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This paper proposes an adaptive control scheme for nonlinear systems with significant nonminimum phase dynamics.The scheme
is composed of an inner-level adaptive fuzzy PD control law and an outer-level supervisory control law. Importantly, the inner-level
controller of the two-level scheme is designed based on a fuzzymodel, which takes nonminimumphase phenomenon andmodeling
error explicitly into account. The scheme is both much simpler in design and more applicable to general nonlinear systems when
compared with most existing nonlinear controllers. Effectiveness of the proposed control strategy is demonstrated by numerical
simulation of the control of a five-degree-of-freedom aircraft system in the face of bursting disturbances.

1. Introduction

Many critical dynamic systems, such as aircraft, are nonmin-
imum phase, MIMO, and highly nonlinear, which undergo
significant disturbances and parameter variation during
operation. To control these systems, robust control [1], opti-
mal tuning of fuzzy controllers with output sensitivity func-
tion [2], adaptive control [3–5], and feedback linearization
with discrete sliding-mode control [6] have attracted much
attention from both academic and industrial communities
due to their robustness to uncertainties. Recently, many
interests have been focused on applying these techniques to
flight control systems, such as [7, 8]. However, for systems
with significant nonminimum phase phenomenon, direct
application of these approaches tends to introduce unstable
zero dynamics.

For instance, in [9], the nonminimum phase plants are
approximated by minimum phase models. The research [10]
applied the output regulation theory to solve the output track-
ing problem, but a set of partial differential equationsmust be
solved. The control scheme of [11] is based on decomposing
the aircraft dynamics into a minimum phase part and a

nonminimum phase part. Inversion is used on the minimum
phase part to obtain asymptotic tracking,while a robust linear
control approach is used to stabilize the nonminimum phase
part, which is linearized at equilibrium. As this strategy is
based on local linearization of the nonminimum phase part,
the result can only apply to simplified models.

By estimating parameters online, adaptive control can
adapt to a controlled system with varying or unknown
parameters. Nevertheless, in spite of the prosperous literature
of adaptive control, practical application of these control
strategies onMIMO systems has been restricted by the lack of
assurance in closed-loop stability. Among them, the adaptive
neural controller of [3] is too complex to implement, while
the adaptive fuzzy terminal sliding-mode controller of [4, 5]
is applicable only to robotic manipulators.

The proposed adaptive control scheme is inspired by [12],
which was developed for SISO nonlinear systems based on
the feedback linearization technique, with the distinction
that the scheme is extended to nonminimum phase MIMO
control systems.

The scheme is composed of an inner-level tracking
control law and an outer-level supervisory control law.

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2015, Article ID 645168, 8 pages
http://dx.doi.org/10.1155/2015/645168



2 Mathematical Problems in Engineering

Thedesign procedure is hence divided into two parts. First, an
adaptive fuzzy-model-based PD control scheme is designed
at the inner level to achieve robust output tracking. Special
care is taken for the nonminimum phase fuzzy subsets in
the control law by restricting parameter magnitudes in the
singular-value decomposition operation. Next, a supervisory
controller is employed at the outer level to minimize both
the approximation error between the fuzzy model and the
plant and the effects of external disturbance. Effectiveness of
the adaptive control scheme is demonstrated by simulation
results of the fight control of a complete 5-DOF aircraft
model.

2. Problem Formulation

System dynamics of the plant are firstly represented in a
general MIMO state-space representation as

�̇� = 𝐹 (𝑥) + 𝐺 (𝑥) ⋅ 𝑢 + 𝑤

0
,

𝑦 = 𝐻 ⋅ 𝑥,

(1)

where 𝑥 ∈ R𝑛×1 is the state vector, 𝑢 ∈ R𝑚×1 is the control
vector, 𝑤

0
∈ R𝑛×1 is the disturbance vector, 𝑦 ∈ R𝑁×1

is the output vector, and 𝐹, 𝐺 are corresponding nonlinear
matrices in state vectors with 𝐻 being a constant matrix, all
of compatible dimensions.

