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Image normally has both dots-like and curve structures. But the traditional wavelet or multidirectional wave (ridgelet, contourlet,
curvelet, etc.) could only restore one of these structures efficiently so that the restoration results for complex images are
unsatisfactory. For the image restoration, this paper adopted a strategy of combined shearlet and wavelet frame and proposed a
new restoration method. Theoretically, image sparse representation of dots-like and curve structures could be achieved by shearlet
and wavelet, respectively. Under the L, regularization, the two frame-sparse structures could show their respective advantages and
efficiently restore the two structures. In order to achieve superlinear convergence, this paper applied semismooth Newton method
based on subgradient to solve objective functional without differentiability. Finally, through numerical results, the effectiveness of
this strategy was validated, which presented outstanding advantages for any individual frame alone. Some detailed information that

could not be restored in individual frame could be clearly demonstrated with this strategy.

1. Introduction

Image restoration is a processing procedure to rebuild or
restore deteriorated images. Since the 1950s, many technolo-
gies have been developed for image restoration. In prac-
tical applications, image restoration could be eventually
transformed into inverse problems, for example, geological
exploration [1, 2], medical imaging [3, 4], and astronomy
[5, 6]. Generally, image is defined as the 2D matrix in the
R? space. The image is often recorded with a device known
as a CCD (charge coupled device). The image often contains
two kinds of noise, that is, Poisson noise and Gaussian noise.
The Poisson component models the photon count, while the
additive Gaussian term accounts for background noise in the
recording electronics [7].

In this paper we discuss image restoration with high
SNR. So we just consider the noise model is additive Gaus-
sian. Though Gaussian white-noise processes do not exist
physically, they provide a convenient approximation and
manipulative tool. Because of its mathematical tractability
in both the spatial and frequency domains, Gaussian (also
called normal) noise models are used frequently in practice.

In fact, this tractability is so convenient that it often results
in Gaussian models being used in situation in which they are
marginally applicable at best.

Image restoration mainly includes parametric and non-
parametric object models. There are plenty of literatures
about nonparametric object models. Though few works are
related to parametric object models, it is an interesting
direction.

For parametric image restoration, the desire to know
parameters that cannot be directly observed often occurs
in practice [7, 8]. Given an output image, the parametric
image restoration task is to find a set of parameters that
represent the input image. Methods solving parametric object
models mainly include ML (maximum-likelihood) estima-
tion method, EM (expectation-maximization) estimation
method, and constrained estimation method (regularization
method). In this paper we just discuss nonparametric object
models. The primary objective of image restoration is to
restore the unknown image u € R* by observation image f:

f=Au+e, 0



where ¢ is Gaussian white noise with standard deviation o and
A is linear operator. In image deconvolution, image inpaint-
ing, and image denoising, A is the convolution operator,
projection operator, and identity operator, respectively.

Currently, “sparsity” in image restoration has been getting
more attention, and the sparse strategy has created a new
field for studies on the regularization of inverse problem.
The primary principle of this strategy is to represent original
image by a column of coeflicients under a certain frame. If
the frame is selected appropriately, only a very few nonzero
coefficients exist, that is, the sparse representation. The frame
normally selected Fourier transform or windowed Fourier
transform, cosine transform, and wavelet transform. The
representation method of wavelet and its multiscale is the
most common tool in image processing issues. However,
wavelet and its multiresolution analysis theory are greatly
limited in terms of directionality and all of its scales and
positions show isotropy. Although the application of wavelet
in singular signal representation has achieved great success,
the limitation leads to the situation that wavelet frame fails
to accurately represent highly anisotropic images. Therefore
this phenomenon makes multidirectional frames emerging
persistently.

