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Discrete Fourier transform- (DFT-) based maximum likelihood (ML) algorithm is an important part of single sinusoid frequency
estimation. As signal to noise ratio (SNR) increases and is above the threshold value, it will lie very close to Cramer-Rao lower
bound (CRLB), which is dependent on the number of DFT points. However, its mean square error (MSE) performance is
directly proportional to its calculation cost. As a modified version of support vector regression (SVR), least squares SVR (LS-
SVR) can not only still keep excellent capabilities for generalizing and fitting but also exhibit lower computational complexity.
In this paper, therefore, LS-SVR is employed to interpolate on Fourier coefficients of received signals and attain high frequency
estimation accuracy. Our results show that the proposed algorithm can make a good compromise between calculation cost and
MSE performance under the assumption that the sample size, number of DFT points, and resampling points are already known.

1. Introduction

Estimating frequency of a single sinusoid based on dis-
crete Fourier transform (DFT) has attracted considerable
attentions for many decades. Rife and Boorstyn exploited
the relationship of maximum likelihood estimator (MLE) to
DFT and proposed a frequency domain periodogram (FDP)
algorithm having two stages: coarse search and fine search
[1]. In order to reduce the calculation cost, the frequency step
of coarse search is appropriately broadened. As a result, the
absolute frequency value is usually not in the DFT points.
Hence, a fine search will be necessary for higher frequency
estimation accuracy.

A great deal of fine search algorithms has erupted mainly
from two sides: the dichotomous search and interpolation on
Fourier coefficients. During the former, an iterative binary
search for the true signal frequency has been presented,
which is particularly suited for digital signal processing
(DSP) implementation [2]. In [3], the same authors have
proposed a number of hybrid estimators that combine the
dichotomous search with various interpolation techniques in
order to reduce the computational complexity at the expense
of acquisition range; and other modified dichotomous search

frequency estimators have been addressed in [4–6]. In the
latter, complex Fourier coefficients have been utilized to
interpolate the true signal frequency between the maximum
and the second highest bin [7]. However, it has been shown to
have a frequency dependent performance [8]. Two improved
estimators have been proposed, which were implemented
iteratively [9, 10]. Rational combination of three spectrum
lines (RCTSL) has been employed as the fine estimation
because of its constant combinational weights in least square
approximation [11]. Other methods used for interpolation
include Lagrange interpolator [12], L-filter DFT [13], non-
linear filter [14], Kaiser window [15], trigonometric polyno-
mial interpolator [16], and narrowband approximation [17].
However, all of the DFT-based algorithms attain better mean
square error (MSE) performance at the expense of calculation
cost.

As the concrete implementation of statistical learning
theory (SLT) and structure risk minimization (SRM) prin-
ciple, SVR overcomes the overfitting and local minimum
problems currently existing in artificial neural network
(ANN). Least squares support vector regression (LS-SVR)
has the improvements of support vector regression (SVR):
inequality constraint is substituted by equality one; a squared
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loss function is taken for the error variable. Consequently,
its good generalizing and learning capabilities are exploited
for interpolation on Fourier coefficients, and a novel DFT-
based frequency estimation algorithm adopting LS-SVR for
fine search is proposed. Our results show that under the
assumption that the sample size, number of DFT points, and
resampling points are already known, the proposed algorithm
can derive low calculation cost while still keeping good MSE
performance.

The remainder of this paper is organized as follows.
Section 2 concretely describes the process of our algorithm.
In Section 3, interpolation by LS-SVR is analyzed, and its
parameters are selected properly to improve generalization
capability. Section 4 shows the results of simulations and
experiments. The paper is finally concluded in Section 5.

2. The Proposed Algorithm

2.1. Signal Model. The sinusoid signal polluted by noise is
modeled as

𝑟
𝑛
= 𝐴𝑒
𝑗(2𝜋𝑓𝑛+𝜃)

+𝑤
𝑛
, 𝑛 = 0, . . . , 𝑁 − 1. (1)

Here, 𝐴 > 0, 𝑓 ∈ [−0.5, 0.5), and 𝜃 ∈ [−𝜋, 𝜋) are the
amplitude, deterministic but unknown frequency, and initial
phase, respectively; 𝑤

𝑛
is an independent complex additive

white Gaussian noise (AWGN) with zero mean and variance
𝜎
2;𝑁 is the sample size.

2.2. An Interpolation by LS-SVR inDFT-Based Frequency Esti-
mation Algorithm. The key idea proposed in [1] is exploited
and a two-step algorithm including coarse search and fine
search is proposed. At first, FDP algorithm is employed and
the number of DFT points is extended to 𝐾 by appending
(𝐾 − 𝑁) zeros. Now, the frequency step is 1/𝐾, and

𝑚 = argmax
𝑘

{
󵄨
󵄨
󵄨
󵄨
𝑅 (𝑓
𝑘
)
󵄨
󵄨
󵄨
󵄨
} , 𝑘 = 0, . . . , 𝐾 − 1, (2)

where 𝑅(𝑓
𝑘
) = ∑

𝑁−1
𝑛=0 𝑟
𝑛
𝑒
−𝑗2𝜋𝑓𝑘𝑛, 𝑓

𝑘
= 𝑘/𝐾. For the sake of

convenience of fast Fourier transform (FFT) calculation,𝐾 is
usually set to 2𝑁, 4𝑁, 8𝑁, . . ..

