufferbloat (large
buffer) problem cannot be done without considering different
network layers simultaneously. Therefore, one-loop control
methods like Drop Tail, RED, or classical PID should not
be adequate for bufferbloat mitigation. Our proposed CPC,
with an inner and an outer loop, acts in both the transport
layer (adjusting window size) and the link layer (adjusting
queue length). To the best of our knowledge, our work is the
first attempt to adapt cascade control method to bufferbloat
research field. The weakness of this method is that more
complexity is added because of two additional controllers.
However, better performance results (shorter queuing delay
and larger goodput) are achieved and we are going to see more
details in Section 5. The performance metrics we evaluate
consist of measured round-trip time, queue length at each
instantaneous time, and goodput at TCP application layer
which represents the users’ (clients) satisfaction level. The
primary contributions are summarized as follows:

(i) We propose a cascade probability control (CPC)
which has two control loops. The inner loop gets
information from current window size and capacity
of link while the outer loop is based on difference
between average measured queue length and queue
length reference value.

(ii) Section 4 presents our proposed CPC controllers
which are designed using the optimal margin method
in frequency domain. The fast transient and stability
in a wide frequency range can be achieved using this
method.

(iii) We develop our own model to simulate CPC per-
formance using the popular open-source software,
OMNeT++. We also compare our proposal with Drop
Tail and RED under three popular TCP stacks (e.g.,
Reno, Cubic, and FreeBSD.) using the real-world
stack module network simulation cradle (NSC). Sim-
ulation results demonstrate that bufferbloat delay can
be reduced significantly (=50% compared to Drop
Tail and RED) and well controlled by CPC (Section 5).

2. Related Works

Several approaches to AQM, using control theory with the
core linearized TCP model by Hollot et al. [12], were proposed

Mathematical Problems in Engineering

and contributed a large portion to debloat field [18]. The
original goal was to propose more concrete design guidelines
for the RED parameters to improve stability and responsive-
ness; however, they also discover clearer understanding of
RED’s behaviour with changing of network conditions such
as round-trip times, offer load as number of TCP flows,
and link capacities. Focusing on control theory viewpoint,
we categorize them into three types: classical control, robust
control, and fuzzy logic control.

Classical PID controller based algorithms were designed
as alternative AQM solutions to meet various specifications
of the Internet using feedback control. Hollot et al. [12]
analysed RED as I-controller and proposed two types, the
proportional (P) controller and the proportional integral
(PI) controller, for improving RED. The stable region of
the control gain is determined for dynamic-RED (DRED)
using the Routh stability test. In [19], dynamic-RED (DRED)
was proposed, using a load-dependent probability to ran-
domly discard packets when a buffer becomes congested. It
maintains the average queue size close to a predetermined
threshold but allows transient traffic bursts to be queued
without unnecessary packet drops. Its main advantage is that
we do not have to collect state information of individual
flows. In [15], a feedback control model with PI controller has
been recently proposed to improve link performance in wired
communication networks.

Robust control approach was also studied to improve
classical control. The issue of large delay with large buffer
in bufferbloat was addressed by DC-AQM algorithm based
on internal mode compensation (IMC) principle, which is
an example of robust control approach [20]. Using IMC
controller derived, they tried to tune parameters K, K;, and
K, of classical PID controller to reduce delay. To also contend
with large delay, gain adaptive Smith predictor with PI
controller (GAS-PI) in [21] was built to improve robustness.
Then, in [13], a predictive PID controller is proposed for
TCP/AQM. They used the generalized predictive control
method to determine suitable values for Kp, K;, and K, so
that they made the system more robust to changes in model
parameters such as offered load and round-trip time.

Fuzzy control RED (FCRED) was proposed in [6]. It con-
sists of a fuzzy controller adjusting the P, parameter of the
RED algorithm. The fuzzy controller includes three parts: the
fuzzification unit followed by the fuzzy-interference engine
with fuzzy-rule base and finally a defuzzification unit. The
fuzzification module maps the input values to be controlled to
a fuzzy set (i.e., membership functions). The fuzzy rule base
provides the connection between the input signals and the
appropriate output variable. Fuzzy logic rules are constructed
based on trial-and-error, which needs the knowledge and
experience of domain-expert in TCP congestion control.
Moreover, fuzzy logic-based AQM schemes are sometimes
not distributed and hard to implement.

Briefly, it can be seen that, as the years progress, the main
direction has been to more and more sophisticated robust
control techniques, combined with some classical techniques
in control theory as well. In many cases, the linear TCP
model in [12] continues to be at the core of control theoretic
AQM algorithms. Cascade control, however, has not been

considered yet in development of AQM. In this paper, we
contribute to the AQM debloat research trends by using
cascade control to address large delay bufferbloat issue. Our
approach uses two controllers which are connected in cascade
style. Our CPC results obtained from theoretical Matlab or
simulation using OMNeT++ and the integrated NSC tool are
so promising in fast transient behavior and stability.

