
Research Article
Computation of Trajectories and Displacement Fields in
a Three-Dimensional Ternary Diffusion Couple: Parabolic
Transform Method

Marek Danielewski1 and Henryk LeszczyNski2

1AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków, Poland
2Institute of Mathematics, University of Gdańsk, Wita Stwosza 57, 80-952 Gdańsk, Poland

Correspondence should be addressed to Henryk Leszczyński; hleszcz@mat.ug.edu.pl
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The problem of Kirkendall’s trajectories in finite, three- and one-dimensional ternary diffusion couples is studied. By means of the
parabolic transformationmethod, we calculate the solute field, the Kirkendall marker velocity, and displacement fields.The velocity
field is generally continuous and can be integrated to obtain a displacement field that is continuous everywhere. Special features
observed experimentally and reported in the literature are also studied: (i) multiple Kirkendall’s planes where markers placed on
an initial compositional discontinuity of the diffusion couple evolve into two locations as a result of the initial distribution, (ii)
multiple Kirkendall’s planes where markers placed on an initial compositional discontinuity of the diffusion couple move into two
locations due to composition dependent mobilities, and (iii) a Kirkendall plane that coincides with the interphase interface. The
details of the deformation (material trajectories) in these special situations are given using bothmethods and are discussed in terms
of the stress-free strain rate associated with the Kirkendall effect. Our nonlinear transform generalizes the diagonalization method
by Krishtal, Mokrov, Akimov, and Zakharov, whose transform of diffusivities was linear.

1. Introduction

The Kirkendall effect in solids involves diffusion and distor-
tion [1]. The distortion of a solid material is the change in
position with time of a set of inert markers (real or imagined)
fixed in thematerial.TheKirkendall effect means the changes
in the observed marker positions as they move in reaction
to the locally nonbalanced diffusion fluxes. During one-
dimensional diffusion the material deforms unidirectionally.
Themarkers that are initially fixed in a plane perpendicular to
the diffusion direction are likely tomove all together, defining
marker planes. As shown by Stephenson [1], the deformation
that accompanies diffusion is described by a stress-free strain
rate.

Essential for the assessment of the Kirkendall effect is the
definition of the reference frame (RF) for the components dif-
fusion fluxes (intrinsic diffusion). Darken postulated defining
it as a lattice RF [2]. Inert (or imagined) ideal markers do not
take part in the diffusion and their velocity equals the local

lattice velocity. It implies that intrinsic diffusion fluxes can
be defined with respect to this set of markers. Although the
Kirkendall effect has been known for 60 years [2, 3], a number
of interesting theoretical and experimental effects continue to
be revealed which warrant further considerations, including
(i) multiple Kirkendall’s planes, (ii) stability of individual
Kirkendall’s planes and (iii) trajectory of Kirkendall’s plane
in three-dimensional diffusion couples.

Diffusion couples are usually used for experimental and
theoretical studies. For a ternary alloy maintained at a
constant temperature, the initial state consists of two end
members joined with an initial planar discontinuity at a
position we take to be 𝑧(0). The end members are usually
uniform and of different compositions that may also be
of different phases. When the couple is held at a fixed
temperature, diffusion occurs over time in the 𝑧-direction.
Experimentally, markers are typically placed only on the
initial discontinuity of the diffusion couple; however, they can
be placed throughout the sample to measure the entire field
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of deformation field [4, 5]. The rate of change of the position
of the entire set of markers in the sample determines the
Kirkendall velocity as a field defined throughout the sample.

In the analysis of diffusion couples, there are several
quantities of interest, mainly associated with the initial planar
discontinuity. The Matano plane is usually defined by proper
equal-area constructions established on a concentration pro-
file [6] and remains at 𝑧(0) for all 𝑡 ≥ 0. Kirkendall’s plane(s)
problem from the origin of coordinates at 𝑡 = 0 represents
the motion of inert markers tracking the deformation; that is,
a Kirkendall plane is a material surface. The Matano plane is
not a material surface. The Kirkendall plane(s), the material
trajectories, and theMatano interface are generally associated
with different locations in the sample once diffusion takes
place.