Secondly, a training set 𝑆 = {(𝑥
𝑛
, 𝑦
𝑛
) | 𝑛 = 1, . . . , 𝐾} is

constructed and LS-SVR is utilized to fit it, where 𝑥
𝑛
= 𝑛 − 1

and 𝑦
𝑛
= 𝑅(𝑛 − 1). Because 𝑦

𝑛
is a complex series and LS-

SVR is only suitable for real number, 𝑦
𝑛
is divided into real

and image part.
(1)Assuming that 𝑓real(𝑥) = (wreal ⋅ 𝜙real(𝑥))+𝑏real insofar

as for 𝜀 to completely fit all elements of 𝑆real = {(𝑥
real
𝑛

, 𝑦
real
𝑛

) |

𝑛 = 1, . . . , 𝐾}, where 𝑥
real
𝑛

= 𝑥
𝑛
= 𝑛 − 1, 𝑦real

𝑛
= Re[𝑦

𝑛
] =

Re[𝑅(𝑛 − 1)], Re[⋅] is the operation of taking real part, (⋅) is
an inner product operator, and 𝜙real(⋅) is a nonlinearmapping

from low to high dimension feature space. 𝜀-insensitive loss
function is defined as

𝐿 (𝑦
real
𝑖

, 𝑓real (𝑥
real
𝑖

))

=

󵄨
󵄨
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󵄨
𝑦
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𝑖

−𝑓real (𝑥
real
𝑖

)

󵄨
󵄨
󵄨
󵄨
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=

{

{
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𝑦
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𝑖

− 𝑓real (𝑥
real
𝑖

)
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≤ 𝜀

󵄨
󵄨
󵄨
󵄨
󵄨
𝑦
real
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− 𝑓real (𝑥
real
𝑖

)

󵄨
󵄨
󵄨
󵄨
󵄨
− 𝜀, else,

𝑖 = 1, . . . , 𝐾,

(3)

where 𝜀 is the coefficient of insensitive loss function. 𝑑real
𝑖

is denoted as the distance from point (𝑥real
𝑖

, 𝑦
real
𝑖

) ∈ 𝑆real to
𝑓real(𝑥):

𝑑
real
𝑖

=

󵄨
󵄨
󵄨
󵄨
󵄨
(wreal ⋅ 𝜙real (xreal𝑖 )) + 𝑏real − 𝑦

real
𝑖

󵄨
󵄨
󵄨
󵄨
󵄨

√1 +
󵄩
󵄩
󵄩
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wreal

󵄩
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2

≤

𝜀

√1 +
󵄩
󵄩
󵄩
󵄩
wreal

󵄩
󵄩
󵄩
󵄩

2
, 𝑖 = 1, . . . , 𝐾.

(4)

According to (4), 𝑓real(𝑥) is optimized through maximiz-
ing 𝜀/√1 + ‖wreal‖

2, that is minimizing ‖wreal‖
2. Thereby, LS-

SVR is presented as

min 𝐽 (wreal, 𝑏real) =
1
2
󵄩
󵄩
󵄩
󵄩
wreal

󵄩
󵄩
󵄩
󵄩

2
,

s.t. 󵄨
󵄨
󵄨
󵄨
󵄨
(wreal ⋅ 𝜙real (𝑥

real
𝑖

)) + 𝑏real −𝑦
real
𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝜀,

𝑖 = 1, . . . , 𝐾.

(5)

In fact, fitting errors larger than 𝜀 always exist. By intro-
ducing error variables 𝑒real

𝑖
and least squares (LS) method, (5)

is converted into

min 𝐽 (wreal, 𝑏real) =
1
2
󵄩
󵄩
󵄩
󵄩
wreal

󵄩
󵄩
󵄩
󵄩

2
+

𝐶

2

𝐾

∑

𝑖=1
(𝑒

real
𝑖

)

2

s.t. 𝑦
real
𝑖

= (wreal ⋅ 𝜙real (𝑥
real
𝑖

)) + 𝑏real + 𝑒
real
𝑖

,

𝑖 = 1, . . . , 𝐾,

(6)

where penalty factor 𝐶 is a positive constant to take com-
promise in LS-SVR’s generalization capability and fitting
errors which are denoted by the first and second item of
𝐽(wreal, 𝑏real), respectively.

Next step, using Lagrange multiplier method and
replacing (𝜙real(𝑥

real
𝑖

) ⋅ 𝜙real(𝑥
real
𝑗

)) with kernel function
𝐾(𝑥

real
𝑖

, 𝑥
real
𝑗

),

[

[

0 1T

1 Q +

1
𝐶

I
]

]

[

𝑏real

𝛼real
] = [

0
Yreal

] , (7)

where 1 = (1, . . . , 1)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐾

T, Yreal = (𝑦
real
1 , . . . , 𝑦

real
𝐾

)
T, 𝛼real =

(𝛼
real
1 , . . . , 𝛼

real
𝐾

)
T, I is an unit matrix with 𝐾 orders, [⋅]T is
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a transpose operator, 𝛼real
1 , . . . , 𝛼

real
𝐾

are Lagrange multipliers,
and Q is a kernel function matrix. Radius basis function
(RBF) is adopted in this study, so

Q
𝑖𝑗
= 𝐾(𝑥

real
𝑖

, 𝑥
real
𝑗

) = exp(

−

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
real
𝑖

− 𝑥
real
𝑗

󵄩
󵄩
󵄩
󵄩
󵄩

2

ℎ
2 )

= exp(

−
󵄩
󵄩
󵄩
󵄩
𝑖 − 𝑗

󵄩
󵄩
󵄩
󵄩

2

ℎ
2 ) ,

(8)

where Q
𝑖𝑗
is the (𝑖, 𝑗)th element of Q and positive constant ℎ

is the width of RBF.
Solving (7) and deriving the regression as

𝑓real (𝑥) = (wreal ⋅ 𝜙real (𝑥)) + 𝑏real

=

𝐾

∑

𝑖=1
𝛼
real
𝑖

𝐾(𝑥
real
𝑖

, 𝑥) + 𝑏real.
(9)