3. System Model

The TCP/AQM fluid-flow model described by nonlinear
differential equations has been extensively studied in par-
ticular AQM routers interacting with TCP sources (e.g.,
[12, 13, 16, 20]). Until now, they can capture the additive
increase-multiplicative decrease (AIMD) feature from TCP
[22], without slow start and time-out mechanisms. However,
this lacking only affects initial start-up of the system. Once
the system reaches the stable point, the differential equations
solver is able to track changes in the network well [23]:

1 _w(t)w(t—r)

vO=rn " 2 rRe-pfE™

® 1
AN LA
q(t) = NR(t) Ch

where

(i) C; is the transmission capacity of link I (packets/sec);

(ii) Risthe round-trip time (sec); R(t) = Tp+q(t)/C1 with
T, being the fixed propagation delay;

(iii) N is the number of TCP flows;
(iv) 7 is feedback delay (sec).

The operating point (wy, gy, po) of TCP model (1) can be
derived at w = 0 and g = 0 as follows:

2
Wypo =2,
_ R
Wo =" (2)
Ry=T,+ @.

!

Doing linearization of the above TCP queue model
around operating point (wy, gy, p,) (details in [12]), with
0w = w — w,y, we have a linearized small signal model of
TCP/AQM:

, 2N R,C}
S (t) = —dw (t) RC, Sp (t-R,) N 5

84.(t) = dw (¢) Rﬁ _8q(®) Ri.
0 0

Convert (3) using Laplace transformation as follows:

R,C}

2N?

N . p (S) e—sRo .

sXxw(s) =-w(s) C
o1

>

N 1 (4)
sxq(s):w(s)R——q(s)R—.
0 0

Mathematical Problems in Engineering

)

q(t) queue_length

#TCP-flow

P(queue)(s) Monitor queue

4
— P P2
J PID(s) 1(s) pldrop) w(t))
Desired C(queue) C(win) -
queue length Inner loop P(tepwin) (s)
Outer loop

output

FIGURE 1: Block diagram: proposed cascade probability control scheme.

So the TCP/AQM system transfer functions in Laplace
domain are

P(5) = Puguin () Pague (9 ¢
®)
) [:((j))] . [3)((55))] B [sz] . [st]e_SRO’

where A = R,C;/(2N?); B = 2N/(R;C)); C = N/Ry; and
D = 1/R,.

4. Cascade Probability Control (CPC)

In literature, single loop control for AQM was often studied
due to less complexity and low oscillation but did not behave
well in case of disturbances (e.g., bandwidth fluctuation and
bursty traffic) or bad transient. Cascade control comes to
rescue and achieves fast rejection of disturbance before it
affects the main system model. In this section, we propose
a cascade probability control (CPC) to improve dynamic of
the open-loop system transfer function (5) which consists of
two subsystems, window size and queue length control. The
inner loop adjusts the window size by an inner controller
Clin> While the outer loop receives queue length information
at time ¢ and uses an outer controller Cy, to maintain q(t)
(Figure 1). The final goal is to reach a stable value of queue
length, so that bufferbloat phenomenon can be mitigated.
Moreover, the margin optimal method for controller design
also brings a fast transient behavior to our system.

4.1. CPC Controllers. We design two PI controllers for sim-
plicity and for reducing number of parameters: the inner
controls dropping probability p, based on traffic informa-
tion and the outer controls dropping probability p, based
on difference between measured average queue length and
reference queue length. We outline our proposed design
framework in Figure 1 and would compete with the adaptive
weight PID approach in [24].

4.1.1. Inner Loop. An important design requirement is that
the inner loop controller should behave quickly. From (5), the
inner control objective is a linear first-order type: Pyp,y,in(s) =
k;/(1 + Ts), where k; = A/Band T = 1/B. Hence, we design
an integral I-controller for inner loop:

1
win(s) — K . (6)

win

C

(i) The close-loop transfer function of the inner loop is

Pc win (S Cwin s

1y = 26) _ Teonn &) Gy
pl (S) L+ Ptcpwin (S) Cwin(s)

_ ky

S Te, s(L+Ts)+k;

7)

(ii) The I(s) transfer function is converted into frequency
domain, with w being frequency:

k
7 (jeo)| = = =
V- Te, T-0) + (0T,)
— I(jw)’ (8)
k;

SR+ (T2 -2k To, T)@?+ T2 -Twh

One of quality requirements to closed-loop control sys-
tem, which is represented by I(s), is that the output is the
same as the input signal or the controller C,;,, should bring
lI(jw)l = 1, Yo, which can be called margin optimal
method. However, due to several reasons of real system,
that requirement is rarely satisfied for all frequencies w. An
acceptable design is that [I(jw)| = 1, in a wide band of low
frequencies w. Hence, we propose choosing T, such that
Téwm —2k;-Tg, T = 0or T = 2k;T. This close-form
expression of T, is used to make decision for controller
C

win*®
4.1.2. Outer Loop
(i) The close-loop transfer function of the outer loop is

_ q (S) _ I (S) Pqueue(s)cqueue (S)

O (s) = .
ref 1+1 (S) Pqueue(s)cqueue (S)

€)

(ii) The outer control objective into zero-pole form is

B k; C
ueue(s) T, s(L+Ts)+k; s+D

I1(s) P

. ke (10)

- (1 + Tlos) (1 + Tzos) (1 + T3Os)’

Mathematical Problems in Engineering

where kg = C/D; T\ T, = TT¢ [kp T, + T, =
Tcwi“ /kI’ T3O = l/D.

