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A procedure for the guaranteed cost control design of delayed bilateral teleoperation systems with nonlinear external forces is
proposed. The assumption that the external forces are nonlinear functions of velocities and/or positions of local devices and
that one part of these forces satisfies sector condition has been made. A stability criterion is formulated firstly and then the
optimal guaranteed cost controller is obtained by solving the equivalent convex optimization problem in the form of linear matrix
inequalities (LMIs). The controller preserves closed-loop stability regardless of the delay length. The behavior of the resulting
teleoperation system is illustrated in simulations.

1. Introduction

Teleoperation systems enable humans to extend their capacity
to manipulate remote interfaces with better safety, at less
cost, and even with better accuracy. Their rich applications
vary from nuclear operations and space and underwater
exploration to medical surgery; see [1, 2] and references
therein. In such an application, a human operator uses an
interface referred to as a “master device” to conduct tasks
by remotely controlling a “slave device” at the distant or
hazardous environment. The general bilateral system setup
is depicted in Figure 1. The main objectives of the control
design for bilateral teleoperation systems are position coor-
dination between the master and the slave and accurate
haptic display of environment forces to the human operator.
However, due to the very nature of teleoperation, time
delays associated with communication between the local
and the remote sites are inevitable. Handling the delays is
especially problematic in the case of bilateral teleoperation,
where the measurements are communicated in both direc-
tions to allow haptic feedback. The commonly proposed
approaches to deal with bilateral teleoperation with time
delays in the communication channel are mainly based on
scattering theory formalism [3] or wave variable concept [4],
which are called passivity-based control approaches. These

controllers render the communication link passive and thus
guarantee stable bilateral teleoperation. More recent research
focused on improving tracking performance for constant and
time varying delays and increasing the transparency of the
teleoperator system and also the extensions to task space and
network system control. For example, constant delays in the
communication channel were considered in [2, 5], while [6–
8] dealed with the communication channel with time varying
time delays. Data loss and packet-switched network were
considered in [9], where a passivity-based framework was
proposed, and extension to the case where communication
channel is a packet-switched network was also provided.
Reference [10] used a modified Smith predictor, a kalman
filter, and an energy regulator to control a teleoperator over
Internet-based communication. Both quantization and time
delay issues for teleoperation systems over networks were
studied in [11]. Control design for bilateral teleoperation
systems in task space was considered in [12, 13], where
the task space position tracking was guaranteed. Another
research related to task space control design of teleoperation
systems can be found in [14, 15]. In addition to the above
mentioned results, passivity-based controllers relying on
damping injection [5, 16], passive output synchronization [16,
17], and adaptive control [18] were also developed, recently.
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Figure 1: Bilateral teleoperation setup.

Several other approaches were proposed to deal with delays
and are reviewed in [19].

Passivity-based controllers have the advantage of being
able to guarantee stability independent of the user and
environment dynamics; however, when controlling a real
teleoperator, it is desirable to design a controller which not
only guarantees the stability of the closed-loop system but
also guarantees adequate level of performance. In this work a
guaranteed cost control design is proposed for teleoperation
systems with delays to guarantee a specific level of perfor-
mance. We suppose that the external forces are nonlinear,
while one part of them satisfies sector condition. Note that
only one part of these forces satisfies a sector condition with
respect to the output, which means that other parts may not
be passive. Thus passivity is actually not required in our case.
The position/velocity tracking performance is optimized by
using the information of sector bounds. Constant and sym-
metric communication time delays are assumed to simplify
the analysis; extensions for time varying delays are similar
and easy to be realized.

The rest of the paper is organized as follows. In Section 2,
the teleoperation model is generalized and then the problem
formulation is given in Section 3. The controller design and
its main results are given in Section 4, following which the
simulation result is given to show the effectiveness of the
proposed method in Section 5. Finally, the conclusion is
included in Section 6.