(2) Assuming that 𝑓imag(𝑥) = (wimag ⋅ 𝜙imag(𝑥)) + 𝑏imag
insofar as for 𝜀 to completely fit all elements of 𝑆imag =

{(𝑥
imag
𝑛

, 𝑦
imag
𝑛

) | 𝑛 = 1, . . . , 𝐾}, where 𝑥
imag
𝑛

= 𝑥
𝑛

= 𝑛 − 1,
𝑦
imag
𝑛

= and Im[𝑦
𝑛
] = Im[𝑅(𝑛 − 1)], Im[⋅] is the operation

of taking image part, deriving 𝑓imag(𝑥) = (wimag ⋅ 𝜙imag(𝑥)) +

𝑏imag = ∑
𝐾

𝑖=1 𝛼
imag
𝑖

𝐾(𝑥
imag
𝑖

, 𝑥) + 𝑏imag as (1).
(3) 𝑓(𝑥) = 𝑓real(𝑥) + 𝑗 × 𝑓imag(𝑥).
Then, 𝑓(𝑥) is interpolated by 1/𝐿 interval between𝑚 − 1

and 𝑚 + 1, where 𝐿 is usually set to 2, 4, . . .. It means that
𝑧
𝑙
= 𝑚 − 1 + 𝑙/𝐿, 𝑙 = 1, . . . , 2𝐿 − 1 are substituted into 𝑓(𝑥).

In the end, searching the series 𝑓(𝑧
𝑙
) and deriving

̂
𝑓LS-SVR = ((𝐿(𝑚 − 1) + arg max

𝑙=1,...,2𝐿−1𝑓(𝑧𝑙))/𝐾𝐿)
0.5
−0.5 as

the ultimate frequency estimation value, where the modulo-
1 operation (⋅)

0.5
−0.5 means that the value is reduced to the

interval [−0.5, 0.5).

3. Analyses

Taking the real part of 𝑦
𝑛
, for example, now Yreal =

(𝑦
real
1 , . . . , 𝑦

real
𝐾

)
T
= (Re[𝑅(0)], . . . ,Re[𝑅(𝐾 − 1)]). And, from

(7),

𝑏real =
1T
𝐾
(Q + (1/𝐶) I)−1 Yreal

1T
𝐾
(Q + (1/𝐶) I)−1 1

𝐾+1
,

𝛼real = (Q+

1
𝐶

I)
−1

(Yreal − 1
𝐾
𝑏real) ,

(10)

where (⋅)−1 is the inverse operation.

Ŷreal = (𝑦
real
1 , . . . , 𝑦

real
2𝐿−1)

T
= (𝑓real(𝑧1), . . . , 𝑓real(𝑧2𝐿−1))

T is
defined as LS-SVR’s output of Yreal, and by substituting (10)
into (9), we have

̂Yreal = Q󸀠𝛼real + 12𝐿−1𝑏real = Q󸀠 (Q+

1
𝐶

I)
−1
Yreal

+[I󸀠 −Q󸀠 (Q+

1
𝐶

I)
−1
] 1
𝐾
𝑏real = {Q󸀠 (Q+

1
𝐶

I)
−1

+[I󸀠 −Q󸀠 (Q+

1
𝐶

I)
−1
]

1
𝐾
1T
𝐾
(Q + (1/𝐶) I)−1

1T
𝐾
(Q + (1/𝐶) I)−1 1

𝐾

}

⋅Yreal = 𝛽Yreal,

(11)

where 12𝐿−1 = (1, . . . , 1)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2𝐿−1

T, 𝑄󸀠
𝑖𝑗

= 𝐾(𝑧
𝑖
, 𝑥

real
𝑗

) is the (𝑖, 𝑗)th

element of matrix Q󸀠 with 2𝐿 − 1 rows and 𝐾 columns, I󸀠 =
[12𝐿−1 0

(2𝐿−1)×(𝐾−1)], 12𝐿/𝐾−1 = (1, . . . , 1)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2𝐿/𝐾−1

T, and 0
(2𝐿−1)×(𝐾−1)

is an all-zero matrix with 2𝐿 − 1 rows and𝐾 − 1 columns.
From (11), the LS-SVR process can be regarded as a linear

interpolator whose output is the linear weighted sum of all
inputs, where the weighted coefficients are dependent on
𝛽 = {Q󸀠(Q + (1/𝐶)I)−1 + [I󸀠 − Q󸀠(Q + (1/𝐶)I)−1](1

𝐾
1T
𝐾
(Q +

(1/𝐶)I)−1/1T
𝐾
(Q + (1/𝐶)I)−11

𝐾
)}, which means it is totally

related withQ,Q󸀠 and 𝐶.
When 𝐶 decreases rapidly, Q + (1/𝐶)I ≈ (1/𝐶)I, 𝛽 ≈

1
𝐾
1T
𝐾
/𝐾. From (11), 𝑦real

𝑛
at the different moments keep the

same value obviously, which means the LS-SVR process can
not fit Yreal accurately. Hence, 𝐶 is set as large as possible.
𝑓 = 0.1, 𝜃 = 0, 𝑁 = 32, 𝐾 = 2𝑁, 𝐿 = 8, and ℎ =

1 are set and the number of Monte Carlo experiments is
10000. Figure 1 illustrates the impact of 𝐶 on the estimation
performance, which is consistent with all analyses above.
When 𝐶 is larger than 100, its MSE performance will almost
not increase anymore, so 𝐶 = 100 is set.