Candés and Donoho set up a series of new multidirec-
tional frameworks, such as curvelet [9] and ridgelet [10].
These frameworks have essential differences from wavelet
frames, showing more acute directionality as well as anisot-
ropy. For example, curvelet is located along the curve in 2D
space and along the slice in 3D space. The final numerical
results of this paper will present that wavelet has fundamental
differences from other multiscale frameworks. Curvelet, as
a representative of the new generation of multiscale frame-
work, has been proved efficient in image restoration but it
could still be improved greatly [11,12]. A strategy of combined
wavelet and curvelet [13] also reached remarkable effects
in image restoration. The combination of different frames
could produce different results of image restoration [14]. For
example, wavelet could not restore the slender boundaries
with high fidelity. Meanwhile, curvelet could not restore
dots-like characteristics such as eyes of people satisfactorily.
Generally, each frame has its own strengths and potentials,
which also inspire researchers to try different combinations
of frames for image restoration [15-19].

Recently, a new multiscale framework, namely, shearlet,
has been found. Shearlet [20-23] could provide unified proc-
essing method for continuous and discrete models, rapid
decomposition operator, and optimal sparse representation.
Shearlet shares many similarities with curvelet. However,
shearlet also has some advantages that curvelet does not have.
In fact, shearlet originates from affine system and is generated
by singular functions, showing simpler structure. However,
the translation, rotation, and stretching involved in curvelet
function are not generated by singular function. Moreover,
a very important feature of shearlet is that it possesses
multiresolution analysis, which is crucial for achieving fast
algorithm. It should also be noted that numerical calculation
showed more advantages in shearlet transform for shearlet
than in the rotational transform for curvelet [24, 25]. Thus,
it could be naturally inferred that the combination of wavelet
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and shearlet could acquire faster (because of the sparser
coeflicient) and more accurate algorithm when restoring dot-
like and curve images. In fact, literature [26] has theoretically
demonstrated the feasibility of combining wavelet with shear-
let.

This paper is structured as follows. The first chapter
introduces the theoretical framework of shearlet. The second
chapter shows the sparse algorithm combined with wavelet
and shearlet based on L, regularization. The third chapter
testifies the superiority of this algorithm for image restoration
through numerical results. The fourth chapter gives the
conclusion and prospects of this paper.

2. Shearlet Transform

2.1. Definition of Shearlet. The primary idea of shearlet trans-
form [23] is to ensure the multiscale and multidirectionality
of the transform by selecting two parameters. Traditionally,
for the rotational direction, unified processing methods were
hard to form for continuous and discrete regions due to
the changes of grids. Therefore, the selection of direction
parameter in shearlet became especially important. Shearlet
used slope rather than angles to express directions. Shearlet
matrix retains the integral constitution of grid, which is cru-
cial for shearlet because it enables the accurate digitalization
of shearlet in continuous regions.

Fora > 0,s € R%,let A, and S, be parabolic scaling matrix
and shearlet matrix:

A_aO S - 1 s 5
‘“(0 va)’ “(o 1)‘ @

In order to realize equivalent treatment results along x- and
y-axes, frequency domain was separated into four cones ¢;; —
¢y, As shown in Figurel, the following forms (equations)
were generated:
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Let ¢, € L*(R) be wavelet function and its Fourier transform
¢, € C*(R) and the support suupy; < [-4,-1/4Ju[-1/4,4].
Let ¢, € L*(R) satisfy its Fourier transform @, € C*(R) and
support suupp, < [-1,+1]. Let the generation function of
shearlet be ¢ € L3(R?):
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FIGURE 1: Frequency domain induced by the discrete shearlets and frequency domain induced by the discrete shearlets on the cone.

For c,,, at scale j € N, : N U {0}, direction is s = —27,...,2/,
position is m € Z7 and shearlet is defined by Fourier
transform:

6}1 (E) = 27J(3/2)¢ (SSTA4—J’£) Xo1 (E) eZ7Ti<A4_jSSm,E)

e ea(28) @

Ky (§) A,

where 1 = (j,s,m,l), respectively, represented scale, direc-
tion, position, and cone. For other cones ¢;;, ¢,1, and c¢,,, the
shearlet definition was similar. Its structure and frequency
domain of shearlet are shown in Figurel, and the discrete
shearlet system is denoted by

{o, :me Ngx{-2/,...,2/} x 22 x {11,12,21,22}} . (6)

The definition shows that shearlets live on anisotropic regions
of width 272/ and length 27/ at various orientations. It should
be mentioned that recently introduced compactly supported
shearlets [27, 28] do not require projecting the shearlets to
the respective cones; however, despite other advantageous
properties, they do not form a tight frame for L*(R?). Setting
¢ = U, g the discrete shearlet system is tight frame for
{f € L3(R?) : suppf C ¢} from [29]. For the definition of a
tight frame, please refer to [30].