The notation used throughout the paper is standard. R
denotes the set of 𝑛-dimensional real vectors. For a real
symmetric matrix P, the notation of P > 0 (P < 0) is
used to denote positive (negative) definiteness. I is used to
denote the identity matrix of appropriate dimensions, 0 is
the zero matrix of appropriate dimension, and ∗ is used
to represent a block matrix which is readily referred to by
symmetry. For a matrix S, S𝑇 denotes its transpose. For any
function f : [0,∞) → R𝑛, the L

∞
-norm is defined as

‖f‖
∞

= sup
𝑡∈[0,∞)

|f(𝑡)| and theL
2
-norm is defined as ‖f‖

2
=

[∫

∞

0
|f(𝑡)|2𝑑𝑡]1/2. L

2
and L

∞
spaces are defined as the sets

{f : [0,∞) → R𝑛 : ‖f‖
2
< ∞} and {f : [0,∞) → R𝑛 :

‖f‖
∞

< ∞}, respectively.

2. Preliminaries: Bilateral System Modeling

Consider a simple teleoperation system as follows:

m
𝑚
q̈
𝑚
+ b
𝑚
q̇
𝑚
+ k
𝑚
q
𝑚
= J𝑇
𝑚
(q
𝑚
) f
ℎ
+ u
𝑚
,

m
𝑠
q̈
𝑠
+ b
𝑠
q̇
𝑠
+ k
𝑠
q
𝑚
= J𝑇
𝑠
(q
𝑠
) f
𝑒
+ u
𝑠
,

(1)

where q
𝑖
, q̇
𝑖
, q̈
𝑖
∈ R𝑛 are the joint positions, velocities, and

accelerations of the master and slave devices with 𝑖 = 𝑚 or 𝑠

representingmaster or slave robotmanipulators, respectively.
Similarly, m

𝑖
, b
𝑖
, k
𝑖
are the effective mass, damping, and

spring coefficients of the master and slave devices. External
forces applied to the devices by the human operator and
the environment are represented by f

ℎ
, f
𝑒
, respectively, while

J
𝑚
(q
𝑚
) and J

𝑠
(q
𝑠
) are the Jacobian matrices of the master and

the slave, respectively. u
𝑚
, u
𝑠
stand for the control signals.

Defining 𝜉
𝑖
= [𝜉
𝑇

𝑖1
, 𝜉
𝑇

𝑖2
]
𝑇

:= [q𝑇
𝑖
, q̇𝑇
𝑖
]
𝑇, y
𝑖
= q
𝑖
for each

𝑖 = 𝑚, 𝑠, and w
𝑚

= J𝑇
𝑚
(q
𝑚
)f
ℎ
,w
𝑠
= J𝑇
𝑠
(q
𝑠
)f
𝑒
, a minimal state-

space realization of system (1) is reformulated as

̇𝜉
𝑖 (
𝑡) = A

𝑖
𝜉
𝑖 (
𝑡) + B

𝑖𝑤
w
𝑖 (
𝑡) + B

𝑖𝑢
u
𝑖 (
𝑡) ,

y
𝑖
= C
𝑖𝑦
𝜉
𝑖 (
𝑡) ,

(2)

where

A
𝑖
= [

0 I
−m−1
𝑖
k
𝑖
−m−1
𝑖
b
𝑖

] ,

B
𝑖𝑤

= [

0
m−1
𝑖

] ,

B
𝑖𝑢

= [

0
m−1
𝑖

] ,

C
𝑖𝑦
= [I 0] .

(3)

3. Problem Formulation

Theproblem formulation based on the following assumptions
is considered:

(A1) The forward/backward time delays in the communi-
cation channels are the same and are denoted by 𝜏.

(A2) The positions and velocities are available formeasure-
ment.

Remark 1. Assumptions A1 and A2 are very general in the
control of teleoperation systems. Assumption A1 is for the
simplification of the analysis, while the results in this paper
can be easily extended to the case with asymmetric time
varying delays.

The states and the input of the teleoperation system are
defined as

x (𝑡) = [𝜉
𝑇

𝑚
(𝑡) , 𝜉
𝑇

𝑠
(𝑡)]

𝑇

,

u (𝑡) = [u𝑇
𝑚
(𝑡) , u𝑇
𝑠
(𝑡)]

𝑇

,

(4)



Mathematical Problems in Engineering 3

and the output is defined as

z = [q𝑇
𝑠
(𝑡 − 𝜏) − q𝑇

𝑚
(𝑡 − 𝜏) , q̇𝑇

𝑠
(𝑡 − 𝜏) − q̇𝑇

𝑚
(𝑡 − 𝜏)]