At the same time, according to 𝐾(𝑥
real
𝑖

, 𝑥
real
𝑗

) =

exp[−(𝑖 − 𝑗)
2
/ℎ

2
] and the definitions of𝑄

𝑖𝑗
and𝑄

󸀠

𝑖𝑗
in (8) and

(11), it is concluded that

lim
ℎ→ 0

𝑄
𝑖𝑗
=

{

{

{

1, if 𝑖 = 𝑗

0, otherwise,

lim
ℎ→ 0

𝑄
󸀠

𝑖𝑗
=

{

{

{

1, if 𝑖 = 𝐿, 𝑗 = 1

0, otherwise.

(12)

So when

𝐶 = 100,

𝑁 = 32,

lim
ℎ→ 0

𝛽
𝑖𝑗
=

{
{
{
{
{

{
{
{
{
{

{

1, if 𝑖 = 𝐿, 𝑗 = 1

0, if 𝑖 = 𝐿, except 𝑗 = 1
1
𝐾

, otherwise,

(13)
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Figure 1: Impact of𝐶 onMSEwith𝑓 = 0.1, 𝜃 = 0,𝑁 = 32,𝐾 = 2𝑁,
𝐿 = 8, and ℎ = 1.
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Figure 2: Impact of ℎ onMSEwith𝑓 = 0.1, 𝜃 = 0,𝑁 = 32,𝐾 = 2𝑁,
𝐿 = 8, and 𝐶 = 100.

where 𝛽
𝑖𝑗
is (𝑖, 𝑗)th element of matrix 𝛽 with 2𝐿 − 1 rows

and 𝐾 columns. It means now the LS-SVR process can only
make ensure the accuracy of spectrum of original signals
but not interpolate effectively. On the contrary, as a result of
lim
ℎ→+∞

𝑄
𝑖𝑗
= 1, lim

ℎ→+∞
𝑄
󸀠

𝑖𝑗
= 1, now lim

ℎ→+∞
𝛽
𝑖𝑗
= 1/𝐾,

which means that now the LS-SVR process can also not fit
Yreal accurately. Everything is as in Figure 1 except that 𝐶 =

100; Figure 2 illustrates the impact of ℎ on the estimation
performance when ℎ is 0.1, 1, 10, and 100, respectively, which
is consistent with all analyses above. So ℎ = 1 is set.

Assuming that the received signal is 𝑟
𝑛
= 𝑔
𝑛
+ 𝑤
𝑛
, where

𝑔
𝑛
= 𝐴exp[𝑗(2𝜋𝑓𝑛 + 𝜃)], 𝑤

𝑛
are signal and noise components

of 𝑟
𝑛
, the true interpolation value of spectrum of 𝑟

𝑛
at point

𝑧
𝑙
is

𝑅 (𝑧
𝑙
) =

1
𝐾

𝑁−1
∑

𝑛=0
𝑟
𝑛
exp (−

𝑗2𝜋𝑛𝑧
𝑙

𝐾

)

=

1
𝐾

𝑁−1
∑

𝑛=0
(𝑔
𝑛
+𝑤
𝑛
) exp (−

𝑗2𝜋𝑛𝑧
𝑙

𝐾

)

=

1
𝐾

𝑁−1
∑

𝑛=0
𝑔
𝑛
exp(−

𝑗2𝜋𝑛𝑧
𝑙

𝐾

)

+

1
𝐾

𝑁−1
∑

𝑛=0
𝑤
𝑛
exp (−

𝑗2𝜋𝑛𝑧
𝑙

𝐾

) .

(14)

At the same time, the estimating interpolation value
of spectrum of 𝑟

𝑛
at point 𝑧

𝑙
is attained through LS-SVR.

Consider

𝑓 (𝑧
𝑙
) = 𝑓real (𝑧𝑙) + 𝑗𝑓imag (𝑧𝑙) =

𝐾

∑

𝑖=1
𝛽
𝑙𝑖
Re [𝑅 (𝑖 − 1)]

+ 𝑗

𝐾

∑

𝑖=1
𝛽
𝑙𝑖
Im [𝑅 (𝑖 − 1)] =

𝐾

∑

𝑖=1
𝛽
𝑙𝑖
𝑅 (𝑖 − 1)

=

𝐾

∑

𝑖=1
𝛽
𝑙𝑖
{

1
𝐾

𝑁−1
∑

𝑛=0
𝑔
𝑛
exp [−

𝑗2𝜋𝑛 (𝑖 − 1)
𝐾

]

+

1
𝐾

𝑁−1
∑

𝑛=0
𝑤
𝑛
exp [−

𝑗2𝜋𝑛 (𝑖 − 1)
𝐾

]} =

1
𝐾

⋅

𝑁−1
∑

𝑛=0
𝑔
𝑛

𝐾

∑

𝑖=1
𝛽
𝑙𝑖
exp [−

𝑗2𝜋𝑛 (𝑖 − 1)
𝐾

]+

1
𝐾

⋅

𝑁−1
∑

𝑛=0
𝑤
𝑛

𝐾

∑

𝑖=1
𝛽
𝑙𝑖
exp [−

𝑗2𝜋𝑛 (𝑖 − 1)
𝐾

] .