Equation (1) can be further represented in output vector
𝑦 as

̇𝑦 = 𝐻 ⋅ 𝐹 (𝑥) + 𝐻 ⋅ 𝐺 (𝑥) ⋅ 𝑢 + 𝐻 ⋅ 𝑤

0

= 𝑓 (𝑥) + 𝑔 (𝑥) ⋅ 𝑢 + 𝑤

= ℎ

𝑓
⋅ 𝐴

𝑓
+

𝐿

∑

𝑖=1

ℎ

𝑖
⋅ 𝐵

𝑖
⋅ 𝑢 + [𝑓 (𝑥) − ℎ

𝑓
⋅ 𝐴

𝑓
]

+ [𝑔 (𝑥) −

𝐿

∑

𝑖=1

ℎ

𝑖
⋅ 𝐵

𝑖
] ⋅ 𝑢 + 𝑤

= ℎ

𝑓
⋅ 𝐴

𝑓
+

𝐿

∑

𝑖=1

ℎ

𝑖
⋅ 𝐵

𝑖
⋅ 𝑢 + 𝑒mod

≜ ℎ

𝑓
⋅ 𝐴

𝑓
+ 𝐵

𝑐
⋅ 𝑢 + 𝑒mod,

(2)

where

𝐵

𝑐
≜

𝐿

∑

𝑖=1

ℎ

𝑖
⋅ 𝐵

𝑖
,

ℎ

𝑓
=

[

[

[

[

[

[

ℎ

𝑓1
0 0 0

0 ℎ

𝑓2
0 0

0 0 d 0

0 0 0 ℎ

𝑓𝑛

]

]

]

]

]

]

,

𝐴

𝑓
= [

𝐴

𝑓1
𝐴

𝑓2
⋅ ⋅ ⋅ 𝐴

𝑓𝑛]

𝑇

,

𝑓

1
=

𝑝

∑

𝑖=1

ℎ

1𝑖
⋅ 𝐴

1𝑖
= ℎ

𝑓1
⋅ 𝐴

𝑓1
,

𝑓

2
=

𝑝

∑

𝑖=1

ℎ

2𝑖
⋅ 𝐴

2𝑖
= ℎ

𝑓2
⋅ 𝐴

𝑓2
, . . . ,

𝑓

𝑛
=

𝑝

∑

𝑖=1

ℎ

𝑛𝑖
⋅ 𝐴

𝑛𝑖
= ℎ

𝑓𝑛
⋅ 𝐴

𝑓𝑛
,

𝑒mod = [𝑓 (𝑥) − ℎ

𝑓
⋅ 𝐴

𝑓
] + [𝑔 (𝑥) −

𝐿

∑

𝑖=1

ℎ

𝑖
⋅ 𝐵

𝑖
] ⋅ 𝑢

+ 𝑤,

(3)

and the external disturbance 𝑤 = 𝐻 ⋅ 𝑤

0
.

In the last representation, it is assumed that 𝑔(𝑥) is
bounded and is away from singularity in a compact set.
Furthermore, 𝑓(𝑥) and 𝑔(𝑥) are identified in fuzzy form as
ℎ

𝑓
(𝑦) ⋅ 𝐴

𝑓
(𝑡) and ∑

𝐿

𝑗=1
ℎ

𝑗
(𝑦) ⋅ 𝐵

𝑗
, respectively, where the

fuzzy logic systems are universal approximations which can
uniformly approximate nonlinear continuous functions to
arbitrary accuracy [13–15].

3. Controller Design for the Nonminimum
Phase Dynamics

Firstly, the tracking error is defined as

𝑒 (𝑡) = −𝑒, (4)

where 𝑒 = (𝑦

𝑟
− 𝑦) (𝑦

𝑟
is reference input); we have that

̇𝑒 (𝑡) = ℎ

𝑓
⋅ 𝐴

𝑓
+

𝐿

∑

𝑖=1

ℎ

𝑖
⋅ 𝐵

𝑖
⋅ 𝑢 + 𝑒mod − ̇𝑦

𝑟

= ℎ

𝑓
⋅ 𝐴

𝑓
+ 𝐵

𝑐
⋅ 𝑢 + 𝑒mod − ̇𝑦

𝑟
,

(5)

where 𝑢 is a combination of two signals [16]:

𝑢 = 𝑢

𝐹
+ 𝑢

𝑆
, (6)

with

𝑢

𝐹
= (1 − 𝐼

∗
) ⋅ 𝐵

−1

𝑐

⋅ {−ℎ

𝑓
(𝑦) ⋅ 𝐴

𝑓
(𝑡) + ̇𝑦

𝑟
+ 𝐾

𝑃
⋅ 𝑒 (𝑡) + 𝐾

𝐷
⋅ ̇𝑒 (𝑡)} ,

(7)

𝑢

𝑆
= −𝐼

∗
⋅ sgn (𝐵

𝑐
⋅ 𝑃 ⋅ 𝑒 (𝑡))

⋅ {











𝐵

−1

𝑐
⋅ [ℎ

𝑓
(𝑦) ⋅ 𝐴

𝑓
(𝑡) − ̇𝑦

𝑟
]











+ 𝑒

𝑈
} .