For the outer loop, the objective function is linear third-
order type, due to inclusion of I(s). Hence, we choose
proportional-integral-derivative PID controller by using the
same method at the inner loop design, or |O(jw)| = 1:

1
Cqueue(s) = kpo (1 + T_S + Tdos) > (ll)

o

withk, = (T, +T,))2koT5, T, =T, + T, , Ty, = (Ty, -
T,)T, +T,,).

4.2. CPC Numerical Analysis. The proposed CPC controllers
can be easily verified by using example parameters from [12]
which consist of N = 60, C; = 3750 (packets/sec), and
R, = 0.246 (sec). According to the above analysis, the inner
controller C;, = 0.000291/s, while the outer controller
Caueue = 0.1281(1 + 1/(3.78'5) + 1.895).

Figure 2(a) presents the queue length output in case of
20 packets queue reference. The CPC manual tune mode
uses our above designed controllers, while the CPC autotune
mode uses pidtune function of Matlab. Firstly, in comparison
to RED which can be modeled as a single-loop I-type con-
troller, one advantage of CPC is that fast transient behavior
can be achieved. Transient behavior is a major issue of current
solutions to bufferbloat. Fast transient means that we can
reach the queue length reference quickly in response to the
input change of dynamic systems.

Secondly, crossover frequency is a criterion to assess a
control system’s operation ability in a wide range of frequency.
The higher the crossover frequency is, the better stability at
which the system can operate is. Let us denote crossover
frequency as w,. If we choose a frequency higher than w,,
system would be not stable anymore. The left-hand side of
Figure 2(b) is Bode diagram phase-margin of the system. It
informs about w, information of our proposed CPC scheme.
Specifically, CPC manual tune has w, = 2.37 (rad/s) which is
the highest value, while w, = 0.627 (rad/s) for CPC autotune
and w, = 0.261 (rad/s) for RED. Therefore, CPC can operate
better in a wider range of frequency.

Finally, using Nyquist stability criterion, the closed-loop
transfer function of the outer loop O(s) is determined by the
values of its poles. It states that, for stability, the real part of all
poles must be negative or the poles are in the left half-plane
of pole-zero map. The right-hand side of Figure 2(b) shows
us the distribution of zeros and poles for three schemes.
Clearly, all the poles have the real part negative which strongly
demonstrates CPC'’s stability.

In summary, CPC scheme can achieve fast transient,
high crossover frequency and still stable. Those motivate us
to conduct simulations about CPC behavior to bufferbloat
under multiple real-world TCP stacks.

5. Simulation Results

In this section, we implement the proposed scheme in simu-
lator to show bufferbloat phenomenon and the advantages of

5
TaBLE 1: Simulation parameters.
Name Value Unit
Maximum buffer size 500 Packets
Desired queue length 20 Packets
Target RTT delay 200 ms

CPC scheme in comparison to traditional AQMs. We choose
the dumbbell topology according to AQM guidelines [25].

5.1. Simulation Setup. We develop our own simulation model
to verify the proposed CPC scheme using the popular
OMNeT++ framework [26]. The chosen topology in Figure 3
represents a dumbbell network which is suitable for eval-
uating a queue management scheme. Three clients simul-
taneously send 200 x 3 (MByte) data to servers through
intermediate routers. The advertised window’s server is set
up to infinity so that it does not limit the sender’s speed. To
create an artificial bottleneck, we set up the “high-to-slow”
link bandwidth where the bandwidth of links from clients to
router 1 are high at 1000 (Mbps) and the bandwidth of the
link from router 1 to others is slow at 2 (Mbps). RTT can
be measured at each server, while queue size is monitored
at the congestion point. Bursty traffic is generated using a
generator traffic model inside each client from OMNeT++. At
the first glance, we vary the buffer size parameter to show the
simulation model working toward bufferbloat phenomenon
existence. Then we compare the CPC scheme with two types
of traditional queue discipline which are operating inside the
current Internet, Drop Tail, and RED, in terms of queue size
and round-trip time or latency. Some main parameters are
summarized in Table 1.