(15)

As a result, the error between (14) and (15) is

𝑒 (𝑧
𝑙
) = 𝑅 (𝑧

𝑙
) −𝑓 (𝑧

𝑙
) =

1
𝐾

𝑁−1
∑

𝑛=0
𝑔
𝑛
{exp (−

𝑗2𝜋𝑛𝑧
𝑙

𝐾

)

−

𝐾

∑

𝑖=1
𝛽
𝑙𝑖
exp [−

𝑗2𝜋𝑛 (𝑖 − 1)
𝐾

]}+

1
𝐾

⋅

𝑁−1
∑

𝑛=0
𝑤
𝑛
{exp (−

𝑗2𝜋𝑛𝑧
𝑙

𝐾

)

−

𝐾

∑

𝑖=1
𝛽
𝑙𝑖
exp [−

𝑗2𝜋𝑛 (𝑖 − 1)
𝐾

]} ,

(16)

where the noise item 𝑤(𝑧
𝑙
) =

(1/𝐾)∑
𝑁−1
𝑛=0 𝑤

𝑛
{exp(−𝑗2𝜋𝑛𝑧

𝑙
/𝐾) − ∑

𝐾

𝑖=1 𝛽𝑙𝑖 exp[−𝑗2𝜋𝑛(𝑖 −
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1)/𝐾]} is still an independent complex AWGN. Its mean and
variance are listed as follows:

𝜉
𝑤
(𝑧
𝑙
) = 𝐸 {𝑤 (𝑧

𝑙
)} = 𝐸{

1
𝐾

𝑁−1
∑

𝑛=0
𝑤
𝑛
{exp(−

𝑗2𝜋𝑛𝑧
𝑙

𝐾

)

−

𝐾

∑

𝑖=1
𝛽
𝑙𝑖
exp [−

𝑗2𝜋𝑛 (𝑖 − 1)
𝐾

]}} = 0,

𝜎
2
𝑤
(𝑧
𝑙
) = 𝐸 {

󵄨
󵄨
󵄨
󵄨
𝑤 (𝑧
𝑙
) − 𝐸 {𝑤 (𝑧

𝑙
)}
󵄨
󵄨
󵄨
󵄨

2
} = 𝐸 {

󵄨
󵄨
󵄨
󵄨
𝑤
𝑙

󵄨
󵄨
󵄨
󵄨

2
} =

𝜎
2

𝐾
2

⋅

𝑁−1
∑

𝑛=0

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

exp(−

𝑗2𝜋𝑛𝑧
𝑙

𝐾

)

−

𝐾

∑

𝑖=1
𝛽
𝑙𝑖
exp [−

𝑗2𝜋𝑛 (𝑖 − 1)
𝐾

]

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

.

(17)

Then, the mean and variance of 𝑒(𝑧
𝑙
) are

𝜉
𝑒
(𝑧
𝑙
) = 𝐸 {𝑒 (𝑧

𝑙
)} =

1
𝐾

2

𝑁−1
∑

𝑛=0
𝑔
𝑛
{exp(−

𝑗2𝜋𝑛𝑧
𝑙

𝐾

)

−

𝐾

∑

𝑖=1
𝛽
𝑙𝑖
exp [−

𝑗2𝜋𝑛 (𝑖 − 1)
𝐾

]} ,

𝜎
2
𝑒
(𝑧
𝑙
) = 𝐸 {

󵄨
󵄨
󵄨
󵄨
𝑒 (𝑧
𝑙
) − 𝐸 {𝑒 (𝑧

𝑙
)}
󵄨
󵄨
󵄨
󵄨

2
} = 𝐸 {

󵄨
󵄨
󵄨
󵄨
𝑤 (𝑧
𝑙
)

− 𝐸 {𝑤 (𝑧
𝑙
)}
󵄨
󵄨
󵄨
󵄨

2
} =

𝜎
2

𝐾
2

𝑁−1
∑

𝑛=0

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

exp (−

𝑗2𝜋𝑛𝑧
𝑙

𝐾

)

−

𝐾

∑

𝑖=1
𝛽
𝑙𝑖
exp [−

𝑗2𝜋𝑛 (𝑖 − 1)
𝐾

]

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

.

(18)

Define

𝐸 {𝜎
2
𝑒
(𝑧
𝑙
)}

𝐸 {
󵄨
󵄨
󵄨
󵄨
𝑅 (𝑧
𝑙
)
󵄨
󵄨
󵄨
󵄨

2
}

= 𝜎
2
𝐸 {∑
𝑁−1
𝑛=0

󵄨
󵄨
󵄨
󵄨
󵄨
exp (−𝑗2𝜋𝑛𝑧

𝑙
/𝐾) − ∑

𝐾

𝑖=1 𝛽𝑙𝑖 exp [−𝑗2𝜋𝑛 (𝑖 − 1) /𝐾]

󵄨
󵄨
󵄨
󵄨
󵄨

2
}

𝐸 {

󵄨
󵄨
󵄨
󵄨
󵄨
∑
𝑁−1
𝑛=0 𝑟
𝑛
exp (−𝑗2𝜋𝑛𝑧

𝑙
/𝐾)

󵄨
󵄨
󵄨
󵄨
󵄨

2
}

,

𝐸 {
󵄨
󵄨
󵄨
󵄨
𝜉
𝑒
(𝑧
𝑙
)
󵄨
󵄨
󵄨
󵄨

2
}

𝐸 {
󵄨
󵄨
󵄨
󵄨
𝑅 (𝑧
𝑙
)
󵄨
󵄨
󵄨
󵄨

2
}

=

𝐸 {

󵄨
󵄨
󵄨
󵄨
󵄨
∑
𝑁−1
𝑛=0 𝑔
𝑛
{exp (−𝑗2𝜋𝑛𝑧

𝑙
/𝐾) − ∑

𝐾

𝑖=1 𝛽𝑙𝑖 exp [−𝑗2𝜋𝑛 (𝑖 − 1) /𝐾]}

󵄨
󵄨
󵄨
󵄨
󵄨

2
}

𝐸 {

󵄨
󵄨
󵄨
󵄨
󵄨
∑
𝑁−1
𝑛=0 𝑟
𝑛
exp (−𝑗2𝜋𝑛𝑧

𝑙
/𝐾)

󵄨
󵄨
󵄨
󵄨
󵄨

2
}

.