(8)
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Figure 1: The proposed two-level switching control scheme.

In (7), the proportional gain of the inner fuzzy control law is
designed as

𝐾

𝑃
= 𝛼 − 𝑅

−1
⋅ 𝑃. (9)

The switching variable in both (7) and (8) is defined as

𝐼

∗
= 0, if 







𝑒mod








≤ 𝑒

𝑈
,

𝐼

∗
= 1, otherwise,

(10)

with










𝐵

−1

𝑐
⋅ 𝑒mod











≤ 𝑒

𝑈
,

𝛼 =

[

[

[

[

[

[

−𝛼

1
0 0 0

0 −𝛼

2
0 0

0 0 d 0

0 0 0 −𝛼

𝑛

]

]

]

]

]

]

,

𝑃 > 0,

𝑅 > 0.

(11)

A complete control scheme of the two-level architecture
is shown in Figure 1.

To avoid encountering singularity of the control law, the
singular-value decomposition of the matrix 𝐵

𝑐
is introduced

as follows:

𝐵

𝑐
= 𝑈 ⋅ 𝑆 ⋅ 𝑉

𝑇
, (12)

where

𝑆 =

[

[

[

[

[

[

𝜎

1
0 0 0

0 𝜎

2
0 0

0 0 d 0

0 0 0 𝜎

𝑛

]

]

]

]

]

]

(13)

and 𝜎

𝑖
is replaced by 𝜀 if 𝜎

𝑖
≤ 𝜀, where 𝜀 is a small value.

Substituting the adaptive fuzzy PD controller 𝑢

𝐹
(7) into

(5), we have

̇𝑒 (𝑡) = 𝐾

𝑃
⋅ 𝑒 (𝑡) + ℎ

𝑓
(𝑦) ⋅

̃

𝐴

𝑓
(𝑡) + 𝑒mod, (14)

after algebra manipulations, where

̃

𝐴

𝑓
(𝑡) = 𝐴

∗

𝑓
− 𝐴

𝑓
(𝑡) , (15)

and the modeling error

𝑒mod = [𝑓 (𝑥) − ℎ

𝑓
(𝑦) ⋅ 𝐴

∗

𝑓
]

+ [𝑔 (𝑥) −

𝐿

∑

𝑖=1

ℎ

𝑖
(𝑦) ⋅ 𝐵

𝑖
] ⋅ 𝑢 + 𝑤 + 𝐾

𝐷

⋅ ̇𝑒 (𝑡) .

(16)
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In the following derivation, we need the following condi-
tion to be satisfied [17–20]:

𝐽 ≤ 𝑒 (0)

𝑇
⋅ 𝑃 ⋅ 𝑒 (0) + 𝛾

−1

𝑓
⋅ trace (

̃

𝐴

𝑓
(0)

𝑇
⋅

̃

𝐴

𝑓
(0)) , (17)

where

𝐽 = ∫

𝑡𝑓

0

[𝑒 (𝑡)

𝑇
⋅ (𝑄 + 𝑃

𝑇
⋅ 𝑅

−𝑇
⋅ 𝑃) ⋅ 𝑒 (𝑡) − 𝜌

2
⋅ 𝑒

𝑇

mod

⋅ 𝑒mod] ⋅ 𝑑𝑡,

(18)

the weighting factor 𝛾

𝑓
> 0, 𝜌

2
⋅ 𝐼 ≥ 𝑅, the matrix 𝑄 >

0, and ‖𝑋‖

𝐹
=

√trace(𝑋𝑇 ⋅ 𝑋) is the Frobenius norm of

matrix 𝑋. Derivation of this condition, (17), is given in the
Appendix.

Hence, we have that

̇

̃

𝐴

𝑓
(𝑡) = −

̇

𝐴

𝑓
= −𝛾

𝑓
⋅ ℎ

𝑓
(𝑦)

𝑇
⋅ 𝑃 ⋅ 𝑒 (𝑡) ,

[𝛼

𝑇
⋅ 𝑃 + 𝑃 ⋅ 𝛼 + 𝑄 − 𝑃

𝑇
⋅ 𝑅

−𝑇
⋅ 𝑃] = −𝜌

−2
⋅ 𝑃

𝑇
⋅ 𝑃.

