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Fuzzy dynamic reliability models of mechanical parallel systems with respect to stress parameters and strength parameters are
developed in this paper. Strength degradation path dependence (SDPD) and failure dependence of components in the system are
two main problems to be addressed in developing fuzzy dynamic reliability of mechanical systems, which are taken into account
in the proposed reliability models. In addition, the SDPD sensitivity function and the failure dependence sensitivity function are
defined to analyze the influences of the fuzzy characteristics of stress on the effects of SDPD and failure dependence of mechanical
components on dynamic reliability. The bolted joint systems for connection between launch vehicle and satellite are chosen as
illustrative examples to demonstrate the proposed model. Moreover, Monte Carlo simulations are carried out to validate the
effectiveness of the proposed models. The results show that SDPD and failure dependence of components have significant impacts
on fuzzy dynamic reliability of mechanical systems. Besides, the influences of the fuzzy characteristics of stress on SDPD sensitivity
and that on failure dependence sensitivity are different.

1. Introduction

Over the last few decades, reliability models of mechanical
systems have been well reported in the probability context
[1–5]. The basic idea for reliability analysis of mechanical
systems is to calculate the system reliability according to the
component reliability in the system and structure function
(SF). For mechanical components, the well-known stress-
strength interference (SSI) model is the most important the-
ory for reliability assessment, where both stress and strength
aremodeled as randomvariables. In the SSImodel, the failure
of mechanical components is defined as the probability that
the stress is higher than strength as shown in Figure 1. The
interference area between the probability density function
(pdf) curve of stress and the pdf curve of strength is an
indication of the possibility that the failure of the component
might occur.

However, for mechanical systems in aerospace products,
failures are relatively rare events. It is a costly and difficult

undertaking to collect enough data to calculate the probabil-
ity of failure. Besides, due to the complexity of the operational
environment, it is difficult to obtain a large number of samples
to precisely describe the statistical characteristics of stress
caused by environmental load on the mechanical systems
in aerospace products, especially in the preliminary design
stage where many factors have to be determined by the
judgment of engineers. In this case, it can only increase the
uncertainty in reliability estimation to adopt the imprecise
pdf of stress. Alternatively, fuzzy theory can be used to deal
with this problem bymodeling stress in an analytical form via
integrating the limited available data and expert judgments.

As a matter of fact, fuzzy variables are always used to deal
with the uncertainty brought by insufficient information. In
this paper, we model the stress at each load application as a
fuzzy variable.We assume that the uncertainty of stress comes
from the insufficient information about the stress. When the
amount of available information increases, which is reflected
via the enhancement of membership degree, the uncertainty

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2015, Article ID 649726, 9 pages
http://dx.doi.org/10.1155/2015/649726



2 Mathematical Problems in Engineering

Probability density 
Interference section

Probability density function of stress

Pr
ob

ab
ili

ty
 d

en
sit

y 
fu

nc
tio

n

function of strength

Stress/strength

Figure 1: Schematic SSI model.
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Figure 2: Schematic stress process and strength process.

of stress decreases and the stress tends to be a deterministic
number.

Since Zadeh introduced the fuzzy theory in 1965 [6], great
efforts have been made to develop fuzzy reliability models.
Cai et al. classified the fuzzy reliabilitymodels into three basic
classes: the robust reliability models, the posbist reliability
models, and the posfust reliability models [7, 8]. Besides,
Cai et al. proposed fuzzy reliability models of various typical
systems based on the possibility assumption and the fuzzy
state assumption [9]. Wu discussed the relationship between
the fuzzy reliability of a system and the fuzzy reliability of its
components via the proposed fuzzy reliability models [10].
Utkin proposed the method for fuzzy reliability analysis and
fuzzy reliability optimization [11]. Huang et al. presented
an approach for reliability estimation by using the Bayesian
method based on fuzzy lifetime data [12]. Bing et al. extended
the conventional SSI model to the fuzzy stress—random
strength interference model to analyze the fuzzy reliability of
mechanical components [13]. These fuzzy reliability models
establish the basis and framework for reliability assessment
in the possibility context. However, for mechanical systems,
it is difficult to calculate reliability by directly employing these
models because of the problems as follows.