5.2. Bufferbloat Existence

5.2.1. Experiment. To demonstrate clearly bufferbloat exis-
tence, we exploit the real-time response under load (RRUL)
test specification in [27]. This test puts a network under worst
case conditions and then measures latency responsiveness
and other relative performances of TCP and UDP streams
of varying rates, while under that load. Then, Toke Hoiland-
Jorgensen produces a wrapper for netperf tool to implement
test cases such as HT'TP, VoIP, and FTP under RRUL. In this
paper, we conduct the experiment test from our computer-
client located in South Korea to two servers which are
mainly dedicated for bufferbloat testing, demo.tohojo.dk,
and snapon.lab.bufferbloat.net, respectively. Figures 4(a) and
4(b) present our ping results when we run experiment in
300 seconds and sampling period of 0.2 second. Ping delay
for both cases are approximately 300 (ms), while 100 —
150 (ms) is an acceptable range for toll-quality voice and
delay-sensitive applications. Once again, we see that debloat
solutions were not deployed in our current experiment
routers.

5.2.2. Simulation. As mentioned before, the main reason
for bufferbloat is the unmanaged large buffer at bottleneck

Magnitude (dB)

Phase (deg)

Queue length (packets)

25

Mathematical Problems in Engineering

CPC: fast transient

10 15
Time (s)
—— CPC: manual tune

+—— CPC: autotune

(a) Step response performance

50 Bode diagram
3
2
1
-100 | A
AN =
N I
= 0
-150 L §
1072 10° 0 5
Frequency (rad/s) E
Bode diagram -1
0 .
-2
=901
-3
-180 | N
—270 . BRRRLEr
1072 10° 10°
Frequency (rad/s)

—— CPC: manual tune

+— CPC: auto tune

- -~ RED: I-controller

20 25

- -- RED I-controller

Pole-zero map

X
i CPC’s pole 7
RED’s pole «
/ ®
P X O XA
X
F CPC auto’s pole R
X
1 1
-4 -2 0

Real axis (s7)

—— CPC: manual tune
--- CPC: auto tune
—— RED: I-controller

(b) Bode diagram and pole-zero map

FIGURE 2: Stability analysis of CPC.

Mathematical Problems in Engineering

Bufferbloat

Client 3

--> Ping application
—> TCP application

Server 1

1000 Mbps

S

Router 2
outer Server 2

Server 3

FIGURE 3: Simulation topology.

320 — : — .
315+
310
g
& 305
=]
3
<
—
300
295
P17\ SN s s s .
0 50 100 150 200 250 300
Time (s)
Ping (ms)
ICMP
— Avg

(a) Server: demo.tohojo.dk

320

295 + 4
290 . : : . : .
0 50 100 150 200 250 300
Time (s)
Ping (ms)
ICMP
— Avg

(b) Server: snapon.lab.bufferbloat.dk

FIGURE 4: Bufferbloat existence: an experiment from Korea to two servers.

links that could damage TCP’s congestion control/avoidance
mechanisms. Hence, a big buffer is necessary to repro-
duce this phenomenon. In the current Internet, buffers are
measured using bytes. OMNeT++ simulation framework,
however, uses packets to sizing buffers. The choice of the
largest buffer size is approximately 8x BDP product (pack-
ets) [11]. Let us denote buffer size as bu. With bottleneck

bandwidth 2 Mbps and propagation delay 300 ms, we have
the results when following the traditional rule-of-thumb for
buffer-size:

bu (byte) = BDP = BW x Delay = 2.10° x 300.10~
(12)
=600 (kbit) = 75 (kbyte).

8
— 600 T
i
2
A 400 1
X y /
< 200 ' 1
g 4'
j=3 1Y S T PP LSy e L P W YT P Y TR T
C o
0 1000 2000 3000
Simulation time (s)
— 500 — 100
— 300 — 50
3 T
=2 1
= 7 ’ /
0 1o 0 M T et s TN I, vt 00 ot 1 0 K e,
0 h L
0 1000 2000 3000

Simulation time (s)

— 100
— 50

(a) TCP Reno + Drop Tail

Mathematical Problems in Engineering

= 600
151
2
(S}
£ 400 / 1
3
° 2ool _
=
L
3
9 o . .
0 1000 2000 3000
Simulation time (s)
— 500 — 100
— 300 — 50
3 .
| / '\i Persistent long delay = 2.8 s l
.
&1 -
0 1 1
0 1000 2000 3000
Simulation time (s)
— 500 — 100
— 300 — 50

(b) TCP Free BSD + Drop Tail

F1GURE 5: Bufferbloat existence and varied buffer sizes.