2.2. Fast Shearlet Transform. Shearlet transform in contin-
uous areas will cause trapezoidal overlapped areas in the
frequency domain. Special coordinate systems were intro-
duced in the 2D continuous frequency domain space. The
discrete shearlet transform could be represented by the
following five operators string: (1) classic Fourier transform;
(2) pseudo-polar coordinate conversion element; (3) radia-
tion density compensation factor weighting; (4) trapezoidal

overlay decomposition; (5) inverse Fourier transform of each
trapezoid. This transform could be completely transplanted
to the digital area. In addition, the pseudo-polar coordinates
were compatible with digital image processing, leading to the
same results for discrete and continuous shearlet transform.
What is more fortunate, [31] had founded pseudo-polar
Fourier transform. This transform realized Fourier transform
on pseudo-polar grid Q = Q, U Q,:

o = (k- k)T <1<
N

2
= {(ke 2): Y
N 2

On pseudo-polar grid Q) pseudo-polar Fourier transform of
I(u, v) was defined as the following form:
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where m0 > N indicating positive integer. Pseudo-polar
Fourier transform facilitates the quick shearlet transform.
However, the conversion of the concept is normally indirect
because shearlet transform needs a tight support frame.
Moreover, pseudo-polar grid is not isometric. The most
difficulty is the highly asymmetrical structure for pseudo-
polar grids. Therefore, for areas with dense dots, the change
of variable could be used to reduce weights. In fact, with
sufficient pseudo-polar radiation samples, equidistant grid
could be materialized. To sum up, quick shearlet transform of
N x N-dimensional images encompasses the following steps.

(1) Pseudo-polar Fourier transform was used and inten-
sive sampling was conducted along the radial direc-
tion.



(2) The density compensating weights were adopted on
the pseudo-polar grid.

(3) Windows were generated by scales and shears to
decompose pseudo-polar indexes into rectangle
subbands, and inverse Fourier transform was carried
out for each column. By proper selection of weights
and windows, quick shearlet transform could realize
the equidistant grid. Thus, its inverse transform
requires the calculation of adjoint matrix at each step.
Fast shearlet transform code [32] can be downloaded
at the website http://www.shearlab.org/index_soft-
ware.html or http://www.mathematik.uni-kl.de/
imagepro/members/haeuser/ffst/?S=0/optstat/opt
stat.htm.

3. Sparse Algorithm Combined Shearlet and
Wavelet Based on L, Regularization

3.1. L, Sparse Regularization. At present, many sparse meth-
ods have been applied to issues of image restoration, includ-
ing wavelet, cosine, brushlet, ridgelet, contourlet, curvelet,
and shearlet. However, each method here has relatively
effective sparse representation of their respective image
features. For example, wavelet could enable the sparse rep-
resentation of one-dimensional pulse signal but perform
poorly for oscillating signals (insufficiently sparse). For two-
dimensional images, wavelet tends to enable the sparse
representation of singular points, and curvelet and shearlet
tend to enable sparse representation of curved boundary.
Therefore, different transforms have different advantages.
Given the advantages of wavelet for singular points and
shearlet for curved boundary, as well as the calculation
advantage of shearlet compared with curvelet and ridgelet,
this paper combined wavelet with shearlet to construct image
restoration algorithm based on L, regularization.