(1) Strength degradation exists commonly for mechani-
cal components in practical engineering.The interac-
tion between the stress and the strength is a dynamic

process. Most of current fuzzy reliability models
of mechanical components and mechanical systems
are static, which are only suitable for the reliability
calculation at a specificmoment as shown in Figure 2.
As mentioned in the authors’ former research in [14],
when considering the strength degradation process
of mechanical components, the strength degradation
path dependence (SDPD) is a main problem to
be addressed in developing dynamic reliability of
mechanical components, which also exists in estab-
lishing fuzzy reliability models. As a matter of fact,
fuzzy dynamic reliability models of parallel mechan-
ical systems considering SDPD is seldom reported.
Besides, the fuzzy characteristics of stress have great
influences on SDPD, which is also seldom reported
in current literatures. In this paper, impacts of fuzzy
characteristics of stress on the effects of SDPD on
reliability will be analyzed via the proposed fuzzy
dynamic reliability models.

(2) Due to the unique operating mode of mechani-
cal product, failure dependence exists commonly in
mechanical systems and the components, under the
stress with a common source of load, in the system are
statistically dependent on each other. Fuzzy dynamic
reliability models of parallel mechanical systems with
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respect to stress and material parameters, which con-
sider failure dependence between different compo-
nents in a system, are seldom reported. Correspond-
ingly, the influences of fuzzy characteristics of stress
on failure dependence need further investigation. In
this paper, the sensitivity analysis of dynamic system
reliability with respect to fuzzy parameters of stress
will be performed in order to present how the fuzzy
characteristics of stress affect the failure dependence
behavior of components in mechanical systems.

The remainder of this paper is organized as follows.
In Section 2, fuzzy dynamic reliability models of parallel
mechanical systems are developed, which take SDPD and
failure dependence into consideration. In Section 3, Monte
Carlo simulations are carried out to verify the reliability
models. Furthermore, the influences of fuzzy characteristics
of stress on both the effects of SDPD and the effects of failure
dependence on reliability are analyzed via the numerical
examples.

2. Fuzzy Dynamic Reliability Models of
Parallel Mechanical Systems

Denote the pdf of a random variable 𝑥 by 𝑓(𝑥) and the
membership function (MF) of 𝑥 belonging to a fuzzy set 𝑋
by 𝜇
̃

𝑋

(𝑥). Then, the fuzzy probability that 𝑥 belongs to𝑋 can
be calculated as [6]

𝑃 (𝑥) = ∫

∞

−∞

𝜇
̃

𝑋

(𝑥) 𝑓 (𝑥) 𝑑𝑥. (1)

Meanwhile, the fuzzy probability in (1) can also be calculated
by employing the 𝛼-cut of fuzzy set as follows:

𝑃 (𝑥) = ∫

1

0

∫

̃

𝑋

𝑈

𝛼

̃

𝑋

𝐿

𝛼

𝑓 (𝑥) 𝑑𝑥 𝑑𝛼. (2)

In fact, the expression of fuzzy probability in (2) provides
the basis for reliability evaluation with multiple format of
variables, such as the random variables and fuzzy variables,
involved in the calculation. As mentioned above, in some
cases, it is difficult to obtain the accurate pdf of stress on
components in mechanical systems because of insufficient
load history samples, while most pdf of material parameters
can be acquired from handbooks for mechanical design or
experiment. Therefore, in this paper, the stress is modeled as
a fuzzy variable and strength ismodeled as a randomvariable.
As a matter of fact, the triangular membership function
(TMF) is always adopted to express the fuzzy characteristics
of stress and the parameters in TMF of stress 𝑠 can be
evaluated by using the method in [13]. The mathematical
expression of TMF of 𝑠 can be given by

𝜇
𝑠

(𝑠) =

{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{

{

𝑠 − 𝑎

𝑏 − 𝑎

, 𝑎 ≤ 𝑠 < 𝑏,

1, 𝑠 = 𝑏,

𝑠 − 𝑐

𝑏 − 𝑐

, 𝑏 ≤ 𝑠 < 𝑐,

0, otherwise.