According to [28], one TCP packet size or maximum
transmission unit (MTU) is 1500 (bytes):

bu (byte) 75.10°
MTU 1500

bu (packets) = =50 (packets). (13)

Therefore, in this simulation, we vary the buffer sizes such
as 50, 100, 300, and 500 being the largest one (packets) under
different TCP congestion-avoidance algorithms with Drop
Tail queuing discipline. Firstly, Figure 5(a) shows the effects
on queue evolution and round-trip time, under TCP Reno,
the most used in Windows and some Linux operating systems
(OS). We obtain the saw-tooth result at both queue size
and RTT graph because of TCP Reno’s characteristics while
others do not have saw-tooth type graphs. From Figure 5(a),
bufferbloat issue can also be clearly recognized. If buffer
size is very large (500 packets), RTT will become pretty
large (=2.5sec) while queue size grows until it reaches the
threshold of buffer, which is the main drawback of Drop Tail.
Several AQMs come to rescue at this point. The phenomenon
once again appears in TCP FreeBSD, the popular algorithm in
Unix OS that does not own a saw-tooth graph. Figure 5(b),
which is simulated under TCP FreeBSD, also presents a
long delay (=2.8 sec) when buffer is too large. Those results
confirm bufferbloat happening at different OS whenever a
long buffer queue is built up.

5.3. CPC Performance under TCP Real-World Stacks. Next,
we conduct more necessary simulations to compare our
CPC scheme performance with traditional popular queuing
disciplines Drop Tail and RED. We monitor the queue size
at the bottleneck point (router 1), the round-trip time of

packets, and goodput at each destination server. Goodput
is the application level throughput, that is, the number of
user information bits delivered by the network to a certain
destination per unit of time. For example, if a file is trans-
ferred, the goodput that the user experiences corresponds
to the file size in bits divided by the file transfer time. The
goodput is always lower than the throughput (the gross bit
rate that is transferred physically), which generally is lower
than the channel capacity or bandwidth. Goodput moni-
toring is necessary to evaluate the actual good throughput
performance inside networks. We also do these comparisons
under several different TCP versions which include Reno,
Cubic, and FreeBSD. The first one is mainly implemented
in Windows and some Linux Kernels. The second one is
improved and deployed in newer versions of Linux Kernel
until now. The last one is popularly implemented under Unix
Kernel. All the following results are derived when we set
the largest buffer size at congestion point, 500 (packets). In
the following, we summarize the background knowledge of
those three TCP versions before going into detailed results of
bufferbloat delay reduction and goodput stability.

5.3.1. Under Reno Real-World Stack. For each connection,
TCP maintains a congestion window cwnd, limiting the total
number of packets that may be transmitted at a time. TCP
Reno algorithm uniqueness is the fast recovery phase. That
means when a packet loss is detected by receiving three
duplicate ACKs, Reno will halve cwnd and set slow start
threshold ssthresh equal to the new cwnd value, perform a
fast retransmit, and enter a phase called fast recovery. It also
reduces congestion window to one maximum segment size
(MSS) on a timeout event. Congestion-avoidance phase, as

Mathematical Problems in Engineering

~ 600 : :
3
4
5]
£ 400 .
3
2 200 .
=1
L
& o
0 1000 2000 3000

Simulation time (s)

RTT (s)

0 [t e maa e A e A A
0 1000 2000
Simulation time (s)

3000

—— Drop Tail —— CPC —— Drop Tail — CPC
-~~~ RED -~~~ RED
(a) Round-trip time
x10% 50 (packets) x10° 100 (packets)
20 =
i +
* 2 '
15 . | 1 %
! 1
- | i - 15 ! | i
[7) 1 | (%)
& ! ! 5 £ : i
< 10 : L 1 = | ! !
1 : E : ' i :
I <) I
o <3
6] QO
> | : |] 0.5 i i |]
1 ! 1 1 1 1
1 ! 1 1 1 |
1 ! 1 1 1 1
1 ! 1 1
1 —1 1 1
0 . i] 0 T T $ i
Tail RED CPC Tail RED CPC
x10° 300 (packets) x10° 500 (packets)
2 $ + : +
3 -
i | ! @ i
< ' ‘ s, =
ot i ! <2 1
=1 !]
£ : ! ! E ! i
o1 1 1 E o !
o o I I
]] ! :
1 ! :
! 1
. | |] —
| : | : | |
—1 I R
0 — =] 0 - = |
Tail RED CPC Tail RED CPC

(b) Goodputs

F1GURE 6: TCP Reno + Drop Tail/RED/CPC.

usual, exploits AIMD to control cwnd based on packet loss
notification. In fact, compound TCP stack for Windows and
Linux also increases AIMD window as TCP Reno does [29].