(19)

Furthermore, to guarantee boundedness of 𝐴

𝑓
, the

parameter update laws must be modified as follows:

̇

𝐴

𝑓
=

{

{

{

{

{

𝛾

𝑓
⋅ ℎ

𝑓
(𝑦)

𝑇
⋅ 𝑃 ⋅ 𝑒 (𝑡) , if 









𝐴

𝑓











< 𝑀

𝑓
or (











𝐴

𝑓











= 𝑀

𝑓
,

̇

𝐴

𝑇

𝑓
⋅ 𝐴

𝑓
≤ 0) ,

𝐹 (𝛾

𝑓
⋅ ℎ

𝑓
(𝑦)

𝑇
⋅ 𝑃 ⋅ 𝑒 (𝑡)) , otherwise,

(20)

where 𝑀

𝑓
is a positive design parameter and the projection

function 𝐹(⋅) is defined as

𝐹 (𝛾

𝑓
⋅ ℎ

𝑓
(𝑦)

𝑇
⋅ 𝑃 ⋅ 𝑒 (𝑡))

= 𝛾

𝑓
⋅ ℎ

𝑓
(𝑦)

𝑇
⋅ 𝑃 ⋅ 𝑒 (𝑡) − 𝛾

𝑓

⋅

𝐴

𝑓
⋅ 𝐴

𝑇

𝑓
⋅ ℎ

𝑓
(𝑦)

𝑇
⋅ 𝑃 ⋅ 𝑒 (𝑡)











𝐴

𝑓











2
.

(21)

Next, the supervisor control law of (8) is designed by the
following Lyapunov candidate:

𝑉 = 𝑒 (𝑡)

𝑇
⋅ 𝑃 ⋅ 𝑒 (𝑡) . (22)

Its time derivative, ̇

𝑉, can be obtained as

̇

𝑉 = [ℎ

𝑓
⋅ 𝐴

𝑓
+ 𝐵

𝑐
⋅ 𝑢

𝑆
+ 𝑒mod − ̇𝑦

𝑟
]

𝑇

⋅ 𝑃 ⋅ 𝑒 (𝑡)

+ 𝑒 (𝑡)

𝑇
⋅ 𝑃 ⋅ [ℎ

𝑓
⋅ 𝐴

𝑓
+ 𝐵

𝑐
⋅ 𝑢

𝑆
+ 𝑒mod − ̇𝑦

𝑟
]

= 2𝑒 (𝑡)

𝑇
⋅ 𝑃 ⋅ 𝐵

𝑐
⋅ 𝑢

𝑆
+ 2𝑒 (𝑡)

𝑇
⋅ 𝑃

⋅ [ℎ

𝑓
⋅ 𝐴

𝑓
+ 𝑒mod − ̇𝑦

𝑟
] .

(23)

Substituting (8) into (23) yields

̇

𝑉 ≤ 2𝑒 (𝑡)

𝑇
⋅ 𝑃 ⋅ 𝐵

𝑐
⋅ 𝑢

𝑆
+ 2











𝑒 (𝑡)

𝑇
⋅ 𝑃 ⋅ 𝐵

𝑐











⋅











𝐵

−1

𝑐
⋅ (ℎ

𝑓
⋅ 𝐴

𝑓
+ 𝑒mod − ̇𝑦

𝑟
)











≤ 0.

(24)

Hence, we can infer that if the supervisory control signal
(8) is injected into fuzzy system (2), time derivative of the
Lyapunov candidate ̇

𝑉 ≤ 0 and system (2) is UUB stable.

4. Numerical Simulation

In this section, the proposed control strategy is applied on
a five-degree-of-freedom aircraft system described in [21]
for performance evaluation. We consider the angle of attack
𝛼 and the roll angle 𝜙 as outputs to be tracked. Tracking
of angle of attack is directly related to tracking of normal
acceleration [21], which plays an important role in many
practical maneuvers.

Let 𝑏 = 3 be the reference length (m), 𝑐 = 2 the mean
aerodynamic chord (m), 𝑔 = 9.8 the gravitational accel-
eration (m/s2), 𝐼 = 50 the moment of inertia (kg-m2), 𝑝

the roll angle rate, 𝑞 the pitch angle rate, 𝑟 the yaw angle
rate, 𝑄 = 80 the dynamic pressure (kg/m2), 𝑆 = 5 the
reference wing area (m2), 𝑉 = 100 the aircraft velocity
(m/s), 𝜃 the pitch angle, 𝛿

𝑎
= 0 the aileron deflection, 𝛿

𝑒
the

elevator deflection, 𝛿
𝑟
the rudder deflection, and𝑚 = 100 the

mass of aircraft (kg); the aircraft dynamics can be written as
[21]