(19)

Everything is as in Figure 1 except that 𝐶 = 100, 𝐿 = 4,
and SNR = 0 dB; the values of (19) with different 𝑧

𝑙
are

calculated:

[

[

𝐸 {𝜎
2
𝑒
(𝑧1)}

𝐸 {
󵄨
󵄨
󵄨
󵄨
𝜉
𝑒
(𝑧1)

󵄨
󵄨
󵄨
󵄨

2
}

, . . . ,

𝐸 {𝜎
2
𝑒
(𝑧7)}

𝐸 {
󵄨
󵄨
󵄨
󵄨
𝜉
𝑒
(𝑧7)

󵄨
󵄨
󵄨
󵄨

2
}

]

]

T

= [7.59

× 10−5, 1.04× 10−4, 7.43× 10−5, 4.51× 10−5, 7.39

× 10−5, 1.03× 10−4, 7.48× 10−5]
T
,

[

[

𝐸 {
󵄨
󵄨
󵄨
󵄨
𝜉
𝑒
(𝑧1)

󵄨
󵄨
󵄨
󵄨

2
}

𝐸 {
󵄨
󵄨
󵄨
󵄨
𝑅 (𝑧1)

󵄨
󵄨
󵄨
󵄨

2
}

, . . . ,

𝐸 {
󵄨
󵄨
󵄨
󵄨
𝜉
𝑒
(𝑧7)

󵄨
󵄨
󵄨
󵄨

2
}

𝐸 {
󵄨
󵄨
󵄨
󵄨
𝑅 (𝑧7)

󵄨
󵄨
󵄨
󵄨

2
}

]

]

T

= [2.32

× 10−6, 4.27× 10−6, 2.39× 10−6, 1.23× 10−6, 4.52

× 10−6, 7.15× 10−6, 4.69× 10−6]
T
.

(20)

The values of (20) are very small, whichmeans when SNR
is higher than threshold, the estimating value through LS-
SVR and true value of spectrumof 𝑟

𝑛
at point 𝑧

𝑙
are almost the

same. It validates the validity of interpolation in our proposed
algorithm.

4. Simulations and Experiments

The proposed algorithm entitled LS-SVR is compared with
other fives: FDP proposed in [1]; dichotomous search (DS)
proposed in [2]; modify dichotomous search (Modify DS)
proposed in [4]; iterative interpolation on Fourier coefficients
(IIFC) proposed in [9]; RCTSL proposed in [11]. Analyzing
these five algorithms, it is known that the MSE performances
of FDP and RCTSL algorithms will be improved as their DFT
points increase, and the MSE performances of DS, Modified
DS, and IIFC algorithms will be improved as their iterative
numbers increase. In order to compare these algorithms’
calculation cost under nearly the same precondition, 𝐾 =

32𝑁 in FDP, 𝐾 = 2𝑁, 𝑄DS = 20 in DS, 𝑄M-DS = 20 in
ModifiedDS,𝑄IIFC = 10 in IIFC,𝐾 = 8𝑁 in RCTSL,𝐾 = 2𝑁,
and 𝐿 = 8 in LS-SVR are set to keep their MSE performance
almost the same.

4.1. Mean Performance. Everything is as in Figure 1 except
that 𝐶 = 100. Figure 3 illustrates the mean of these
six algorithms, while SNR is −4 dB and 0 dB, respectively.
Obviously, when SNR is low, the unbiased performances of
Modified DS and IIFC algorithms are worse than the other
four.

4.2. Frequency Estimation Performance. As in Figure 3,
Figure 4 illustrates the MSE curves of these six algorithms
versus SNR. From Figure 4, the threshold values of DS,
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Figure 3: (a) Mean with 𝜃 = 0, 𝑁 = 32, 𝐾 = 2𝑁, 𝐿 = 8, 𝐶 = 100, ℎ = 1, and SNR = −4 dB. (b) Mean with 𝜃 = 0, 𝑁 = 32, 𝐾 = 2𝑁, 𝐿 = 8,
𝐶 = 100, ℎ = 1, and SNR = 0 dB.
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Figure 4: (a) MSE of frequency estimation versus SNR with 𝑓 = 0.1, 𝜃 = 0, 𝑁 = 32, 𝐾 = 2𝑁, 𝐿 = 8, 𝐶 = 100, ℎ = 1, and SNR ∈ [−6, 3] dB.
(b) MSE of frequency estimation versus SNR with 𝑓 = 0.1, 𝜃 = 0,𝑁 = 32, 𝐾 = 2𝑁, 𝐿 = 8, 𝐶 = 100, ℎ = 1, and SNR ∈ [0, 2] dB.

ModifiedDS, and IIFC algorithms are higher than other three
ones. And, these six algorithms’ MSEs are kept almost the
same when they are all above their threshold values, where
LS-SVR one is the best one.

4.3. Impact of DFT Points 𝐾. As in Figure 3, the MSE curves
of LS-SVR algorithm versus SNR are plotted in Figure 5,

while𝐾 is𝑁, 2𝑁, 4𝑁, and 8𝑁, respectively. Now, the sample
size and interpolation times are fixed. From Figure 5, when
𝐾 = 𝑁, its MSE value will not approach Cramer-Rao lower
bound (CRLB) as SNR increases, which means now the LS-
SVR algorithm is ineffective; when 𝐾 = 2𝑁, 4𝑁, and 8𝑁,
their MSE values are nearly the same, and the 𝐾 = 2𝑁
condition is a little better than the two others. The reason is
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Figure 5: (a) Impact of 𝐾 on MSE with 𝑓 = 0.1, 𝜃 = 0, 𝑁 = 32, 𝐿 = 8, 𝐶 = 100, ℎ = 1, and SNR ∈ [−6, 3] dB. (b) Impact of 𝐾 on MSE with
𝑓 = 0.1, 𝜃 = 0,𝑁 = 32, 𝐿 = 8, 𝐶 = 100, ℎ = 1, and SNR ∈ [−1, 1] dB.
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Figure 6: (a) Impact of 𝐿 on MSE with 𝑓 = 0.1, 𝜃 = 0,𝑁 = 32,𝐾 = 2𝑁, 𝐶 = 100, ℎ = 1, and SNR ∈ [−6, 3] dB. (b) Impact of 𝐿 on MSE with
𝑓 = 0.1, 𝜃 = 0,𝑁 = 32, 𝐾 = 2𝑁, 𝐶 = 100, ℎ = 1, and SNR ∈ [−1, 1] dB.