In Figure 6(a), queue size and RTT according to three
queue management schemes are presented. With 500 packets
of buffer, Reno and Drop Tail show a saw-tooth graph where
the highest RTT is high up to 2.8 (sec). With the target RTT

being 200 ms, RED under Reno presents better performance
than Drop Tail, RTT (RED) = 400 ms, by early dropping
some packets to keep the queue size small. CPC under Reno,
however, achieves a much better performance while keeping
the lowest queue size and lowest RT'T (CPC) = 180 ms, which
is acceptable for delay-sensitive applications. The reason is
that CPC continuously controls the next queue size value

10

)
—_
w
(=}

100

o [

I
i

Queue size (packets

0 1000 2000 3000

Simulation time (s)

—— Drop Tail
--- RED

— CPC

Mathematical Problems in Engineering

RTT (s)

3000

Simulation time (s)

(a) Round-trip Time

x10 50 (packets)

T

15

10

Goodput (bps)

w

1
|
1
+ 4 2+
0 +
Tail RED CPC
x10* 300 (packets)
1 i
1
|
— 1 !
» I I
& | |
£ 10 | I
5 . 1
o
E =
&) —1 :
5 ! |
1 1
:
o
0 +
Tail RED CPC

—— Drop Tail — CPC
--- RED
x10* 100 (packets)
20 7
15 E
z | i
£ ! ; .
2 10 ! ! | :
< 1 ,—'—I
g
) 1
5 i ! |
i ! i l
I I %
1 $
0 j
Tail RED CPC
%104 500 (packets)
15 i B

10

Goodput (bps)

+H+|-

Tail RED CPC

(b) Goodputs

F1GURE 7: TCP Cubic + Drop Tail/RED/CPC.

according to traffic changes and adjusts the current queue
size at the outer loop so that it indirectly affects RT'T value
of packets.

Next, Figure 6(b) shows us goodput (bit per second)
statistic results under TCP Reno according to four different
buffer sizes. These graphs use box-and-whisker plot that can
effectively depict groups of numerical data through their
quartiles. For instance, the center red line of box represents
the median goodput value; the width of box shows the spread
degree of goodput statistic data; for example, bigger box and

longer whisker mean that statistic data oscillate so much or
are unstable. Regardless of different buffer size, under TCP
Reno, the median of goodput is nearly the same, around
8 x 10* (bps). The CPC scheme, however, achieves the best
stability performance compared to the others because the
width of CPC boxes is smallest.

5.3.2. Under Cubic Real-World Stack. Cubic is a congestion
control protocol for TCP and the current default TCP
algorithm in the Linux kernel [30]. It replaces the default

Mathematical Problems in Engineering

1

~ 600 . . 3
v/
Q
8. 400 E @ 25 1
< e
N A Ao, A o DNy e Wt B P e s At st At N Pt b o = d
< 200 E ~ 1 b
=3
0)
=
O 0 O 1 1
0 1000 2000 3000 0 1000 2000 3000
Simulation time (s) Simulation time (s)
—— Drop Tail — CPC —— Drop Tail — CPC
--- RED --- RED
(a) Round-trip Time
50 (packets) 100 (packets)
12000 12000 R
: |
! 1
1
10000 1 i 10000 1 i
1
= ! 2 8000 ! E
£ 8000 i 1 & -
: - :
= < 6000 .
2 g
& 6000 4 . S
4000 + 1
4000 - -+
+ 2000 E
Tail RED CPC Tail RED CPC
300 (packets) 500 (packets)
12000 3 12000 -
| |
1 1
10000 ' . 10000 ! _
1 1
2 8000 ! {1 = s000 ! 1
§ R — 3 R —
=1 5
< 6000 . 5 6000 .
g 8
©) &)
4000 1 4000 b
2000 4 2000 E

Tail CPC

Tail RED CPC

(b) Goodputs

FIGURE 8: TCP FreeBSD + Drop Tail/RED/CPC.

TCP congestion control algorithm described above with a
different algorithm based on a cubic function of the time
since the last congestion event. Instead of adjusting the
congestion window as a function of previous values as each
packet is acknowledged, the Cubic algorithm recomputes
the congestion window size at each step using the cubic
function calibrated. This results in the congestion window
responding quickly to changes in available bandwidth. The
TCP Cubic is a less aggressive and more systematic derivative

of binary increase congestion (BIC). We exploit NSC module
to incorporate real-world TCP/IP network stacks into our
simulation model. NSC owns TCP Cubic (version 2.6.26)
stack which allows us to test our CPC queuing scheme
performance.

In Figure 7(a), we can see again that CPC scheme seems
to achieve the best performance, keeping lower queue size
and RTT only 130 ms, which is acceptable for delay-sensitive
traffic. However, the RTT gaps between three schemes are not

12

so much because of the aggression property of TCP Cubic.
While RED shows large variability of RTT, the others keep
RTT much more stable.

Goodput performance in Cubic also reveals TCP Cubic’s
aggression. When buffers are at small values (50 and 100
packets), three boxes” widths are nearly similar. That means
that CPC can achieve the same goodput as the others if
we use small buffers. Moreover, increasing the buffer size
to 300 and 500 packets makes CPC’s goodput more stable,
with the smaller box width. These figures demonstrate that
CPC can mitigate the bufferbloat—big buffers problem pretty
well.