Wavelet combined with shearlet transform will obtain the
overdetermination system. Assume y € R™" is the noised
image. Let

y =Ta, +Tha,, 9)

where T}, T, were matrixes. Each column was formed by the
primary function of wavelet and shearlet transform, o, «,
were coefficient vectors of wavelet and shearlet. In order to
obtain the sparse representation of the image, that is, the
minimum L, norm solution,

min ||0c1 +a, ||1
constraint to oy, a, >0 (10)
y =T + T,

The commonly used two methods for the solution of (10)
are basis pursuit [33] (BP) algorithm and matching pursuit
[34] (MP) algorithm. In MP algorithm, as one of the greedy
algorithms, the global optimization was not considered.
It only presented the locally optimal solution in a sense.
BP algorithm, as a global optimization, could stabilize the
restoration of original image. However, the calculation of the
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algorithm was huge. In order to overcome this shortcoming,
sparser coeflicients should be used to represent original
images. In practical application, image y° always contains
noises. In order to solve the optimization problem (10),
it is normally transformed into unconstraint optimization
problem. At each scale of j, the specific form is

(g ay) = ar[xglilzin% "y‘s - Ty — Tzocz"z W

+wy ey + |,

where w, > w, > 0 indicating a series of regularization
T, 0 o I
parameters; let K = (¢ T, ), u = (&); the optimization

problem (11) could be eventually transformed into

u= argumin% "ya - Ku"i + wp lullys (12)

namely,
— aremint 142 — kul? 3 13
u= arglznlnz "y - u"2 + k;wk || » (13)

where N is the length of the sparse coefficient u and u;, was
the kth component of u.

Our method can be interpreted as an extension of
Glenn Easley’s sparse directional image representation [35],
where shearlet sparse representation with L, regularization
is applied to image denoising. In our paper, we use two
dictionaries (wavelet and shearlet) combined with L, regular-
ization. Observe that our model is different from the models
for image separation [36, 37]. Starck et al. [37] proposed a
MCA (morphological component analysis) method for image
separation, in whicha modelargmin, , {lly.ull, +ly, 1, [l +

(/2 f —u, —uw||§} uses two-frame L, sparsity constraints to
decompose the image into cartoon and texture components
u, + u,. Our model is also different from the models for
compress sensing. Plonka and Ma [38] proposed a splitting
Bregman distance method for compress sensing, in which a
model argmin, , , {IA vl + [A,v,0, + (1/D]f — Gul?}
subject to v, = yu, v, = ¥, U

3.2. Preprocessing. To avoid high complexity, before address-
ing optimization issues, the image y° for observation should
be preprocessed. Dots and curves in the image generally
correspond to the high-frequency part in the frequency
domain. Hence it would be essentially sufficient for achieving
accurate representation with only sufficiently large scales.
Therefore, some bandwidth corresponding to large-scale j
can accurately represent y°. This idea simplifies the solution
of related issues. Firstly, L + 1 filters F,...,F; could be
selected. For its specific form, please see [19]. F, is low pass
filter. The observation image y° could be expressed as

L
¥ =Y Fxfi, fi=Fxf (14)
j=0
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For each scale j, consistent weights w; > 0 were selected.
When j < j', let it satisfy w; < wj. On the basis of these

weights, a new figure 5° could be acquired with the specific
form as

L
7=y (F* ;). (15)
=0

The pretreatment method simplifies the optimization prob-
lem (12) and highlights dots and curves in the image by
suppressing the low frequencies.

3.3. The Minimum L, Norm Solution. Currently, there are
fewer algorithms to solve L; norm sparsity regularization;
these algorithms mainly include iteration soft-threshold algo-
rithm [39-41] and hard-threshold iteration algorithm [42].
The convergence of soft-threshold iteration algorithm has
been proved in [39]. The algorithm is easy to realize but the
rate of convergence is relatively slow as linear convergence
[41]. The convergence rate of iteration hard-threshold algo-
rithm is relatively fast in some practical applications. How-
ever this algorithm is slower than iteration soft-threshold
algorithm theoretically. The Newton method has relatively
faster convergence rate, but the penalty of L, regularization is
not differentiable. Thus, Newton method could not be directly
used in L, constrained optimization. To address the key issue,
Guo and Donoho etal. rebuilt L, penalty so that it could meet
the requirement of second-order continuous differential. In
this way, it could realize Newton iteration. However, the
structure and realization of this method is relatively complex-
ity. Its application range was limited. Semismooth Newton
method based on subgradient [43] is now gaining more and
more academic attention due to its less required conditions
and faster rate of convergence. Griesse and Lorenz success-
tully applied this method to deconvolution and deblurring
under weaker conditions. Currently, semismooth Newton
method for nonlinear operator has also appeared. To sum up,
our research intended to use semismooth Newton method
in issues of image restoration. This issue belonged to a
linear inverse problem. Wavelet transform and shearlet trans-
form matrix formed the linear operator, which performed
outstanding attributes. It is believed that this method is
feasible for image restoration. This sector primarily discussed
necessary conditions of subgradient calculation.