𝑇

, (5)

and the evolution of the states is governed by

ẋ (𝑡) = Ax (𝑡) + A
1
x (𝑡 − 𝜏) + Bu (𝑡) +DW (𝑡) , (6)

z (𝑡) = H
𝑑
x (𝑡 − 𝜏) , (7)

x (𝑡) = x
0 (

𝑡) , ∀𝑡 ∈ [−𝜏, 0] , (8)

withW(𝑡) = [w𝑇
𝑚
(𝑡),w𝑇
𝑠
(𝑡)]
𝑇, where

A = [

A
𝑚

0
0 A
𝑠

] ,

B = [

B
𝑚𝑢

0
0 B

𝑠𝑢

] ,

A
1
= 0,

D = [

B
𝑚𝑤

0
0 B

𝑠𝑤

] ,

H
𝑑
= [

−I 0 I 0
0 −I 0 I

] .

(9)

Note that A
1

= 0 in dynamics (6) is included here for the
convenience of stability analysis, and the details will be found
in the following sections.

The following assumption is furthermore given:

(A3) W(𝑡) can be modeled as

W (𝑡) = F⋆ (𝑡) + F (𝑡, z (𝑡)) , (10)

where F⋆(𝑡) is continuous uniformly bounded func-
tion satisfying ∫

∞

0
‖F⋆(𝑠)‖2

2
𝑑𝑠 ⩽ Λ and F(𝑡, z(𝑡)) is a

nonlinear function of z(𝑡) and it is piecewise contin-
uous in 𝑡, globally Lipschitz in z(𝑡) with F(𝑡, 0) = 0,
while satisfying the following sector condition (a) or
(b) for ∀𝑡 ⩾ 0. Consider

(a)

F𝑇 (𝑡, z (𝑡)) [F (𝑡, z (𝑡)) − Kz (𝑡)] ⩽ 0, (11)
(b)

(F (𝑡, z (𝑡)) − K
1
z (𝑡))𝑇 (F (𝑡, z (𝑡)) − K

2
z (𝑡)) ⩽ 0, (12)

where K,K
1
,K
2
are constant real matrices of appro-

priate dimensions.

Remark 2. Equations (11) and (12) are special cases of the
prevailing passivity-type assumption. The sector bounds K

1

and K
2
are introduced to provide bounding information of

the nonlinearities in the external forces, which also make
the following optimization steps possible. Note that external
forces W(𝑡) do not satisfy passivity assumption due to the
time varying F⋆(𝑡). However, when F⋆(𝑡) ≡ 0, Assumption
A3 reduces to the prevailing passivity-type assumption.

The state feedback controllers for the teleoperation sys-
tem (1) or (6)–(8) are proposed as follows:

u
𝑚
= L
11
[q𝑇
𝑚
(𝑡 − 𝜏) , q̇𝑇

𝑚
(𝑡 − 𝜏)]

𝑇

+ L
12
[q𝑇
𝑠
(𝑡 − 𝜏) , q̇𝑇

𝑠
(𝑡 − 𝜏)]

𝑇

,

u
𝑠
= L
21
[q𝑇
𝑚
(𝑡 − 𝜏) , q̇𝑇

𝑚
(𝑡 − 𝜏)]

𝑇

+ L
22
[q𝑇
𝑠
(𝑡 − 𝜏) , q̇𝑇

𝑠
(𝑡 − 𝜏)]

𝑇

,

(13)

where L
11
, L
12
, L
21
, L
22
arematrices to be designed. Hence the

control law can be rewritten as

u (𝑡) = Lx (𝑡 − 𝜏) , (14)

where L = [
L
11

L
12

L
21

L
22

].

Remark 3. Note that pretended time delays are intentionally
introduced in system output (5) and controllers (13) and
(14); by doing this, it avoids the case that the resulting
setup follows into a group of controller design problems
with intrinsically quadratically invariant constraints on the
controller parameters; see [20] for more discussions. The
basic idea is to design the guaranteed cost controller for
system (6)–(8) under the worst case; that is, there are delays
both in the local and in the remote variables; then better
performance can be achieved when local variables actually
have no time delays. For a practical teleoperation system
of which local state variables do not have time delays, the
stability and performance will be guaranteed as well. In the
simulation, the time delays at the local sides were removed to
show the stability.