5.3.3. Under FreeBSD Real-World Stack. Finally, we investi-
gate one more popular TCP stack. FreeBSD is a free Unix-
like operating system, historically standing for “Berkeley
Unix.” It was chosen as a BSD-derived TCP/IP stack that
is widely used and has had much development. There are
several applications that are directly based on FreeBSD, an
example being the famous instant messenger WhatsApp.
Much of FreeBSD became an integral part of other operating
systems such as Apple’s OS X. The integrated NSC module
for OMNeT++ also incorporates TCP FreeBSD real-world
stack so that we can turn it on for demonstrating CPC’s
performance under FreeBSD. Figure 8(a) presents queue size
and RTT results for three disciplines. We can see that our
proposal CPC achieves a better performance, keeping lower
queue size and RTT (FreeBSD) around 150 ms.

So far, the proposed CPC scheme achieved good goodput
performance under TCP Reno and Cubic stacks. We, how-
ever, find another interesting fact of CPC when performing
under TCP FreeBSD stack. In Figure 8(b), we can conclude
two things. Firstly, the width of CPC goodput’s boxes in
four buffer cases is almost bigger than the other schemes.
It means the CPC stability under FreeBSD stack’s environ-
ment is not good. Secondly, our CPC scheme, however,
still achieves more goodput than others. Specifically, in four
cases, the system’s goodput can reach 10 (kbps) using CPC
while it can reach only 4 (kbps) and 2 (kbps) under either
small or large buffer using Drop Tail or RED schemes,
respectively.

6. Conclusions

Bufferbloat problem, with overfilling a queue at the low-
speed side, leads to long end-to-end latency because of the
persistent long queuing delay. In this paper, we proposed
a control scheme called cascade probability control (CPC)
as an alternative way to tackle this issue and reduce queu-
ing delay. Our scheme introduces two-loop control model
which consists of queue length and window size control
to keep round-trip time value around an expected value.
In comparison to current deployed schemes, our scheme’s
advantages are to maintain stability and noise reduction
while the queuing delay can still be ensured under several
different TCP versions. Further works would extend CPC
on bufferbloat and queuing delay control in the cellular
communications.

Mathematical Problems in Engineering

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

This research was supported by the MSIP (Ministry of
Science, ICT, and Future Planning), Korea, under the Global
IT Talent support program (R0618-15-1001) supervised by
the IITP (Institute for Information and Communications
Technology Promotion).

References

[1] J. B. Nagle, “On packet switches with infinite storage,” IEEE
Transactions on Communications, vol. 35, no. 4, pp. 435-438,
1987.

[2] J. Gettys, “Bufferbloat: dark buffers in the Internet] IEEE
Internet Computing, vol. 15, no. 3, pp. 95-96, 2011.

[3] T. Hoiland-Jorgensen, Battling bufferbloat: an experimental
comparison of four approaches to queue management in linux
[Master module project], Roskilde University, 2012.

[4] M. Hassan and R. Jain, High Performance TCP/IP Networking:
Concepts, Issues, and Solutions, Prentice-Hall, 2003.

[5] S.Floydand V. Jacobson, “Random early detection gateways for
congestion avoidance,” IEEE/ACM Transactions on Networking,
vol. 1, no. 4, pp. 397-413, 1993.

[6] J. Sun, M. Zukerman, and M. Palaniswami, “Stabilizing RED
using a fuzzy controller;” in Proceedings of the IEEE International
Conference on Communications (ICC °07), pp. 266-271, June
2007.

[7] S. Floyd, R. Gummadi, and S. Shenker, “Adaptive red: an
algorithm for increasing the robustness of red’s active queue
management,” Tech. Rep., 2001.

[8] M. May, J. Bolot, C. Diot, and B. Lyles, “Reasons not to deploy
red,” in Proceedings of the 7th International Workshop on Quality
of Service (IWQoS *99), pp. 260-262, 1999.

[9] J. Hwang and S.-S. Byun, “A resilient buffer allocation scheme
in active queue management: a stochastic cooperative game
theoretic approach,” International Journal of Communication
Systems, vol. 28, no. 6, pp. 1080-1099, 2015.

[10] M. Khosroshahy, “UARA in edge routers: an effective approach
to user fairness and traffic shaping,” International Journal of
Communication Systems, vol. 25, no. 2, pp. 169-184, 2012.

[11] K. Nichols and V. Jacobson, “Controlling queue delay,” Queue,
vol. 10, no. 5, p. 20, 2012.

[12] C. V. Hollot, V. Misra, D. Towsley, and W.-B. Gong, “A control
theoretic analysis of RED,” in Proceedings of the 20th Annual
Joint Conference of the IEEE Computer and Communications
Societies (INFOCOM °01), vol. 3, pp. 1510-1519, IEEE, Anchor-
age, Alaska, USA, April 2001.