Definition 1. Let w = (w,) with w, > w, > 0. The soft-
thresholding of w, u is defined as mapping S, : I, — [,
and 1 < p < 400, 1 < g < +00 given by

S Wi = Sy, (1) = max {0, v — o} sgn (). (16)

Then the optimality condition can be formulated in a com-
pact way by the soft-thresholding.

Proposition 2. If> — H is injective, the functional

Y (u) = % “Ku - y‘S”; + k;wk |uk| 17)

. .. — 2 . .. . .
has a unique minimizer u € I°. This minimizer is characterized
by

u=S8,(m-yK* (Ka-5")) vy>o. (18)

Then the sparse constraint minimum problem (17) can be trans-
formed as

Fu)=u-S8,,(u-yK’ (Ku—ya)):o (19)
for somey > 0. Next we discuss the subdifferentiability of F(u).

Definition 3 (see [44]). Let F : U — R" be defined on the
open set U ¢ R". Then, for 0 < y < 1, F is called y-order
semismooth at x € U if F is locally Lipschitz at x, F'(x,")
exists, and, for any G € 0F(x + d),

|Gd - F'(x.d)| = M(IdI"*") asd —o0.  (20)

If Fis y-order semismooth atall x € U, then we call F y-order
semismooth on U. The function G is called a generalized
derivative (or slanting function) for F at x.

The sets I(u) and A(u) are given by

Au) = {k eN: |u—yK* (Ku—y6)|k > ywk},

(21)
I(u) = {k eN: |u—yK* (Ku—y6)|k < ywk}.
KK is defined as follows:
M M
K*K=< A AI). (22)
My My

Then the generalized derivatives are given by

B 00 I, 0 . B YMas YMyy
o3 )3 =[5 )
(23)

The iterative scheme of semismooth Newton method for (12)
is
=y -G (u")71 F(u"). (24)
The step of semismooth Newton method for (12) is as follows.
(i) Initialize 1.°, y>0,n=0.

(ii) Calculate the sets A(u) and I(u):

Au) = {k eN: 'u—yK* (Ku—y6)|k > ywk},
(25)
A(u) = {ke N: 'u—yK* (Ku—y‘s)k Sywk}.

(iii) Compute the residual
r=F(u")=u"-S, (u" - yK* (Ku" - y6)). (26)

(iv) If " meets the stopping criteria, then stop; let 14, =

u”.



(v) If " does not meet the stopping criteria, calculate
M M Su '
(Y aa Y AI)( A):_( A>. 27)
0 I Su; rr

(vi) Iterate 2™ = 4" + du.

(vii) Let n := n + 1; repeat step (i).

4. Numerical Results

This section showed the numerical results with L, sparse
regularization combined with wavelet and shearlet for
image restoration, and we compared our algorithm with
wavelet sparsity constraint method, shearlet sparsity con-
straint method, and TV approach. The relevant code of these
methods can be downloaded at the following websites:

(wavelet) http://www-stat.stanford.edu/~wavelab/,
(shearlet) http://www.shearlet.org/,

(total variation) http://www.math.montana.edu/~
vogel/Book/Codes/Ch8/.

All images in the numerical results are added with Gauss
white noise, and its form is Gwnoise = o * randn(512, 512),
where noise standard deviation ¢ = 30. In the combined
sparsity regularization method, wavelet is “Symlet 4” with
5-level decomposition. The iteration steps of semismooth
Newton method are 10 steps. Signal-to-noise ratio (SNR) is
used to evaluate the effects of image restoration:

IN2 ) 08)
IN-S2)’

SNR = 10 * log (
where S and N are original and restored image.