To introduce the main objective of this paper, a cost
function associated with system (6)–(8) is introduced:

𝐽 = ∫

∞

0

[z𝑇 (𝜃)Qz (𝜃) + u𝑇 (𝜃)Ru (𝜃)] 𝑑𝜃, (15)

whereQ,R are given positive-definite symmetric matrices.
Hence, the main objective of this paper is to design a

guaranteed cost control law (14) for the teleoperation system
(1) with the human force and environmental force satisfying
Assumption A3 such that the closed-loop system is stable
with an associated cost 𝐽 less than a guaranteed cost 𝐽⋆. The
problem setup is shown in Figure 2.

4. Controller Design

The case when the nonlinear function F(𝑡, z(𝑡)) satisfies (11)
is firstly considered and the following result is obtained. After
this, the result will be extended to the general case in which
(12) is satisfied.

Theorem 4. For the teleoperation system (6)–(8) with
external forces satisfying Assumption A3 with the simple sector
condition (11), the guaranteed cost controller (14) exists if there
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Figure 2: Problem formulation.

exist symmetric positive-definite matrices P, S ∈ R4𝑛×4𝑛 and
scalars 𝜀 > 0, 𝜌 > 0 such that

Ξ = (

PA + A𝑇P + S +

PD (PD)
𝑇

𝜌

PBL + PA
1

PD

∗ −S + L𝑇RL +H𝑇
𝑑
QH
𝑑

𝜀H𝑇
𝑑
K𝑇

∗ ∗ −2𝜀𝐼

) < 0. (16)

Proof. Choose a Lyapunov-Krasovskii functional candidate
as

𝑉 (𝑡) = x𝑇 (𝑡)Px (𝑡) + ∫

𝑡

𝑡−𝜏

x𝑇 (𝜃) Sx (𝜃) 𝑑𝜃, (17)

where P > 0, S > 0. Taking derivative of 𝑉(𝑡) with respect to
𝑡 along the trajectory of system (6)–(8) yields

�̇� (𝑡) = ẋ𝑇 (𝑡)Px (𝑡) + x𝑇 (𝑡)Pẋ (𝑡) + x𝑇 (𝑡) Sx (𝑡)

− x𝑇 (𝑡 − 𝜏) Sx (𝑡 − 𝜏)

= x𝑇 (𝑡) (PA + A𝑇P + S) x (𝑡)

+ 2x𝑇 (𝑡) (PA1 + PBL) x (𝑡 − 𝜏)

− x𝑇 (𝑡 − 𝜏) Sx (𝑡 − 𝜏) + 2x𝑇 (𝑡)PDF⋆ (𝑡)

+ 2x𝑇 (𝑡)PDF (𝑡, z (𝑡)) .

(18)

Denote 𝜂(𝑡) = [x𝑇(𝑡), x𝑇(𝑡 − 𝜏), F𝑇(𝑡, z(𝑡))]𝑇, and one has

�̇� (𝑡)

= 𝜂
𝑇
(𝑡)

[

[

[

[

A𝑇P + PA + S PA
1
+ PBL PD

∗ −S 0
∗ ∗ 0

]

]

]

]

𝜂 (𝑡)

+ 2x𝑇 (𝑡)PDF⋆ (𝑡) .

(19)

From (11), one has

F𝑇 (𝑡, z (𝑡)) (F (𝑡, z (𝑡)) − KH
𝑑
x (𝑡 − 𝜏)) ⩽ 0. (20)

Employ the inequality obtained by completion of squares:

2x𝑇 (𝑡)PDF⋆ (𝑡) ⩽ x𝑇 (𝑡) (PD) (PD)
𝑇 x (𝑡)

𝜌

+ 𝜌F⋆ (𝑡)𝑇 F⋆ (𝑡) ,

(21)

where 𝜌 > 0, and then from (19), (20), and (21) one obtains
that

�̇� (𝑡) ⩽ 𝜂
𝑇
(𝑡)Ξ𝜂 (𝑡) − z𝑇 (𝑡)Qz (𝑡) − u𝑇 (𝑡)Ru (𝑡)

+ 2𝜀F𝑇 (𝑡, z (𝑡)) F (𝑡, z (𝑡))

− 2𝜀F𝑇 (𝑡, z (𝑡))KH𝑑x (𝑡 − 𝜏)

+ 𝜌F⋆ (𝑡)𝑇 F⋆ (𝑡) ;