(3)

The TMF can also be expressed as a triplet (𝑎, 𝑏, 𝑐) for
descriptive convenience. In addition, appoint the MF to
be equal to a specific value of 𝛼. Then, the elements with
degree of membership larger than 𝛼 constitute an 𝛼-cut.
Through the 𝛼-cut, the computation under fuzzy uncertainty
can be transformed into the computation under the interval
uncertainty. Correspondingly, the calculation with respect to
fuzzy numbers can be reduced to the calculation with respect
to interval numbers. To consider the weight of elements on
a specified interval and for the purpose of computational
convenience in case of both random variables and inter-
val variables existing, a certain distribution is sometimes
assumed for the elements on the interval, such as the uniform
distribution [15, 16] or the linear distribution [17]. As pointed
out by Nguyen et al. when the distribution is unknown on a
given interval, themaximumentropy approach is always used
to determine an appropriate distribution for the elements on
the interval. In the case where the uniform distribution is
adopted, the entropy reaches its maximum value [18]. In this
paper, we assign uniform distribution to the elements in an
𝛼-cut and denote the fuzzy stress at the 𝑖th load application
by (𝑎
𝑖

, 𝑏
𝑖

, 𝑐
𝑖

). Then, the distribution function of the 𝛼-cut can
be given by

𝐹
𝑖𝛼

(𝑠
𝑖

)

=

{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{

{

0, 𝑠
𝑖

< 𝑎
𝑖

+ (𝑏
𝑖

− 𝑎
𝑖

) 𝛼,

𝑠
𝑖

− 𝑎
𝑖

− (𝑏
𝑖

− 𝑎
𝑖

) 𝛼

(1 − 𝛼) (𝑐
𝑖

− 𝑎
𝑖

)

, 𝑎
𝑖

+ (𝑏
𝑖

− 𝑎
𝑖

) 𝛼 ≤ 𝑠
𝑖

< 𝑐
𝑖

− (𝑐
𝑖

− 𝑏
𝑖

) 𝛼,

1, 𝑠
𝑖

≥ 𝑐
𝑖

− (𝑐
𝑖

− 𝑏
𝑖

) 𝛼.

(4)

According to the reliability theory of systems, a parallel
system fails to operate when all the components in the system
fail to work. In this paper, we assume that there are 𝑘 identical
components with the same structure and with the strength
pdf of 𝑓

𝑟

(𝑟) in a parallel system. When the components in a
parallel system are subjected to the same load, the stress of 𝑠
with the pdf of𝑓

𝑠

(𝑠) on each component ismutually identical.
Then, the probability that the parallel system does not fail to
work is equal to the probability that the maximum strength
is higher than 𝑠, which can be expressed by using the order
statistics theory as follows:

𝑃 (𝑟max > 𝑠) = ∫

∞

𝑠

𝑘[∫

𝑟

−∞

𝑓
𝑟

(𝑟) 𝑑𝑟]

𝑘−1

𝑓
𝑟

(𝑟) 𝑑𝑟. (5)

Therefore, the reliability of the parallel system can be given by

𝑅parallel = ∫

∞

−∞

𝑓
𝑠

(𝑠) {∫

∞

𝑠

𝑘[∫

𝑟

−∞

𝑓
𝑟

(𝑟)𝑑𝑟]

𝑘−1

𝑓
𝑟

(𝑟) 𝑑𝑟} 𝑑𝑠.

(6)
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Equation (6) is similar to the SSI model in mathematical
expression. Hence, the equivalent strength of the parallel
system can be expressed as

𝑓parallel (𝑟) = 𝑘[∫

𝑟

−∞

𝑓
𝑟

(𝑟) 𝑑𝑟]

𝑘−1

𝑓
𝑟

(𝑟) . (7)

In the failure mode of fatigue, strength could degrade
under the application of random load which causes damage
to the components in the system. The remaining strength is
the function of the load application times and the magnitude
of stress, which is generally expressed as follows [14]:

𝑟 (𝑛) = 𝑟
0

[1 − 𝐷 (𝑛)]
𝛾

, (8)

where 𝑟
0

and 𝛾 are initial strength and material parameter,
respectively. 𝐷(𝑛) is the cumulative damage induced by the
applied load. In addition, the 𝑆-𝑁 Curve, which is usually
adopted to compute the lifetime of mechanical components
under the stress with a specific magnitude, can be written in
an analytical format as follows:

𝑠
𝑚

𝑁 = 𝐶, (9)

where 𝑚 and 𝐶 are material parameters. When considering
the effects of SDPD, the equivalent remaining strength under
the stress at the level of𝛼 can be obtained according to the rule
of damage accumulation and the rule of damage equivalence
as follows [14]:

𝑟
𝛼

(𝑛) = 𝑟
0

{1 − {

𝑛

∑

𝑖=1

{([𝑐
𝑖

− (𝑐
𝑖

− 𝑏
𝑖

) 𝛼]
𝑚+1

−[𝑎
𝑖

+ (𝑏
𝑖

− 𝑎
𝑖

) 𝛼]
𝑚+1

)

× ((𝑚+1) (1 − 𝛼) (𝑐
𝑖

− 𝑎
𝑖

) 𝐶)
−1

}}

𝛾

} .