[13] R. Zhu, H. Teng, and J. Fu, “A predictive PID controller for
AQM router supporting TCP with ECN,” in Proceedings of
the 2004 Joint Conference of the 10th Asia-Pacific Conference
on Communications and the 5th International Symposium on
Multi-Dimensional Mobile Communications, vol. 1, pp. 356-360,
August 2004.

[14] G. Kahe, A. H. Jahangir, and B. Ebrahimi, “A compensated
PID active queue management controller using an improved

Mathematical Problems in Engineering

(16]

(17]

(18]

(19]

(20]

[21

(22]

(24

(25]

(26]

(27]

(28]

[29]

(30]

queue dynamic model,” International Journal of Communication
Systems, vol. 27, no. 12, pp. 4543-4563, 2014.

H.-L. To, G.-O. Yoon, J.-H. Nam, G. Solongo, and W.-].
Hwang, “Feedback burst loss ratio control for link performance
improvement in optical burst switching networks,” Journal of
Korea Multimedia Society, vol. 16, no. 9, pp. 1067-1076, 2013.

K. B. Kim, “Design of feedback controls supporting TCP based
on the state-space approach,” IEEE Transactions on Automatic
Control, vol. 51, no. 7, pp. 1086-1099, 2006.

H.-L. To, S.-H. Lee, and W.-]. Hwang, “A burst loss probability
model with impatient customer feature for optical burst switch-
ing networks,” International Journal of Communication Systems,
vol. 28, no. 11, pp. 1729-1740, 2015.

R. Adams, “Active queue management: a survey, IEEE Com-
munications Surveys and Tutorials, vol. 15, no. 3, pp. 1425-1476,
2013.

J. Aweya, M. Ouellette, and D. Y. Montuno, “DRED: a random
early detection algorithm for TCP/IP networks,” International
Journal of Communication Systems, vol. 15, no. 4, pp. 287-307,
2002.

E Ren, C. Lin, and B. Wei, “Design a robust controller for active
queue management in large delay networks,” in Proceedings of
the 9th International Symposium on Computers and Communi-
cations (ISCC '04), vol. 2, pp. 748-754, June 2004.

S. Xiang, B. Xu, S. Wu, and D. Peng, “Gain adaptive smith
predictor for congestion control in robust active queue man-
agement,” in Proceedings of the 6th World Congress on Intelligent
Control and Automation (WCICA ’06), vol. 1, pp. 4489-4493,
June 2006.

D.-M. Chiu and R. Jain, “Analysis of the increase and decrease
algorithms for congestion avoidance in computer networks,”
Computer Networks and ISDN Systems, vol. 17, no. 1, pp. 1-14,
1989.

G. Patil and G. Raina, “Some guidelines for queue manage-
ment in high-speed networks,” in Proceedings of the 3rd Asian
Himalayas International Conference on Internet (AH-ICI ’12),
pp- 1-6, IEEE, Kathmandu, Nepal, November 2012.

E Du and J. Sun, “An agm scheme based on adaptive weight
cascaded pid controller;” in Proceedings of the 10th World
Congress on Intelligent Control and Automation (WCICA ’12),
pp. 2849-2854, July 2012.

N. Kuhn, P. Natarajan, D. Ros, and N. Khademi, AQM Charac-
terization Guidelines, IETF89, 2014.

A. Varga, “Using the OMNeT++ discrete event simulation
system in education,” IEEE Transactions on Education, vol. 42,
no. 4, p. 11, 1999.

D. Taht, Realtime Response Under Load (RRUL) Test, draft 07,
2012, https://github.com/dtaht/deBloat/blob/master/spec/rrule
.doc.

C. Hornig, “A standard for the transmission of IP datagrams
over ethernet networks,” Network Working Group RFC894,
1984.

D. J. Leith, L. L. H. Andrew, T. Quetchenbach, R. N. Shorten,
and K. Lavi, “Experimental evaluation of delay/loss-based
TCP congestion control algorithms,” in Proceedings of the 6th
International Workshop on Protocols for Fast Long-Distance
Networks (PFLDnet *08), University of Manchester, Manchester,
UK, March 2008.

S. Ha, I. Rhee, and L. Xu, “Cubic: a new tcp-friendly high-speed
tcp variant ACM SIGOPS Operating Systems Review, vol. 42,
no. 5, pp. 64-74, 2008.

13

Advances in Advances in Journal of Journal of
Operations Research lied Mathematics ability and Statistics

il
PR
S Rt
£ 2 §

\ ‘

The Scientific
\{\(orld Journal

International Journal of
Differential Equations

Hindawi

Submit your manuscripts at
http://www.hindawi.com

International Journal of

Combinatorics

Advances in

Mathematical Physics

%

Journal of : Mathematical Problems Abstract and Discrete Dynamics in
Mathematics in Engineering Applied Analysis Nature and Society

Journal of

Complex Analysis

International
Journal of
Mathematics and
Mathematical
Sciences

Journal of
'

al of Journal of

Function Spaces Stochastic Analysis Optimization

Journal of International Jo