(22)

hence (11) implies that

�̇� (𝑡) ⩽ 𝜂
𝑇
(𝑡)Ξ𝜂 (𝑡) − z𝑇 (𝑡)Qz (𝑡) − u𝑇 (𝑡)Ru (𝑡)

+ 𝜌F⋆ (𝑡)𝑇 F⋆ (𝑡) .
(23)
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By integrating both sides of inequality (23) from 0 to 𝑡, one
has

𝑉 (𝑡) − 𝑉 (0)

⩽ 𝜆max {Ξ} ∫
𝑡

0

𝜂
𝑇
(𝑠) 𝜂 (𝑠) 𝑑𝑠

− ∫

𝑡

0

(z𝑇 (𝑠)Qz (𝑠) + u𝑇 (𝑠)Ru (𝑠)) 𝑑𝑠

+ ∫

𝑡

0

F⋆ (𝑠)𝑇 F⋆ (𝑠) 𝑑𝑠

< 𝜆max {Ξ}
󵄩
󵄩
󵄩
󵄩
𝜂
󵄩
󵄩
󵄩
󵄩

2

2

− ∫

𝑡

0

(z𝑇 (𝑠)Qz (𝑠) + u𝑇 (𝑠)Ru (𝑠)) 𝑑𝑠 + 𝜌Λ

< 𝜆max {Ξ}
󵄩
󵄩
󵄩
󵄩
𝜂
󵄩
󵄩
󵄩
󵄩

2

2
+ 𝜌Λ.

(24)

Now, in view of (16) and (24), one can conclude that �̇�(𝑡) is
negative if ‖𝜂‖

2
> √2𝜌Λ/ − 𝜆max{Ξ}, and thus this implies

that 𝑉(𝑡) ∈ L
∞
, 𝜂(𝑡) ∈ L

2
, and hence x(𝑡) ∈ L

2
∩ L
∞
,

x(𝑡 − 𝜏) ∈ L
2
∩L
∞
. Furthermore, one could easily get that

𝐽 ⩽ 𝑉 (0) + 𝜌Λ

= x𝑇 (0)Px (0) + ∫

0

−𝜏

x𝑇 (𝜃) Sx (𝜃) 𝑑𝜃 + 𝜌Λ.

(25)

This completes the proof.

Based on the stability criterion above, the original prob-
lem of designing a guaranteed cost controller (14) can be
transformed to a convex optimization problem, which is
presented below.

Theorem 5. For the teleoperation system (6)–(8) with exter-
nal forces satisfying Assumption A3 with the simple sector
condition (11), the control law (14) is an optimal memoryless
guaranteed cost control law which ensures the minimization of
the guaranteed cost (15) if the following convex optimization
problem,

min
𝜒
𝑖
(𝑖=1,2,3,4),𝛼,M

𝛼 + tr (M) , (26)

subject to

(1)

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

A𝜒
1
+ 𝜒
1
A𝑇 A

1
𝜒
2
+ B𝜒
4

𝜒
3
D 0 𝜒

1
0 D

∗ −𝜒
2
𝜒
2
H𝑇
𝑑
K𝑇 𝜒𝑇

4
0 𝜒
2
H𝑇
𝑑

0

∗ ∗ −2𝜒
3
I 0 0 0 0

∗ ∗ ∗ −R−1 0 0 0
∗ ∗ ∗ ∗ −𝜒

2
0 0

∗ ∗ ∗ ∗ ∗ −Q−1 0
∗ ∗ ∗ ∗ ∗ ∗ −𝜌I

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0, (27)

(2) the matrices 𝜒
1
,𝜒
2
which are symmetric, and

𝜒
1
> 0,

𝜒
2
> 0,

𝜒
3
> 0,

𝜌 > 0,

(28)

(3)

[

𝛼 x𝑇
0
(0)

x
0 (
0) 𝜒

1

] > 0, (29)

(4)

[

M N𝑇

N 𝜒
2

] > 0 (30)

has a solution 𝜒
1
,𝜒
2
, 𝜒
3
,𝜒
4
, 𝜌. Here, tr(⋅) denotes the trace

of the matrix ⋅ and ∫

0

−𝜏
x
0
(𝜃)x𝑇
0
(𝜃) = NN𝑇. In addition, the

controller gains in (14) are given as L = 𝜒
4
𝜒−1
2
.