[

[

[

[

̇
𝑝

̇𝑞

̇𝑟

]

]

]

]

=

[

[

[

[

𝑓

𝑝

𝑓

𝑞

𝑓

𝑟

]

]

]

]

+

[

[

[

[

𝐿

𝛿𝑎
0 𝐿

𝛿𝑟

0 𝑀

𝛿𝑒
0

𝑁

𝛿𝑎
0 𝑁

𝛿𝑟

]

]

]

]

⋅

[

[

[

[

𝛿

𝑎

𝛿

𝑒

𝛿

𝑟

]

]

]

]

,

[

[

[

[

[

[

[

[

�̇�

̇

𝛽

�̇�

̇

𝜃

]

]

]

]

]

]

]

]

=

[

[

[

[

[

[

[

[

𝑓

𝛼

𝑓

𝛽

0

0

]

]

]

]

]

]

]

]

+

[

[

[

[

[

[

[

[

−𝑡

𝛽
⋅ 𝑐

𝛼
1 −𝑡

𝛽
⋅ 𝑠

𝛼

𝑠

𝛼
0 −𝑐

𝛼

1 𝑡

𝜃
⋅ 𝑠

𝜑
𝑡

𝜃
⋅ 𝑐

𝜑

0 𝑐

𝜑
−𝑠

𝜑

]

]

]

]

]

]

]

]

⋅

[

[

[

[

𝑝

𝑞

𝑟

]

]

]

]

+ 𝑤,

(25)
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where

𝜙 = 𝑦

1
,

𝛼 = 𝑦

2
,

𝐿

𝛿𝑎
= 𝐼 ⋅ 𝑄 ⋅ 𝑆 ⋅ 𝑏 ⋅ 𝐶

𝑙𝛿𝑎
,

𝐿

𝛿𝑟
= 𝐼 ⋅ 𝑄 ⋅ 𝑆 ⋅ 𝑏 ⋅ 𝐶

𝑙𝛿𝑟
,

𝑀

𝛿𝑒
= 𝐼 ⋅ 𝑄 ⋅ 𝑆 ⋅ 𝑐 ⋅ 𝐶

𝑚𝛿𝑒
,

𝑁

𝛿𝑎
= 𝐼 ⋅ 𝑄 ⋅ 𝑆 ⋅ 𝑏 ⋅ 𝐶

𝑛𝛿𝑎
,

𝑁

𝛿𝑟
= 𝐼 ⋅ 𝑄 ⋅ 𝑆 ⋅ 𝑏 ⋅ 𝐶

𝑛𝛿𝑟
,

𝑓

𝑝
=

𝑄 ⋅ 𝑆 ⋅ 𝐼 ⋅ 𝑏

2
⋅ 𝐶

𝑙𝑝
⋅ 𝑝

2𝑉

,

𝑓

𝑞
=

𝑄 ⋅ 𝑆 ⋅ 𝐼 ⋅ 𝑐

2
⋅ 𝐶

𝑚𝑞
⋅ 𝑞

2𝑉

,

𝑓

𝑟
=

𝑄 ⋅ 𝑆 ⋅ 𝐼 ⋅ 𝑏

2
⋅ 𝐶

𝑛𝑟
⋅ 𝑟

2𝑉

,

𝑓

𝛼
=

−𝑄 ⋅ 𝑆 ⋅ 𝐶

𝐿𝛼
⋅ 𝛼 + 𝑚 ⋅ 𝑔 ⋅ (𝑐

𝜃
⋅ 𝑐

𝜙
⋅ 𝑐

𝛼
+ 𝑠

𝜃
⋅ 𝑠

𝛼
)

𝑚 ⋅ 𝑉 ⋅ 𝑐

𝛽

,

𝑓

𝛽
=

𝑄 ⋅ 𝑆 ⋅ 𝐶

𝑌𝛽
⋅ 𝛽 + 𝑚 ⋅ 𝑔 ⋅ [𝑠

𝜃
⋅ 𝑐

𝛼
⋅ 𝑠

𝛽
+ 𝑐

𝜃
⋅ 𝑠

𝜙
⋅ 𝑐

𝛽
− 𝑐

𝜃
⋅ 𝑐

𝜙
⋅ 𝑠

𝛼
⋅ 𝑠

𝛽
]

𝑚 ⋅ 𝑉

,

𝑡

𝛽
= tan (𝛽) ,

𝑠

𝛽
= sin (𝛽) ,

𝑐

𝛽
= cos (𝛽) ,

𝑠

𝜃
= sin (𝜃) ,

𝑐

𝜃
= cos (𝜃) ,

𝑡

𝜃
= tan (𝜃) ,

𝑐

𝛼
= cos (𝛼) ,

𝑠

𝛼
= sin (𝛼) ,

𝑠

𝜙
= sin (𝜙) ,

𝑐

𝜙
= cos (𝜙) .