As mentioned in Section 1, although a wide range of
wavelet-based tools and ideas have been proposed and
studied for image processing, wavelets are only well adapted
to point singularity not the curve singularities, which has
limited its development in many applications. The shearlet
transform has been shown to be a very efficient tool for many
different applications in image processing. Shearlet transform
can be regarded as an optimal representation to deal with
curve-like edges.

IfS = {1//!4 :
tight frame for L*(R?), then an image y can be (nonlinearly)
approximated by the partial sums yy = Y1 (7 ¥,) ¥,
where I is the index set of the N largest coefficients
(> ¥,) ¥, The resulting approximation error is ||y — il =

pu € I} is a basis or, more generally, a

Zueny [0 2. If the image y is C?, then the approximation
yy obtained from the N largest shearlet coefficients satisfies
ly - lelﬁ = O(N compared with the rate O(N7Y of
wavelet. For the nonlinear approximation problem along a
smooth boundary at scale 274, coefficients of the number
of wavelet transform approximately are O(2/), while the
number for shearlet is about O(2//?). If keeping the nonzero
coefficients up to coarse level ], the error that occurs for
wavelets is about O(27) and correspondingly 027Y) for
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shearlets. So Combined with wavelet methods, excellent
performance of the shearlet transform will be shown in image
processing.

The combined shearlet-wavelet method is very efficient
in representing images including curve-like edges and point
singularities. But the current combined systems still have
two main drawbacks: (1) they are not optimal for sparse
approximation of curve features beyond C*-singularities; (2)
the discrete transform is highly redundant. So it has to pay
much higher computational cost for its adaptation.

In first experiment, Haar, Daubechies 4, Symlets 4, and
Coiflet 4 wavelets are compared with the corresponding
combined shearlet-wavelets method. Figure 2 shows that
shearlet-wavelets methods have significant advantages over
the traditional four kinds of wavelets denoising scheme not
only in visual effects, but also in terms of SNR. Combination
of shearlet and Haar, Daubechies, and Coiflet gives similar
results. But combination of shearlet and Haar wavelet does
not show the desired results. This may be because of the
discontinuity of Haar wavelet.

Figure 3 shows performances of wavelet (Symlet 4)
method and shearlet-wavelet (Symlet) method when the
noise standard deviations are 30, 20, 15, and 10. Denoising
results of images (from left to right) have similar trend.

Figure 4 presented the results of image restoring of
Lena (512 x 512) using four different methods (combined
sparse, shearlet, wavelet, and TV method). The combined
sparse method showed the highest SNR, and the restoration
results of the other three methods did not show significant
differences.

Figure 5 shows the residual error between restored image
and original image by different methods. Obviously, the
structural information of original image showed in the
residual errors with the combined method is much better.

Figures 6 and 7 showed the restoring effects of locally
magnified structures. Figures 6 and 7 show that wavelet
and shearlet are advantageous in terms of restoring dot-like
structures (eyes) and curve structures (hats), respectively.
Wavelet in Figure 7 presented excellent restoring effects of
human eyes. However, the restoring of curves on the edge of
hats turned out to be too smooth to show clear boundaries.
In terms of the integrity of image, the combined sparsity
regularization method showed excellent restoration. The
conclusion could be obtained from SNR of Figure 4 and
residual errors of Figure 5.

Figure 8 shows the comparison of the convergence rates
of four methods. It also shows that the sparse regularization of
wavelet, as linear convergence, was faster than TV. However,
the internal iteration of combined sparsity regularization
method was realized by semismooth Newton method, which
managed to achieve superlinear convergence. Thus, the rate
of convergence was faster. It should be noted that wavelet and
shearlet required longer calculation time as sparsity regular-
ization methods compared with the total variation method.
However, the combined sparsity regularization method inte-
grated linear operation of both wavelet and shearlet, thus
showing greater size of matrix. From this perspective, the
efficiency of the combined sparsity regularization method is
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Input image Original image (128 x 128)

‘Wavelets (Haar); 29.15dB

Wavelets (Daubechies 4)

Shearlet-wavelets (Daubechies 4) Shearlet-wavelets (Coiflet 4)

FIGURE 2: Comparison of Haar, Daubechies 4, Symlets 4, and Coiflet 4 with their corresponding combined shearlet-wavelets method.
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30.04dB 32.17dB 32.77dB 34.01dB

32.40dB 33.89dB 34.68dB 37.81dB

(b)

FIGURE 3: Showing performances of the wavelet (Symlet 4) method (a) and shearlet-wavelet (Symlet 4) method (b) when the noise level
(0 = 30,20, 15, 10) changes.