(10)

When the initial strength 𝑟
0

is deterministic, the reliability
at the 𝑖th load application can be given according to the
distribution of the fuzzy stress on the interval of 𝛼-cut as
follows:
𝑅
𝑖

=

{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{

{

0, 𝑟
𝛼

(𝑛 − 1)<𝑎
𝑖

+(𝑏
𝑖

− 𝑎
𝑖

) 𝛼,

𝑟
𝛼

(𝑛 − 1) − 𝑎
𝑖

− (𝑏
𝑖

− 𝑎
𝑖

) 𝛼

(1 − 𝛼) (𝑐
𝑖

− 𝑎
𝑖

)

, 𝑎
𝑖

+ (𝑏
𝑖

− 𝑎
𝑖

) 𝛼≤𝑟
𝛼

(𝑛 − 1)

< 𝑐
𝑖

− (𝑐
𝑖

− 𝑏
𝑖

) 𝛼,

1, 𝑟
𝛼

(𝑛 − 1)≥𝑐
𝑖

− (𝑐
𝑖

− 𝑏
𝑖

) 𝛼.

(11)

Therefore, the probability that the system operates normally
when load applies for 𝑛 times can be expressed as

𝑅
𝛼

(𝑛) =

𝑛

∏

𝑖=1

𝑅
𝑖

. (12)

When considering the distribution of the equivalent strength
of the system characterized by the pdf shown in (7), the
fuzzy reliability of the parallel system at the level of 𝛼 can
be obtained according to the total probability formula for
continuous variables as follows:

𝑅
𝛼

(𝑛) = ∫

∞

−∞

𝑘[∫

𝑟0

−∞

𝑓
𝑟0
(𝑟
0

) 𝑑𝑟
0

]

𝑘−1

𝑓
𝑟0
(𝑟
0

)

𝑛

∏

𝑖=1

𝑅
𝑖

𝑑𝑟
0

. (13)

According to the decomposition theorem, the fuzzy dynamic
reliability of the parallel system can be given by

𝑅 (𝑛) = ∫

1

0

∫

∞

−∞

𝑘[∫

𝑟0

−∞

𝑓
𝑟0
(𝑟
0

) 𝑑𝑟
0

]

𝑘−1

𝑓
𝑟0
(𝑟
0

)

𝑛

∏

𝑖=1

𝑅
𝑖

𝑑𝑟
0

𝑑𝛼.

(14)

Hence, the failure rate of the parallel system can be expressed
as follows:

𝜆 (𝑛)

= (∫

1

0

∫

∞

−∞

𝑘[∫

𝑟0

−∞

𝑓
𝑟0
(𝑟
0

) 𝑑𝑟
0

]

𝑘−1

𝑓
𝑟0
(𝑟
0

)

𝑛

∏

𝑖=1

𝑅
𝑖

𝑑𝑟
0

𝑑𝛼

−∫

1

0

∫

∞

−∞

𝑘[∫

𝑟0

−∞

𝑓
𝑟0
(𝑟
0

) 𝑑𝑟
0

]

𝑘−1

𝑓
𝑟0
(𝑟
0

)

𝑛+1

∏

𝑖=1

𝑅
𝑖

𝑑𝑟
0

𝑑𝛼)

× (∫

1

0

∫

∞

−∞

𝑘[∫

𝑟0

−∞

𝑓
𝑟0
(𝑟
0

) 𝑑𝑟
0

]

𝑘−1

𝑓
𝑟0
(𝑟
0

)

𝑛

∏

𝑖=1

𝑅
𝑖

𝑑𝑟
0

𝑑𝛼)

−1

.