This paper is stimulated by a variety of theoretical and
experimental efforts. The Kirkendall markers, that is, those
markers placed initially in the plane 𝑧(0), are occasionally
found on two different planes after heat treatment.The possi-
bility of such multiple Kirkendall’s planes was first described
theoretically for single-phase diffusion couples byCornet and
Calais [7], using similarity solutions for the composition and
Kirkendall’s velocity fields in a binary diffusion couple. A
necessary factor for multiple Kirkendall’s planes is a strong
variation of intrinsic diffusion coefficients with composition;
for example, multiple Kirkendall’s planes can occur if the
difference in diffusivities changes sign with composition
across the diffusion couple. Stability of the Kirkendall planes
was studied by van Dal et al. [5, 8, 9]. They relate stability
or instability to the sign, negative or positive, respectively,
of the spatial divergence of the Kirkendall velocity at the
position of the Kirkendall plane. The criterion established by
Cornet and Calais [7] was verified experimentally for solid
solutions ofNiPd andFePdwith singleKirkendall’s planes [5].
Double Kirkendall’s planes were found during interdiffusion
in 𝛽-NiAl [10].The term “stability” refers to whether markers
placed on the plane of the initial discontinuity of a diffusion
couple remain sharply concentrated on a plane or whether
they become dispersed in the diffusion direction. Computa-
tion of the trajectories in solid solutions has been performed
by Höglund and Ågren [11].

The parabolic transform method will be presented and
used in this paper for a finite-length diffusion couple. The
stress generation due to diffusion in constrained geometries
will not be discussed in the paper for many reasons. It was
shown that in the case, analyzed here (all diffusion fluxes
are linearly correlated), it is possible to obtain a symmet-
rical matrix of transport coefficients for the interdiffusion
fluxes (even for a general case of a multicomponent system)
and the expression for the entropy production. Thus, the
drift generation is a stress-free deformation of the solid in
one-dimensional diffusion couples. In complex geometries
stresses play an important role and definitely are nonnegli-
gible. It is possible to develop this approach, through more
adequate formulations of the free energy functional [12, 13].

The purpose of this paper is to describe the peculiarities
of the deformation in three- and one-dimensional binary
diffusion couples under various conditions. We compute
the trajectories (position dependent on time) of a full set

of markers, focusing on cases with multiple Kirkendall’s
planes and sole Kirkendall’s planes that coincide with the
moving initial contact interface. Numerical experiments are
compared with Belova et al. [14].

2. Model

2.1. Diffusion and Material Velocity. To permit applications
to nonideal solid solutions, we present expressions for the
standard Darken approach in terms of gradients of potentials
of the components 𝜇

𝑖
in the three-dimensional spaceR3. The

mass conservation laws have the form
𝜕𝑐
𝑖

𝜕𝑡

= − div𝐽
𝑖

for 𝑖 = 1, 2, 3, (1)

where 𝑐
𝑖
= 𝑐
𝑖
(𝑡, 𝑥) and 𝐽

𝑖
= 𝐽
𝑖
(𝑡, 𝑥) are the component

concentrations and their fluxes measured in the laboratory
RF. The most convenient RF in the case of a finite (bounded)
diffusion couple considered in this work is, for example, the
boundary of the diffusion couple.

The central Darken postulate is defining the component
diffusion fluxes 𝐽

𝑖
(𝑡, 𝑥) via a drift velocity field V𝐷(𝑡, 𝑥) that is

measured in the laboratory reference frame. It is also called
convection velocity [1],Darken velocity [15], lattice velocity [2],
ormaterial velocity [16, 17]. It characterizes the solid solution
motion and equals the velocity of a set of markers fixed in
the material. If the material is crystalline, the markers move
with the lattice, and the process occurs due to the existence
of vacancy sources and sinks, for example, one- and two-
dimensional defects.Thediffusion fluxes 𝐽