(26)

In the following simulation, we assume

𝐶

𝑙𝛿𝑎
= −10

−4
,

𝐶

𝑙𝛿𝑟
= 10

−2
,

𝐶

𝑚𝛿𝑒
= −1.6 × 10

−4
,

𝐶

𝑛𝛿𝑎
= 10

−2
,

𝐶

𝑛𝛿𝑟
= −10

−4
,

𝐶

𝑙𝑝
= −3.8 × 10

−2
,

𝐶

𝑚𝑞
= −0.9 × 10

−2
,
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𝐶

𝑛𝑟
= −4.5 × 10

−3
,

𝐶

𝐿𝛼
= 2.8 × 10

−1
,

𝐶

𝑌𝛽
= −2.8.

(27)

For the inner fuzzy control law, we select the following
membership functions:

𝜇

𝐹
1
1
(𝑦

1
) = exp[−

1

2

(

𝑦

1
− 𝑐

11

𝑑

11

)

2

] ,

𝜇

𝐹
2
1
(𝑦

1
) = exp[−

1

2

(

𝑦

1
− 𝑐

12

𝑑

12

)

2

] ,

𝜇

𝐹
3
1
(𝑦

1
) = exp[−

1

2

(

𝑦

1
− 𝑐

13

𝑑

13

)

2

] ,

𝜇

𝐹
4
1
(𝑦

1
) = exp[−

1

2

(

𝑦

1
− 𝑐

14

𝑑

14

)

2

] ,

𝜇

𝐹
1
2
(𝑦

2
) = exp[−

1

2

(

𝑦

2
− 𝑐

21

𝑑

21

)

2

] ,

𝜇

𝐹
2
2
(𝑦

2
) = exp[−

1

2

(

𝑦

2
− 𝑐

22

𝑑

22

)

2

] ,

𝜇

𝐹
3
2
(𝑦

2
) = exp[−

1

2

(

𝑦

2
− 𝑐

23

𝑑

23

)

2

] ,

𝜇

𝐹
4
2
(𝑦

2
) = exp[−

1

2

(

𝑦

2
− 𝑐

24

𝑑

24

)

2

] ,

(28)

where

𝑐

11
= 𝑐

21
= 0,

𝑐

12
= 𝑐

22
= 0.4,

𝑐

13
= 𝑐

23
= 0.8,

𝑐

14
= 𝑐

24
= 1.2,

𝑑

11
= 𝑑

21
= 𝑑

12
= 𝑑

22
= 𝑑

13
= 𝑑

23
= 𝑑

14
= 𝑑

24
= 0.4.

(29)

Furthermore, 8 fuzzy rules of the following form comprise the
fuzzy rule base:

𝑅

(1): if 𝑦

1
is 𝐹

𝑗

1
, then 𝑓

1
= 𝐴

1𝑗
for 𝑗 = 1, 2, 3, 4 and

𝑙 = 1, 2, 3, 4.

𝑅

(2): if 𝑦

2
is 𝐹

𝑗

2
, then 𝑓

2
= 𝐴

2𝑗
for 𝑗 = 1, 2, 3, 4 and

𝑙 = 5, 6, 7, 8.
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Figure 2: Time history of system output 𝑦
1
(the angle of attack, 𝛼),

reference 𝑦

𝑟1
, and control input 𝑢

1
.

Then, we obtain the following initial system parameters:

𝐴

11
= −0.1338,

𝐴

12
= 0.5183,

𝐴

13
= −1.0891,

𝐴

14
= 1.546,

𝐴

21
= −1.0328,

𝐴

22
= 1.669,

𝐴

23
= −0.0957,

𝐴

24
= −0.3342,

𝐵

𝑐
= [

16.5381 −0.4429

1.1439 0.4489

] .

(30)

Finally, we design the following control gains:

𝐾

𝑃
= [

−0.52 0

0 −51

] ,

𝐾

𝐷
= [

−0.05 0

0 −4.9

] .

(31)

The tracking performances of 𝛼 and 𝜙, together with the
reference (or command), are presented in Figures 2 and 3.
These figures show the responses with several step reference
inputs.The disturbance is𝑤 = [1, 1, 1, 1]

𝑇
⋅ 𝛿(𝑡 − 2), a burst at

𝑡 = 2 s.
From the simulation results, it is clear that the output

tracks the desired command asymptotically with small tran-
sient errors, and the zero dynamics remain stable for all the
simulated interval.
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2
.