the fact that the proposed interpolation process is fulfilled by
LS-SVR fitting in the paper; too many interpolation numbers
during the adjacent DFT points will result in overfitting.
Besides, the calculation cost of 𝐾 = 2𝑁 is less than 𝐾 = 4𝑁
and 8𝑁; hence𝐾 = 2𝑁 is set in this paper.

4.4. Impact of Interpolation Times 𝐿. As in Figure 3, the
MSE curves of LS-SVR algorithm versus SNR are plotted in

Figure 6, while 𝐿 is 2, 4, 8, and 16, respectively. Now, the
sample size and DFT points are fixed. From Figure 6, its MSE
performance will be improved as 𝐿 increases.

4.5. Impact of Sample Size𝑁. As in Figure 3, the MSE curves
of LS-SVR algorithm versus SNR are plotted in Figure 7,
while 𝑁 is 8, 16, 32, and 64, respectively. Now, the interpola-
tion times are fixed, and DFT points are directly proportional
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Figure 7: Impact of𝑁 on MSE with 𝑓 = 0.1, 𝜃 = 0, 𝐾 = 2𝑁, 𝐿 = 8,
𝐶 = 100, ℎ = 1, and SNR ∈ [−6, 3] dB.

to 𝑁 with a fixed value. From Figure 7, its threshold value
will decrease and MSE performance will be improved as 𝑁
increases.

4.6. Calculation Cost. Calculation cost is an important factor
to impact the real time of frequency estimation algorithm.
The calculation cost of these six algorithms is analyzed
through calculating the operation number of their real
multiplication and real addition under the same parameter
setting as Figure 3.

The DFT value with 𝐾 points can be derived by fast
Fourier transform (FFT), that is, 𝐾log

2
𝐾/2 complex multi-

plication and 𝐾log2𝐾 complex addition. Besides, 1 complex
multiplication needs 4 real multiplications and 2 real addi-
tions; 1 complex addition needs 2 real additions. In order to
decrease the calculation cost, FDP algorithm also integrates
coarse and fine search, where the point of coarse search
is 2𝑁. Contemporarily, 1 modular operation needs 2 real
multiplications and 1 real addition; 1 comparing operation
needs 1 real addition. Consequently, the operation numbers
of real multiplication 𝑀FDP and real addition 𝐴FDP of FDP
algorithm are

𝑀FDP =

32𝑁 log2 (32𝑁)

2
× 4+ 2𝑁× 2+ (2× 16− 2)

× 2 = 64𝑁 log2𝑁+ 324𝑁+ 60 = 20668,

𝐴FDP =

32𝑁 log2 (32𝑁)

2
× 2+ 32𝑁 log2 (32𝑁)× 2

+ 2𝑁+ (2𝑁− 1) + (2× 16− 2)

+ (2× 16− 2) = 96𝑁 log2𝑁+ 484𝑁+ 59

= 30907.

(21)

The coarse search of DS algorithm adopts FDP one with
𝐾 = 2𝑁 points, so it needs 4𝑁log2𝑁+8𝑁 real multiplication
and 6𝑁log2𝑁 + 10𝑁 − 1 real addition. Also, 1 iteration
needs 𝑁 complex multiplication, 𝑁 − 1 complex addition,
4 real additions, and 1 modular operation. Accordingly,
the operation numbers of real multiplication 𝑀DS and real
addition 𝐴DS of DS algorithm are

𝑀DS = 4𝑁 log2𝑁+ 8𝑁+ (𝑁× 4+ 2) 𝑄DS

= 4𝑁 log2𝑁+ 88𝑁+ 40 = 3496,
𝐴DS = 6𝑁 log2𝑁+ 10𝑁− 1

+ [𝑁× 2+ (𝑁− 1) × 2+ 4+ 1] 𝑄DS

= 6𝑁 log2𝑁+ 90𝑁+ 59 = 3899.
(22)

The coarse search of Modified DS algorithm adopts FDP
one with 𝐾 = 𝑁 points, so it needs 2𝑁log2𝑁 + 2𝑁
real multiplication and 3𝑁log2𝑁 + 2𝑁 − 1 real addition.
Also, 1 iteration needs 2𝑁 complex multiplication, 2𝑁 − 2
complex addition, 6 real additions, and 2modular operations.
Accordingly, the operation numbers of real multiplication
𝑀M-DS and real addition𝐴M-DS ofModifiedDS algorithm are

𝑀M-DS = 2𝑁 log2𝑁+ 2𝑁+ (2𝑁× 4+ 2× 2) 𝑄M-DS

= 2𝑁 log2𝑁+ 162𝑁+ 80 = 5584,

𝐴M-DS = 3𝑁 log2𝑁+ 2𝑁− 1

+ [2𝑁× 2+ (2𝑁− 2) × 2+ 6+ 1] 𝑄M-DS

= 3𝑁 log2𝑁+ 162𝑁+ 59 = 5723.