𝑖
are called intrinsic

(or lattice) fluxes and are related to those measured in the
laboratory frame by the formula

𝐽
𝑖
= 𝐽
𝑖
+ 𝑐
𝑖
V𝐷 for 𝑖 = 1, 2, 3. (2)

The overall molar volume Ω and mole fractions 𝑁
𝑖
(𝑖 =

1, 2, 3) are defined by

𝑁
𝑖
= 𝑐
𝑖
Ω, Ω =

1
𝑐

=

3
∑

𝑖=1
Ω
𝑖
𝑁
𝑖
, (3)

where 𝑐 = ∑
3
𝑖=1 𝑐𝑖 and Ω

𝑖
is the 𝑖th component partial molar

volume. From (3), we get

3
∑

𝑖=1
Ω
𝑖
𝑐
𝑖
= 1. (4)

In themulticomponent solid solutions the following relations
hold:

3
∑

𝑖=1
Ω
𝑖
𝑑𝑐
𝑖
= 0,

3
∑

𝑖=1
𝑐
𝑖
𝑑Ω
𝑖
= 0,

𝑆𝑑𝑇+Ω𝑑𝜎+

3
∑

𝑖=1
𝑁
𝑖
𝑑𝜇
𝑖
= 0.

(5)



Mathematical Problems in Engineering 3

For isothermal processes, when all partial molar volumes are
constant and stress effects are negligible, the relations (5)
reduce to

3
∑

𝑖=1
Ω
𝑖
𝑑𝑐
𝑖
= 0,

3
∑

𝑖=1
𝑁
𝑖
𝑑𝜇
𝑖
= 0.

(6)

Variable partialmolar volumes in binary systemswere treated
by Sauer and Freise [18] and are not considered here.

2.2. Kirkendall Velocity and Displacement. Multiplying the
conservation law for each species, (1), by matching partial
molar volume, results in the volume continuity formula

3
∑

𝑖=1
div (Ω

𝑖
𝐽
𝑖
) = 0. (7)

The intrinsic fluxes, governed by the Nernst-Planck formula,
are assumed to be proportional to the gradients of their
chemical potentials (diffusion potentials in general [19]):

𝐽
𝑖
= − 𝑐
𝑖
𝐵
𝑖
∇𝜇
𝑖

for 𝑖 = 1, 2, 3, (8)

where the intrinsic (or lattice) mobilities 𝐵
𝑖
may depend on

the concentration. From relations (2), (3), (7), and (8), the
Darken velocity field (V𝐷 Darken’s drift) is given by

divV𝐷 = −

3
∑

𝑖=1
div (Ω

𝑖
𝐽
𝑖
) =

3
∑

𝑖=1
div (Ω

𝑖
𝑐
𝑖
𝐵
𝑖
∇𝜇
𝑖
) . (9)

If the velocity field is not one-dimensional, additional equa-
tions might be required to determine the flow [16]. The mass
conservation law can be written as

𝜕𝑐
𝑖

𝜕𝑡

= div (𝑐
𝑖
𝐵
𝑖
∇𝜇
𝑖
− 𝑐
𝑖
V𝐷) for 𝑖 = 1, 2, 3, (10)

where the drift velocity fulfills (9). In the following, we will
consider a ternary system (𝑖 = 1, 2, 3) and constant partial
molar volumes such thatΩ

𝑖
= Ω for 𝑖 = 1, 2, 3. Consequently,

using the relations from (3), (9) and (10) become

divV𝐷 =
3
∑

𝑖=1
div (𝑁

𝑖
𝐵
𝑖
∇𝜇
𝑖
) ,

𝜕𝑁
𝑖

𝜕𝑡

= div (𝑁
𝑖
𝐵
𝑖
∇𝜇
𝑖
−𝑁
𝑖
V𝐷) for 𝑖 = 1, 2, 3.