(15)

It should be noted that (14) is derived with the effects
of SDPD taken into consideration. For computational con-
venience, conventional dynamic reliability models always
model the strength degradation process as a stochastic pro-
cess with the distribution of strength at each load application
determined by the specified stochastic process and calculate
the reliability based on the strength at each load application.
As pointed by the authors’ former study, it could result in large
computational error due to neglecting the effects of SDPD
[14].When the fuzzy system reliability is calculated according
to the distribution of component strength at each load
application, which can be obtained from the distribution of
initial strength and (10), the fuzzy reliability can be calculated
as follows:

𝑅
1

(𝑛) = ∫

1

0

𝑛

∏

𝑖=1

∫

∞

−∞

𝑓
𝑖𝛼

(𝑠
𝑖

) [1 − (∫

𝑠

−∞

𝑓
𝑟𝑖
(𝑟
𝑖

) 𝑑𝑟
𝑖

)

𝑘

]𝑑𝑠 𝑑𝛼,

(16)

where 𝑓
𝑖𝛼

(𝑠
𝑖

), which can be obtained via derivation of 𝐹
𝑖𝛼

(𝑠
𝑖

)

in (4) with respect to 𝑠
𝑖

, is the pdf of stress caused by the 𝑖th
load application and 𝑓

𝑟𝑖
(𝑟
𝑖

) is the pdf of strength at the 𝑖th
load application.

As a matter of fact, the fuzzy characteristics of stress are
mainly determined by the parameters of 𝑎, 𝑏, and 𝑐. 𝑏 is the
center parameter with the largest membership degree. When
more information is available, whichmeansmore investment
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Table 1: Stress parameters and material parameters of explosive bolts.

𝜇(𝑟
0

) [MPa] 𝜎(𝑟
0

) [MPa] 𝑎 [MPa] 𝑏 [MPa] 𝑐 [MPa] 𝑚 𝛾 𝐶 [MPa2]
400 5 250 300 350 2 1 10

8

in experiments, the parameters of 𝑎, 𝑐 will be closer to 𝑏

and the fuzzy number tends to be a deterministic number.
In order to analyze the influences of the parameters of 𝑎 and
𝑐 on the effects of SDPD on reliability, the SDPD sensitivity
functions with respect to 𝑎 and 𝑐 are defined as follows:

𝐼SDPD𝑎 (𝑛)

=

𝜕 [𝑅 (𝑛) − 𝑅
1

(𝑛)]

𝜕𝑎

=

𝜕 {∫

1

0

∫

∞

−∞

𝑘[∫

𝑟0

−∞

𝑓
𝑟0
(𝑟
0

) 𝑑𝑟
0

]

𝑘−1

𝑓
𝑟0
(𝑟
0

)∏
𝑛

𝑖=1

𝑅
𝑖

𝑑𝑟
0

𝑑𝛼}

𝜕𝑎

−

𝜕 {∫

1

0

∏
𝑛

𝑖=1

∫

∞

−∞

𝑓
𝑖𝛼

(𝑠
𝑖

) [1 − (∫

𝑠

−∞

𝑓
𝑟𝑖
(𝑟
𝑖

) 𝑑𝑟
𝑖

)

𝑘

] 𝑑𝑠 𝑑𝛼}

𝜕𝑎

,

(17)

𝐼SDPD𝑐 (𝑛)

=

𝜕 [𝑅 (𝑛) − 𝑅
1

(𝑛)]

𝜕𝑐

=

𝜕 {∫

1

0

∫

∞

−∞

𝑘[∫

𝑟0

−∞

𝑓
𝑟0
(𝑟
0

) 𝑑𝑟
0

]

𝑘−1

𝑓
𝑟0
(𝑟
0

)∏
𝑛

𝑖=1

𝑅
𝑖

𝑑𝑟
0

𝑑𝛼}

𝜕𝑐

−

𝜕 {∫

1

0

∏
𝑛

𝑖=1

∫

∞

−∞

𝑓
𝑖𝛼

(𝑠
𝑖

) [1 − (∫

𝑠

−∞

𝑓
𝑟𝑖
(𝑟
𝑖

) 𝑑𝑟
𝑖

)

𝑘

] 𝑑𝑠 𝑑𝛼}

𝜕𝑐

.