Proof. It follows from the Schur complement that (16) is
equivalent to

[

[

[

[

[

[

[

[

[

[

[

[

[

[

PA + A𝑇P PA
1
+ PBL PD 0 I 0 PD

∗ −S 𝜀H𝑇
𝑑
K𝑇 L𝑇 0 H𝑇

𝑑
0

∗ ∗ −2𝜀I 0 0 0 0
∗ ∗ ∗ −R−1 0 0 0
∗ ∗ ∗ ∗ −S−1 0 0
∗ ∗ ∗ ∗ ∗ −Q−1 0
∗ ∗ ∗ ∗ ∗ ∗ −𝜌I

]

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0.

(31)
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Pre- and postmultiplying both sides of (31) by

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

P−1 0 0 0 0 0 0
∗ S−1 0 0 0 0 0
∗ ∗ 𝜀

−1I 0 0 0 0
∗ ∗ ∗ I 0 0 0
∗ ∗ ∗ ∗ I 0 0
∗ ∗ ∗ ∗ ∗ I 0
∗ ∗ ∗ ∗ ∗ ∗ I

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

(32)

yield LMI (27), where 𝜒
1
= P−1,𝜒

2
= S−1, 𝜒

3
= 1/𝜀,𝜒

4
=

LS−1. By applying Theorem 3 in [21], convex optimization
problem (26) was obtained. It completes the proof.

For the nonlinearity F(𝑡, z(𝑡)) satisfying the more general
sector condition (12), by applying the idea known as loop
transformation [22], one can conclude that the absolute
stability of system (6)–(8) with the nonlinearity within the
sector [K

1
,K
2
] is equivalent to that of the following system:

ẋ = Ax +DK
1
H
𝑑
x (𝑡 − 𝜏) + Bu +D̃W,

z = H
𝑑
x (𝑡 − 𝜏) ,

̃W =
̃F (𝑡, z (𝑡)) + F⋆ (𝑡) ,

x (𝑡) = x
0 (
𝑡) , ∀𝑡 ∈ [−𝜏, 0] ,

(33)

where ̃F(𝑡, z(𝑡)) = F(𝑡, z(𝑡)) − K
1
z(𝑡) satisfies the sector

condition

F̃𝑇 (𝑡, z (𝑡)) [F̃ (𝑡, z (𝑡)) − (K
2
− K
1
) z (𝑡)] ⩽ 0 (34)

for ∀𝑡 ⩾ 0. Hence by Theorem 4 the following result is
obtained.

Proposition 6. For the teleoperation system (6)–(8) with
external forces satisfying Assumption A3 with the sector condi-
tion (12), the guaranteed cost controller (14) exists if there exist
symmetric 𝜒

1
> 0,𝜒

2
> 0, 𝜒

3
> 0 such that

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Ω
11
Ω
12
Ω
13

0 𝜒
1

0 D

∗ −𝜒
2
Ω
23
𝜒𝑇
4

0 𝜒
2
H𝑇
𝑑

0
∗ ∗ −2𝜒

3
I 0 0 0 0

∗ ∗ ∗ −R−1 0 0 0
∗ ∗ ∗ ∗ −𝜒

2
0 0

∗ ∗ ∗ ∗ ∗ −Q−1 0
∗ ∗ ∗ ∗ ∗ ∗ −𝜌I

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0, (35)

where

Ω
11

= A𝜒
1
+ 𝜒
1
A𝑇,

Ω
12

= DK
1
H
𝑑
𝜒
2
+ B𝜒
4
,

Ω
13

= 𝜒
3
D,

Ω
23

= 𝜒
2
H𝑇
𝑑
(K
2
− K
1
)
𝑇
.

(36)

Now, followingTheorem 5, the guaranteed cost controller
(14) for system (6)–(8) with nonlinearities (12) can be
obtained by solving the optimization problem (26) with
constraints (28), (29), (30), and (35).

Remark 7. The main results in this paper provide a delay-
independent stability criterion for the nonlinear system (6)–
(8). If the Lyapunov-Krasovskii functional is chosen as �̃� =

𝑉 + ∫

𝑡

𝑡−𝜏
(𝜏 − 𝑡 + 𝜃)ẋ𝑇(𝜃)(𝜏S

1
)ẋ(𝜃)𝑑𝜃, where S

1
> 0 and 𝑉 is

defined in (17), a delay-dependent stability criterion for the
system can be obtained.