5. Conclusion

Wepropose a two-level adaptive control scheme for nonlinear
systems, such as the aircraft, which are MIMO and suffer
from nonminimumphase phenomena.The control scheme is
composed of an inner-level adaptive fuzzy PD control law and
an outer-level supervisory control law. Importantly, the outer-
level controller of the two-level scheme is designed based on
a fuzzy model taking nonminimum phase phenomena and
modeling error explicitly into account. Special care is taken
of the nonminimum phase fuzzy subsets by restricting the
magnitude of parameters in the singular-value decomposi-
tion operation.

The control strategy is much simpler and applicable to
general MIMO, nonlinear, and nonminimum phase systems
when compared with [3–5]. Simulation results of the appli-
cation of the proposed control scheme on a five-degree-of-
freedom nonlinear aircraft model verify its effectiveness.

Appendix

Derivation of the Condition of (17)

Consider

𝐽 = ∫

𝑡𝑓

0

[𝑒 (𝑡)

𝑇
⋅ (𝑄 + 𝑃

𝑇
⋅ 𝑅

−𝑇
⋅ 𝑃) ⋅ 𝑒 (𝑡) − 𝜌

2
⋅ 𝑒

𝑇

mod

⋅ 𝑒mod] ⋅ 𝑑𝑡 = 𝑒 (0)

𝑇
⋅ 𝑃 ⋅ 𝑒 (0) − 𝑒 (𝑡

𝑓
)

𝑇

⋅ 𝑃

⋅ 𝑒 (𝑡

𝑓
) + 𝛾

−1

𝑓
⋅ trace (

̃

𝐴

𝑓 (
0)

𝑇
⋅

̃

𝐴

𝑓 (
0)) − 𝛾

−1

𝑓

⋅ trace (

̃

𝐴

𝑓
(𝑡

𝑓
)

𝑇

⋅

̃

𝐴

𝑓
(𝑡

𝑓
)) + ∫

𝑡𝑓

0

[𝑒 (𝑡)

𝑇
⋅ (𝑄

+ 𝑃

𝑇
⋅ 𝑅

−𝑇
⋅ 𝑃) ⋅ 𝑒 (𝑡) − 𝜌

2
⋅ 𝑒

𝑇

mod ⋅ 𝑒mod + ̇𝑒 (𝑡)

𝑇

⋅ 𝑃 ⋅ 𝑒 (𝑡) + 𝑒 (𝑡)

𝑇
⋅ 𝑃 ⋅ ̇𝑒 (𝑡) + 𝛾

−1

𝑓
⋅ trace (

̇

̃

𝐴

𝑓
(𝑡)

𝑇

⋅

̃

𝐴

𝑓
(𝑡)) + 𝛾

−1

𝑓
⋅ trace (

̃

𝐴

𝑓
(𝑡)

𝑇
⋅

̇

̃

𝐴

𝑓
(𝑡))] 𝑑𝑡

≤ 𝑒 (0)

𝑇
⋅ 𝑃 ⋅ 𝑒 (0) + 𝛾

−1

𝑓
⋅ trace (

̃

𝐴

𝑓
(0)

𝑇
⋅

̃

𝐴

𝑓
(0))

+ ∫

𝑡𝑓

0

{𝑒 (𝑡)

𝑇
⋅ (𝑄 + 𝑃

𝑇
⋅ 𝑅

−𝑇
⋅ 𝑃) ⋅ 𝑒 (𝑡) − 𝜌

2

⋅ 𝑒

𝑇

mod ⋅ 𝑒mod + [𝛼 ⋅ 𝑒 (𝑡) + ℎ

𝑓
(𝑦) ⋅

̃

𝐴

𝑓
(𝑡) − 𝑅

−1

⋅ 𝑃 ⋅ 𝑒 (𝑡) + 𝑒mod]
𝑇

⋅ 𝑃 ⋅ 𝑒 (𝑡) + 𝑒 (𝑡)

𝑇
⋅ 𝑃 ⋅ [𝛼 ⋅ 𝑒 (𝑡)

+ ℎ

𝑓
(𝑦) ⋅

̃

𝐴

𝑓
(𝑡) − 𝑅

−1
⋅ 𝑃 ⋅ 𝑒 (𝑡) + 𝑒mod] + 𝛾

−1

𝑓

⋅ trace (

̇

̃

𝐴

𝑓 (
𝑡)