(18)

In addition, when the components in the system are
mutually independent, the fuzzy reliability can be computed
as

𝑅
2

(𝑛) = 1 − (1 − ∫

1

0

∫

∞

−∞

𝑓
𝑟0
(𝑟
0

)

𝑛

∏

𝑖=1

𝑅
𝑖

𝑑𝑟
0

𝑑𝛼)

𝑘

. (19)

In order to evaluate the impacts of the parameters of 𝑎,
𝑐 on failure dependence, we define the failure dependence
sensitivity functions with respect to 𝑎 and 𝑐 as follows:

𝐼FD𝑎 (𝑛)

=

𝜕 [𝑅 (𝑛) − 𝑅
2

(𝑛)]

𝜕𝑎

=

𝜕 {∫

∞

−∞

𝑘[∫

𝑟0

−∞

𝑓
𝑟0
(𝑟
0

) 𝑑𝑟
0

]

𝑘−1

𝑓
𝑟0
(𝑟
0

)∏
𝑛

𝑖=1

𝑅
𝑖

𝑑𝑟
0

}

𝜕𝑎

− (𝑘(1 − ∫

∞

−∞

𝑓
𝑟0
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Figure 3: The bolted joint system.
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3. Illustrative Examples

The explosive bolts are comprehensively used for connection
and separation in aerospace products. For example, the bolted
joints for connection between launch vehicle and satellite are
shown in Figure 3. The redundancy design of the explosive
bolt system largely improves the reliability of the success
launch of satellites. In this section, the bolted joint system
is chosen as an illustrative example to analyze the influence
of the fuzzy characteristics of stress on SDPD and failure
dependence of parallel mechanical systems. In the bolted
joint system, the explosive bolts are mutually identical with
the material parameters [14] and stress parameters listed in
Table 1.

In this section, three cases will be analyzed in order to
investigate the following problems:

(1) verify the proposed model via Monte Carlo simula-
tion;

(2) analyze the influences of the parameters of 𝑎, 𝑐 on the
effects of SDPD on reliability;
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Figure 4: Flowchart of the Monte Carlo simulation for parallel subsystem.

(3) investigate the influences of the parameters of 𝑎, 𝑐 on
the failure dependence.

Case 1.Consider a system with three dependent components.
The flowchart for the Monte Carlo simulation is shown in
Figure 4. In the flowchart, 𝑘 represents the number of compo-
nents in the system.𝑁 is the total number of simulation trials.
𝑛 is the number of load application. 𝑏 is the total number of
failure of the system in the𝑁 trials. It should be noted that in
theMonteCarlo simulation, the strength degradation process
is only dependent on the randomly generated stress and (8)
for remaining strength calculation under deterministic stress.
Therefore, the simulation is essentially identical with physical
experiment and does not rely on any analytical dynamic
reliability model. The comparison between the result of the
Monte Carlo simulation and the result from the proposed
models is shown in Figure 5.

From Figure 5, it can be learnt that the result from the
proposed reliability method shows good agreement with
the reliability from Monte Carlo simulations. The reliability
decreases rapidly with the load application.

Case 2.Consider a systemwith three dependent components.
The system reliability considering SDPD and the system
reliability without SDPD taken into account are shown in
Figure 6. In addition, the SDPD sensitivity with respect to 𝑎

and 𝑐 is shown in Figures 7 and 8, respectively.
From Figure 6, it can be seen that SDPD have great

influences on fuzzy system reliability. Although it could
facilitate the reliability calculation by directly using the
strength distribution at each load application, reliability could
be underestimated due to neglecting the effects of SDPD.
Moreover, from Figures 7 and 8, it can be learnt that the left
parameter 𝑎 and right parameter 𝑐 have different impacts on
the effects of SDPD on reliability. The effects of SDPD on
reliability are more sensitive to variation of 𝑐.

For a deterministic 𝑎, the local maximum of the error
caused by SDPD arises at middle stage and the end of the
operational duration of the system. The reliability calculated
considering SDPD is higher than that without SDPD taken
into account. Besides, from (17) and (18), we can learn that,
for the SDPD sensitivity, a positive value means that the
error increases with the increase of the parameter considered
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Figure 6: Reliability considering SDPD and reliability without
SDPD taken into consideration.

(𝑎 or 𝑐), while a negative valuemeans that the error decreases
with the increase of the parameter considered (𝑎 or 𝑐).
Moreover, the reliability calculated considering SDPD is
always larger than the reliability calculated without SDPD
taken into account. Therefore, the SDPD sensitivity with a
negative value means that the effects of SDPD on reliability
are weakened. In mechanical design, engineers are more
interested in the sensitive areas where a small variation in
the parameter considered could lead to a rapid increase in
the error due to neglecting SDPD. Thus, in this paper, we
are concentrated on the characteristics of the positive peak
value of SDPD sensitivity. From Figure 7, we can see that
two evident positive peak values of the SDPD sensitivity
appear in themiddle stage of the systemoperational duration,
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Figure 7: SDPD sensitivity with respect to 𝑎.
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Figure 8: SDPD sensitivity with respect to 𝑐.

which represent the most sensitive time instant.Therefore, in
dynamic system reliability analysis, attention should be paid
to the influences of the change in 𝑎 on the effects of SDPD
at these two sensitive “time instants” associated with their
adjacent time interval. In addition, the positive peak value of
the SDPD sensitivity comes earlier when 𝑎 increases.

