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Abstract. 
We investigate the interplay between phase synchronization and amplitude synchronization in nonlinear dynamical systems. It is numerically found that phase synchronization intends to be established earlier than amplitude synchronization. Nevertheless, amplitude synchronization (or the state with large correlation between the amplitudes) is crucial for the maintenance of a high correlation between two time series. A breakdown of high correlation in amplitudes will lead to a desynchronization of two time series. It is shown that these unique features are caused essentially by the Hilbert transform. This leads to a deep concern and criticism on the current usage of phase synchronization.



1. Introduction
Synchronization of chaotic systems has been an important area in nonlinear dynamics [1]. “Synchronization” is defined as a complete coincidence of two variables (or time series) that are belonging to different systems [2] while the appearance of some functional relations between two variables is termed as “generalized synchronization” [3, 4]. Instead of focusing on the synchronization of time series, Rosenblum et al. introduced the concept of phase synchronization to describe how the coupled chaotic oscillators could present a nearly perfect locking of phase, whereas the amplitude remained chaotic [5]. In [5], the phase of a time series was defined based on the Hilbert transform [6]. This definition is also very attractive in characterization of chaos [7]. In a more explicit form, the Hilbert transform of a time series  follows:where P.V. means the Cauchy principal value for the integral. Thus, a new complex quantity  can be introduced; that is,where  is the phase and  is the amplitude [5, 7] and they form a conjugate pair. One can also define the phase angle to be the projection of phase point on the x-y plane with the phase angle  and the amplitude . Alternatively by using the Poincare section, one can also choose a phase:where  and  denotes the th crossing, but there is no conjugate amplitude for . In this comment, we reexamine the virtue of using the phase variable as the indicator of synchronization of the time series. We believe that phase synchronization may not be a good tracer to the actual synchronization of the time series. Then our work will explain the onset mechanism of phase synchronization and it leads to a deep concern on the current usage of phase synchronization.
2. Give an Example of Coupled Rossler Model
Let us recalculate the same coupled Rossler model as in [5] to explore the synchronization. The model follows:where  is the strength of coupling, , and  which indicates that there is a frequency mismatch between two oscillators. Because of finite frequency mismatch, there is no exact synchronization in time series. Synchronization can be found for  not only in the range , as reported in [5], region I, but also in , region II. Thus, in such a case, “synchronization” only implies a high correlation between two variables, such as time series. By using the Hilbert transform, the variables  have the phase  and the amplitude   . It has been reported that  and  move together and get nearly synchronized, while  and  remain irregular and unrelated in a range of small C [5]. Since then, cited and extended works have been expanded dramatically [8–19]. However, it should be emphasized that as phase is introduced, the influence of its counterpart, that is, amplitude, and their interplay should not be ignored. Unfortunately, although the concept of phase synchronization has been extensively addressed, the correlation between phase synchronization and amplitude synchronization remains to be clarified.
3. Results and Discussion
Let us use a common measure, the mean square error, to quantify the degree of synchronization. For two time series,  and , the mean square error is defined aswhere the integration time  should be sufficiently long. For the phase and the amplitude deduced by the Hilbert transform, we denote their mean square errors to be  and . For phase angle defined by projection (here  and  of the Rossler model), the corresponding mean square errors are  and , while in the case of the Poincare section (here a typical section in the  plane) we use  to denote it. Obviously, to be good indicators of the synchronization, variations of these quantities should faithfully reflect the true status of the coupled chaotic oscillators. As shown in Figure 1, where the values of the mean square errors in region I are plotted, the mean square errors of the phase variables are insensitive to the true state of synchronization in time series. In contrast, the mean square errors of the conjugate amplitudes reflect more faithfully to the status of oscillators in this case. Similar feature can also be found in region II as well as for different coupled oscillators.




	
	
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
	


Figure 1: The mean square error (mse) diagram of the coupled Rossler model.  is the mse of the time series. ,  and  are the mse for the phase variables while  and  are for the amplitudes.


4. Conclusion
The result shows that phase synchronization will intend to be established earlier than amplitude synchronization under the Hilbert transform. This unique feature is novel, but it is caused by the Hilbert transform. The transformation on the phase part is nonlinear. This nonlinear transform is the generic mechanism for the novel features that have been reported on the phase synchronization [5, 6, 8–19]. Therefore, we believe the role of “phase” and phase synchronization may not be a good indicator to the true synchronization in the time series. The relevance of phase variables to the synchronization of the original variables in nonlinear dynamical systems seems to be a mathematical consequence of the transform one used. Thus, the works on phase synchronization [6, 13–19] may be worthwhile to be reconsidered.
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