5. Simulations and Results

Consider a master-slave teleoperation system (1) with the
effective mass 𝑚

𝑚
= 𝑚
𝑠
= 3Kg, the damping 𝑏

𝑚
= 𝑏
𝑠
=

80Ns/m, and the spring coefficients 𝑘
𝑚
= 𝑘
𝑠
= 45N/m.

Hence it can be described by (6)–(8) with

A =

[

[

[

[

[

[

0 1.0000 0 0

−15.0000 −26.6667 0 0

0 0 0 1.0000

0 0 −15.0000 −26.6667

]

]

]

]

]

]

,

A
1
= 0,

B =

[

[

[

[

[

[

0 0

0.3333 0

0 0

0 0.3333

]

]

]

]

]

]

,

D =

[

[

[

[

[

[

0 0

0.3333 0

0 0

0 0.3333

]

]

]

]

]

]

,

H
𝑑
= [

−1 0 1 0

1 0 −1 0

] ,

(37)

and the initial states are chosen as

𝑞
𝑚 (

𝑡) = 𝑒
𝑡+0.2

,

𝑞
𝑠 (
𝑡) = 𝑒

2(𝑡+0.2)
,

̇𝑞
𝑚 (

𝑡) = 𝑒
𝑡+0.2

,

̇𝑞
𝑠 (
𝑡) = 2𝑒

2(𝑡+0.2)
,

(38)

∀𝑡 ∈ [−0.2, 0] with the time delay 𝜏 = 0.2 s. Here the master
and the slave with different initial positions and velocities are
chosen to see the tracking performance.
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Figure 3: External force 𝑘
0
(𝑡).

To access the teleoperation system behavior, the human
force 𝑤

𝑚
and the environment force 𝑤

𝑠
are firstly chosen to

be linear; that is,

𝑤
𝑚 (

𝑡) = 𝑎
𝑚
𝑘
0 (

𝑡) + 𝑘
ℎ
𝑝

(𝑞
𝑠 (
𝑡 − 𝜏) − 𝑞

𝑚 (
𝑡 − 𝜏))

+ 𝑘
ℎV
( ̇𝑞
𝑠 (
𝑡 − 𝜏) − ̇𝑞

𝑚 (
𝑡 − 𝜏)) ,

𝑤
𝑠 (
𝑡) = 𝑎

𝑠
𝑘
0 (

𝑡) + 𝑘
𝑒
𝑝

(𝑞
𝑠 (
𝑡 − 𝜏) − 𝑞

𝑚 (
𝑡 − 𝜏))

+ 𝑘
𝑒V
( ̇𝑞
𝑠 (
𝑡 − 𝜏) − ̇𝑞

𝑚 (
𝑡 − 𝜏)) ,

(39)

with 𝑘
0
(𝑡) as the external input which is chosen to be the

rectangle signal depicted in Figure 3, and 𝑎
𝑚

= 10, 𝑎
𝑠
= 5.

The coefficients are chosen as 𝑘
ℎ
𝑝

= 10, 𝑘
𝑒
𝑝

= 50, 𝑘
ℎV

= 5, and
𝑘
𝑒V
= 80. Hence, the nonlinearity satisfies (11) with

K = [

10 5

50 80

] . (40)

The cost function (15) is chosen with

Q = [

100 0

0 1

] ,

R = [

0.01 0

0 0.01

] .

(41)

By Theorem 5 and solving the corresponding optimiza-
tion problem by using YALMIP toolbox [23], the optimal
guaranteed cost control law with the solution

L = [

−9.9896 −18.7494 9.9896 18.7494

10.0104 18.7506 −10.0104 −18.7506

] (42)

is obtained.
Noting the structure of the control gains in (42), one can

rewrite (14) with parameter (42) as

𝑢
𝑚 (

𝑡) = 9.9896 (𝑞
𝑠 (
𝑡 − 𝜏) − 𝑞

𝑚 (
𝑡))

+ 18.7494 ( ̇𝑞
𝑠 (
𝑡 − 𝜏) − ̇𝑞

𝑚 (
𝑡)) ,

𝑢
𝑠 (
𝑡) = 10.0104 (𝑞

𝑚 (
𝑡 − 𝜏) − 𝑞

𝑠 (
𝑡))

+ 18.7506 ( ̇𝑞
𝑚 (

𝑡 − 𝜏) − ̇𝑞
𝑠 (
𝑡)) .