For a deterministic 𝑐 with a low value, only one positive
peak value of the SDPD sensitivity appears in the middle
stage of the system operational duration. However, when 𝑐

is large, two positive peak values arise in the middle stage
of the system operational duration with one peak value
evidently larger than the other one. Therefore, we should
pay attention to the variation of 𝑐 at the moment where the
positive peak value of the SDPD sensitivity appears in the
reliability estimation when considering the effects of SDPD.
Similar to the case in the sensitivity analysis with respect to
𝑎, the maximum of the SDPD sensitivity comes earlier when
𝑐 increases.

Case 3. In this section, we are aimed at analyzing the
influences of the failure dependence of components on
system reliability and influences of fuzzy parameters of
stress on failure dependence sensitivity function. The system
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Figure 9: Reliability of dependent system and reliability of indepen-
dent system.
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Figure 10: Failure dependence sensitivity with respect to 𝑎.

reliability considering failure dependence of components can
be calculated according to (14), while the system reliability
under the assumption that the components are independent
of each other can be calculated according to (19). The failure
dependence sensitivity function with respect to 𝑎 and 𝑐 can
be obtained through (20). The reliability of a system with
three dependent components and the reliability of a system
with three independent components are shown in Figure 9.
In addition, the failure dependence sensitivity with respect to
𝑎 and 𝑐 is shown in Figures 10 and 11, respectively.

From Figure 9, it can be seen that the failure dependence
makes the parallel system less reliable. Thus, from (18) and
(19), Figures 10 and 11, it can be seen that the negative peak
value of the failure dependence sensitivity means that the
error caused by failure dependence increases at the highest
speed, while the positive peak value of the SDPD sensitivity
means that the error decreases at the highest speed.Therefore,
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Figure 11: Failure dependence sensitivity with respect to 𝑐.

we are more concentrated on the negative peak value of the
failure dependence sensitivity. A single negative peak value
of the failure dependence sensitivity appears in the middle
stage of the system operational duration in both the case of
failure dependence sensitivity analysis with respect to 𝑎 and
the case of failure dependence sensitivity analysis with respect
to 𝑐. We should pay attention to the variation of 𝑎 and 𝑐

at the moment where the negative peak value of the failure
dependence sensitivity appears in the reliability assessment
when considering the effects of failure dependence. Besides,
the negative peak value of the failure dependence sensitivity
comes earlier when 𝑎 or 𝑐 increases. In general, the effects of
the failure dependence of components in the parallel system
are more sensitive to the change of 𝑐.

4. Conclusion

In this paper, fuzzy dynamic reliability models of mechan-
ical parallel systems with respect to stress parameters and
strength parameters are established. In the proposed reliabil-
ity models, the SDPD and failure dependence of components
in a mechanical parallel system are taken into account. For
computational convenience, strength distribution of compo-
nents at each load application is always adopted in conven-
tional dynamic reliability models, which is determined by the
assumed stochastic process. However, the results show that
SDPD has considerable influences on fuzzy dynamic reliabil-
ity of parallel systems. In addition, the failure dependence of
components in a system also significantly affects the system
fuzzy dynamic reliability.

By defining the SDPD sensitivity function and the failure
dependence sensitivity function in this paper, it is found
that the fuzzy characteristics of stress have great impacts
on the effects of SDPD and failure dependence on fuzzy
dynamic reliability. In general, the effects of SDPD and
failure dependence of mechanical components in a parallel
system on reliability are more sensitive to variation of the
right parameter of 𝑐 than the left parameter of 𝑎. Moreover,
the influences of 𝑎 and 𝑐 on SDPD sensitivity and that on
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failure dependence sensitivity are different. The proposed
models provide the basis for analytically determining the
moment when the peak values of SDPD sensitivity and failure
dependence sensitivity appear, which are important to the
dynamic reliability evaluation and reliability-based design
of mechanical parallel systems. In addition, Monte Carlo
simulation is carried out to validate the effectiveness of the
proposed models.
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