(23)

The coarse search of IIFC algorithm adopts FDP one with
𝐾 = 𝑁 points, so it needs 2𝑁log2𝑁 + 2𝑁 real multiplication
and 3𝑁log2𝑁 + 2𝑁 − 1 real addition. Also, 1 iteration needs
2𝑁 complex multiplication, 2𝑁 − 2 complex addition, 6
real additions, and 2 modular operations. Accordingly, the
operation numbers of real multiplication 𝑀IIFC and real
addition 𝐴 IIFC of IIFC algorithm are

𝑀IIFC = 2𝑁 log2𝑁+ 2𝑁+ [(2𝑁+ 1) × 4+ 1] 𝑄IIFC

= 2𝑁 log2𝑁+ 82𝑁+ 50 = 2994,

𝐴 IIFC = 3𝑁 log2𝑁+ 2𝑁− 1

+ [(2𝑁+ 1) × 2+ 2𝑁× 2+ 6] 𝑄IIFC

= 3𝑁 log2𝑁+ 82𝑁+ 79 = 3183.

(24)

The coarse search of RCTSL algorithm adopts FDP one
with 𝐾 = 4𝑁 points, so it needs 8𝑁log2𝑁 + 24𝑁 real
multiplication and 12𝑁log2𝑁+32𝑁−1 real addition. Also, it
needs 7 realmultiplications and 4 real additions. Accordingly,
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Table 1: Calculation cost of all these six algorithms.

Real multiplication 𝑁 = 32 Real addition 𝑁 = 32
FDP 64𝑁log2𝑁 + 324𝑁 + 60 20668 96𝑁log2𝑁 + 484𝑁 + 59 30907
DS 4𝑁log2𝑁 + 88𝑁 + 40 3496 6𝑁log2𝑁 + 90𝑁 + 59 3899
Modified DS 2𝑁log2𝑁 + 162𝑁 + 80 5584 3𝑁log2𝑁 + 162𝑁 + 59 5723
IIFC 2𝑁log2𝑁 + 82𝑁 + 50 2994 3𝑁log2𝑁 + 82𝑁 + 79 3183
RCTSL 8𝑁log2𝑁 + 24𝑁 + 7 2055 12𝑁log2𝑁 + 32𝑁 + 3 2947
LS-SVR 4𝑁log2𝑁 + 68𝑁 + 30 2846 6𝑁log2𝑁 + 70𝑁 − 1 3199

the operation numbers of real multiplication𝑀RCTSL and real
addition 𝐴RCTSL of RCTSL algorithm are

𝑀RCTSL = 8𝑁 log2𝑁+ 24𝑁+ 7 = 2055,

𝐴RCTSL = 12𝑁 log2𝑁+ 32𝑁− 1+ 4

= 12𝑁 log2𝑁+ 32𝑁+ 3 = 2947.

(25)

The coarse search of LS-SVR algorithm adopts FDP one
with 𝐾 = 2𝑁 points, so it needs 4𝑁log2𝑁 + 8𝑁 real
multiplication and 6𝑁log2𝑁+ 10𝑁− 1 real addition. Also, if
𝑁, 𝐾, and 𝐿 are fixed, matricesQ and Q󸀠 are already known,
so the value of matrix 𝛽 with 2𝐿 − 1 rows and𝐾 columns can
be calculated. As a result, it only has to add the calculation
cost for (11) and comparison of 2𝐿−1 real number. It is worth
stressing that (11) is used for real and image part, respectively.
Accordingly, the operation numbers of real multiplication
𝑀LS-SVR and real addition 𝐴LS-SVR of LS-SVR algorithm are

𝑀LS-SVR = 4𝑁 log2𝑁+ 8𝑁+ [2𝑁× (2× 8− 1)] × 2

+ (2× 8− 1) × 2

= 4𝑁 log2𝑁+ 68𝑁+ 30 = 2846,

𝐴LS-SVR = 6𝑁 log2𝑁+ 10𝑁− 1

+ [(2𝑁− 1) × (2× 8− 1)] × 2+ 2× 8− 1

+ 2× 8− 1 = 6𝑁 log2𝑁+ 70𝑁− 1

= 3199.

(26)

As in Figure 7, the operation numbers of real multipli-
cation and real addition of these six algorithms are listed
in Table 1. Additionally, 𝑁 = 32 is taken, for example, to
compare. From Table 1, the calculation cost of FDP one is
much larger than the other five; second larger is Modified
DS one and the next is DS one. The calculation cost of LS-
SVR one is between IIFC and RCTSL one, and the distances
between each of two are very small.

5. Conclusions

TheMSE performance and the calculation cost in DFT-based
frequency estimation algorithm are a pair relationship of
interaction and interrestriction. The better its MSE perfor-
mance is, the higher its calculation cost is. However, very high
calculation cost will restrict the algorithm’s real time capacity.

So, how to compromise between these two factors is a hot and
key point.

This paper utilizes LS-SVR’s good generalizing and fitting
capabilities while keeping lower computational complex-
ity and proposes a LS-SVR-based interpolation frequency
estimation algorithm. Firstly, the sparser DFT points are
learned and the continuous spectrum with less fitting errors
is predicted. Then, because any output of LS-SVR is the
linear weighted sum of all inputs, LS-SVR is used as a linear
interpolator to resample theDFT points densely and decrease
the calculation cost. At last, the resampling DFT points
between the left and right of its maximum value are searched
to derive the frequency estimation value.

In order to compare the calculation cost of the proposed
and other DFT-based algorithms, the parameters of all these
algorithms are set to ensure nearly the same precondition.
Stressed that, the sample size, number of DFT points, and re-
sampling points are already known. Our results show that the
proposed algorithm can make a good compromise between
MSE performance and calculation cost under the assumption
mentioned above.

At the same time, the proper ranges of LS-SVR’s parame-
ters are obtained. As a next step, how to select them exactly is
an important research point.
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