(43)

It can be seen that the optimal controllers are Proportional-
Derivative (PD) controllers. Note that the time delays in the
local variables are omitted since in the simulations there
is no time delay in the local variables. Applying controller
(43) to the described system, the simulation results shown
in Figures 4(a) and 4(b) are obtained. It can be seen that the
master and the slave response stably. The positions and the
velocities of the slave follow the master’s motion. Specifically,
the master and the slave move forward and backward with
the increase and decrease of the human force, respectively.
Let J(𝑡) = ∫

𝑡

0
[z𝑇(𝜃)Qz(𝜃) + u𝑇(𝜃)Ru(𝜃)]𝑑𝜃, the value of the

costJ(𝑡) can also be tracked in Figure 4(c), and the best cost
is lim
𝑡→+∞

J(𝑡) = 𝐽
∗
= 40.

Now nonlinearities into the external forces are intro-
duced; that is,

𝑤
𝑚 (

𝑡) = 𝑎
𝑚
𝑘
0 (

𝑡) − 𝑘
ℎ
tan−1 (𝑞

𝑠 (
𝑡 − 𝜏) − 𝑞

𝑚 (
𝑡 − 𝜏)) ,

𝑤
𝑠 (
𝑡) = 𝑎

𝑠
𝑘
0 (

𝑡) + 𝑘
𝑒
tan−1 (𝑞

𝑠 (
𝑡 − 𝜏) − 𝑞

𝑚 (
𝑡 − 𝜏)) ,

(44)

where tan−1(⋅) is the inverse function of (tan(⋅)) and 𝑘
ℎ
= 10,

𝑘
𝑒
= 50.
By Theorem 5 the optimal guaranteed cost control law

with the solution

L = [

−9.9894 0.0000 9.9894 0.0000

10.0107 0.0000 −10.0107 0.0000

] (45)

is obtained and thus the equivalent controllers in the tradi-
tional form are

𝑢
𝑚 (

𝑡) = 9.9894 (𝑞
𝑠 (
𝑡 − 𝜏) − 𝑞

𝑚 (
𝑡)) ,

𝑢
𝑠 (
𝑡) = 10.0107 (𝑞

𝑚 (
𝑡 − 𝜏) − 𝑞

𝑠 (
𝑡)) .

(46)

It can be seen that the optimal controllers are Proportional (P)
controllers. Simulation results for the system with nonlinear
external forces (44) are presented in Figures 5(a) and 5(b).
There is still no time delay existing in the local variables,
which is more realistic. It can be seen that the simulation
results for the case when the external forces are nonlinear are
similar to the results for the case when the external results are
linear. This implies that the controller is valid for the system
with nonlinear external forces. The value of the cost is also
tracked in Figure 5(c), and the best cost is 𝐽∗ = 4.3562.

6. Conclusion

In this paper, a guaranteed cost control design procedure
for delayed bilateral teleoperation systems is proposed. The
assumption that there exist time delays in the local devices
has been made to obtain the desired controllers under the
worst case, and thus the quadratically invariant problem
setup is avoided. Furthermore, only one part of the external
forces is assumed to satisfy some section conditions, and
thus the guaranteed cost controller is introduced. To obtain
the guaranteed cost control gains, we firstly formulate a
stability criterion and then convert it to a convex optimization
problem which can be solved by linear matrix inequality
(LMI) technique. Simulations for a simple example show that
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Figure 4: Simulation results when the human and environment
forces are linear.

the stability is guaranteed with very good performance when
the designed controller is applied to the systems which do
not actually have delays in the local devices. It is also found
that the actual controllers obtained from our method are
PD controllers or P controllers, but there is no need to pick
any PD or P parameters in our method while guaranteed
level of performance is satisfied. It is very beneficial for the
control of teleoperation systemswith high degrees of freedom
in practical applications. Further study will focus on the
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Figure 5: Simulation results when human and environment forces
are nonlinear.

bilateral teleoperation systems with complicated, nonlinear
manipulator models, varying time delays, and parameter
uncertainties.
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[23] J. Löfberg, “YALMIP: a toolbox for modeling and optimization
in MATLAB,” in Proceedings of the IEEE International Sympo-
sium on Computer Aided Control System Design, pp. 284–289,
September 2004.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