Original image (512 x 512) Noised image; 18.60 dB Wavelets; 29.43 dB

Shearlets; 30.05 dB TV;29.81dB Hybrid sparsity; 32.63 dB

FIGURE 4: Results of image restoration by different methods.
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Residual of wavelets Residual of shearlets
Residual of TV Residual of hybrid sparsity

FIGURE 5: The residual error of original image compared to restored image.

Original image (128 x 128) Noised image Wavelets

Shearlets

Hybrid sparsity

F1GURE 6: The detail (hat) of zoomed results.
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Wavelets

Hybrid sparsity

FIGURE 7: The detail (face) of zoomed results.

10
Original image (128 x 128)
Shearlets
Relative residual versus the number of iterations
T T T T
2.0e — 24
1.8¢ — 2
1.6e -2
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6.0e — 3
4.0e - 3
2.0e -3
0 L L L L
0 2 4 6 8 10
Iterations
—e— Hybrid e TV
-©- Shearlet 7\~ Wavelet

FI1GURE 8: Convergence rate of four different methods.

not necessarily the better. However, this method showed the
best restoration results. Figure 9 provides SNR corresponding
to iterative steps. The results showed that the combined
sparsity constraint method only needed four iterative steps
to get ideal SNR.

SNR versus the number of iterations

32t

30

28

26

SNR

24t

221

20+

18 . . . .
0 2 4 6 8 10
Iterations

—— TV
-A- Wavelet

—e— Hybrid
—©— Shearlet

FIGURE 9: SNR of four different methods.

This method could acquire SNR by two iterations while
the other three methods require 6 iterations. This method
could get ideal SNR with fast rate of convergence. Besides,
the eventual restoring results of the image were much better
than other methods. Table 1 showed SNR results of restoring
four different images with 4 different methods. Although
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TABLE 1: SNR of four images restored by four different methods.

Image Cameraman Boats Barbara Lena
Hybrid 32.01 32.85 30.53 32.63
Shearlet 29.86 30.26 28.76 30.06
vV 29.52 30.11 28.93 29.81
Wavelet 28.86 30.44 28.43 29.42

TaBLE 2: Comparison of the CPU time in seconds for the SSN and
IST algorithms with different sizes of the image Lena.

Size SSN IST

64 X 64 9.9581e — 01 2.3895e + 00
128 x 128 3.5634e + 00 6.2534e + 01
256 x 256 1.5687e + 01 8.3561e + 02
512 x 512 9.8765¢ + 01 5.3486e + 03

the restoration results of the four methods varied from images
to images, the combined constraint methods showed the
optimal restoration results.

In this part we test computational cost of SSN and IST
with different sizes of the image Lena. Table 2 reports CPU
times required for the SSN method and the IST. The results
show SSN is more efficient than IST with same stopping
criterion.

5. Conclusion

Based on the respective advantages of shearlet and wavelet
in the sparsity regularization method, this paper proposed
a combined sparsity regularization method. This method
could efficiently restore the dots-like and curve structures
in images, generating higher SNR of restored images. In
order to improve convergence rate, we did not use the
traditional soft and hard-threshold algorithm, but adopted
semismooth Newton method with superlinear convergence
rate. Numerical results showed the analysis results of Lena
image restoration from various perspectives. Results demon-
strated that the combined sparsity regularization method
could restore more accurately and efficiently in the way of
SNR, residual errors, and local dots or curve structures of
images. In this paper, shearlet was used as a part of the sparse
tools. This method shows extensive potentials in applications
like denoising of seismic exploration, restoration of ground
penetrating radar profile, and so forth.
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