𝑇
⋅

̃

𝐴

𝑓 (
𝑡)) + 𝛾

−1

𝑓
⋅ trace (

̃

𝐴

𝑓 (
𝑡)

𝑇

⋅

̇

̃

𝐴

𝑓
(𝑡))} 𝑑𝑡 = 𝑒 (0)

𝑇
⋅ 𝑃 ⋅ 𝑒 (0) + 𝛾

−1

𝑓

⋅ trace (

̃

𝐴

𝑓
(0)

𝑇
⋅

̃

𝐴

𝑓
(0)) + ∫

𝑡𝑓

0

{𝑒 (𝑡)

𝑇
⋅ [𝛼

𝑇
⋅ 𝑃

+ 𝑃 ⋅ 𝛼 + 𝑄 + 𝑃

𝑇
⋅ 𝑅

−𝑇
⋅ 𝑃] ⋅ 𝑒 (𝑡) − 𝜌

2
⋅ 𝑒

𝑇

mod

⋅ 𝑒mod + [ℎ

𝑓
(𝑦) ⋅

̃

𝐴

𝑓
(𝑡) − 𝑅

−1
⋅ 𝑃 ⋅ 𝑒 (𝑡) + 𝑒mod]

𝑇

⋅ 𝑃 ⋅ 𝑒 (𝑡) + 𝑒 (𝑡)

𝑇
⋅ 𝑃 ⋅ [ℎ

𝑓
(𝑦) ⋅

̃

𝐴

𝑓
(𝑡) − 𝑅

−1
⋅ 𝑃

⋅ 𝑒 (𝑡) + 𝑒mod] + 𝛾

−1

𝑓
⋅ trace (

̇

̃

𝐴

𝑓
(𝑡)

𝑇
⋅

̃

𝐴

𝑓
(𝑡))

+ 𝛾

−1

𝑓
⋅ trace (

̃

𝐴

𝑓
(𝑡)

𝑇
⋅

̇

̃

𝐴

𝑓
(𝑡))} 𝑑𝑡 < 𝑒 (0)

𝑇

⋅ 𝑃 ⋅ 𝑒 (0) + 𝛾

−1

𝑓
⋅ trace (

̃

𝐴

𝑓
(0)

𝑇
⋅

̃

𝐴

𝑓
(0))

+ ∫

𝑡𝑓

0

{−𝜌

−2
𝑒 (𝑡)

𝑇
⋅ 𝑃

𝑇
⋅ 𝑃 ⋅ 𝑒 (𝑡) − 𝜌

2
⋅ 𝑒

𝑇

mod ⋅ 𝑒mod

+ 𝑒

𝑇

mod ⋅ 𝑃 ⋅ 𝑒 (𝑡) + 𝑒 (𝑡)

𝑇
⋅ 𝑃 ⋅ 𝑒mod + [ℎ

𝑓
(𝑦)

⋅

̃

𝐴

𝑓
(𝑡)]

𝑇

⋅ 𝑃 ⋅ 𝑒 (𝑡) + 𝑒 (𝑡)

𝑇
⋅ 𝑃 ⋅ ℎ

𝑓
(𝑦) ⋅

̃

𝐴

𝑓
(𝑡)

+ 𝛾

−1

𝑓
⋅ trace (

̇

̃

𝐴

𝑓
(𝑡)

𝑇
⋅

̃

𝐴

𝑓
(𝑡)) + 𝛾

−1

𝑓

⋅ trace (

̃

𝐴

𝑓
(𝑡)

𝑇
⋅

̇

̃

𝐴

𝑓
(𝑡))} 𝑑𝑡 = 𝑒 (0)

𝑇
⋅ 𝑃

⋅ 𝑒 (0) + 𝛾

−1

𝑓
⋅ trace (

̃

𝐴

𝑓
(0)

𝑇
⋅

̃

𝐴

𝑓
(0)) − ∫

𝑡𝑓

0

[𝜌

⋅ 𝑒mod − 𝜌

−1
⋅ 𝑃 ⋅ 𝑒 (𝑡)]

𝑇

⋅ [𝜌 ⋅ 𝑒mod − 𝜌

−1
⋅ 𝑃

⋅ 𝑒 (𝑡)] 𝑑𝑡 ≤ 𝑒 (0)

𝑇
⋅ 𝑃 ⋅ 𝑒 (0) + 𝛾

−1

𝑓

⋅ trace (

̃

𝐴

𝑓
(0)

𝑇
⋅

̃

𝐴

𝑓
(0)) .

(A.1)

This completes the proof.
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