(11)

The Darken velocity field characterizes a deformation of the
material during diffusion. If one considers diffusion in a
crystallinematerial, themarkers are positions in an imperfect
lattice in which production and/or annihilation of vacancies
occur at rates that are sufficient to maintain an equilibrium
chemical potential of vacancies everywhere; that is, the local
thermodynamical equilibrium is sustained in the material
[20].

The same equations apply to diffusion in fluids and amor-
phous solids, where the drift velocity describes the convective
motion of the substance as indicated by the motion of small
inert particles in a fluid as a result of different diffusion
mobilities. The effective diffusion coefficient in gases, in the
manner of Darken [2], describing the net convective motion,
was developed already in 1899 in the kinetic theory of gases
[20].

2.3. Diffusion Potentials and Diffusion Coefficients. The term
diffusion potential was introduced by Larché and Cahn [21].
They derived a potential as a sum of the elastic energy and
chemical potential. In general, the diffusion potential is a sum
all potentials that account for the storage of energy due to
the addition of a diffusant [19]. The regular solutions can be
treated by analogous formalism. In this work we focus on an
ideal solid solution:

𝜇
𝑖
= 𝜇

0
𝑖
+𝑅𝑇 ln𝑁

𝑖
for 𝑖 = 1, 2, 3, (12)

where 𝜇0
𝑖
is the reference potential; 𝑅 is the gas constant; 𝑇 is

the temperature. From relations (3), (8), and (12), the intrinsic
diffusion fluxes𝐷

𝑖
are defined by

𝐽
𝑖
=

𝐷
𝑖

Ω

∇𝑁
𝑖

for 𝑖 = 1, 2, 3. (13)

Equations (11) become

divV𝐷 =
3
∑

𝑖=1
div (𝐷

𝑖
∇𝑁
𝑖
) , (14)

𝜕𝑁
𝑖

𝜕𝑡

= div (𝐷
𝑖
∇𝑁
𝑖
−𝑁
𝑖
V𝐷) for 𝑖 = 1, 2, 3. (15)

From (14) in the closed and bounded system the drift velocity
is given by [22]

V𝐷 =
3
∑

𝑖=1
𝐷
𝑖
∇𝑁
𝑖
. (16)

Upon denoting 𝑢 = 𝑁1, V = 𝑁2, and 𝑤 = 𝑁3, from (15) and
(16) we have

𝜕𝑢

𝜕𝑡

= 𝐷1∇
2
𝑢−∇ ⋅ (𝑢V𝐷) ,

𝜕V
𝜕𝑡

= 𝐷2∇
2V−∇ ⋅ (VV𝐷) ,

𝜕𝑤

𝜕𝑡

= 𝐷3∇
2
𝑤−∇ ⋅ (𝑤V𝐷)

(17)

with 𝑢 + V + 𝑤 = 1. Values of 𝑢, V, 𝑤 belong to the interval
[0, 1]. The initial conditions 𝑢(0, 𝑥) = 𝑢0(𝑥), V(0, 𝑥) = V0(𝑥),
and 𝑤(0, 𝑥) = 𝑤0(𝑥) are imposed for 𝑥 = (𝑥1, 𝑥2, 𝑥3) ∈

𝑄 := [−𝐿1, 𝐿1] × [−𝐿2, 𝐿2] × [−𝐿3, 𝐿3]. Boundary Neumann
conditions are given by

𝜕𝑢

𝜕𝑛

=

𝜕V
𝜕𝑛

=

𝜕𝑤

𝜕𝑛

= 0 (18)

on the lateral boundary 𝑥 = (𝑥1, 𝑥2, 𝑥3) ∈ 𝜕𝑄, 𝑡 > 0,
where 𝑛 = 𝑛(𝑥) is the outward normal vector and 𝜕/𝜕𝑛 is
the operator of normal derivative; see [23].
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3. Reduction to Parabolic Equations in R3

In three-component models with three distinct diffusion
coefficients 𝐷1 > 0, 𝐷2 > 0, 𝐷3 > 0 the third variable 𝑤 can
be expressed in terms of the other variables 𝑢, V,𝑤 = 1−𝑢−V.
Denote

𝐷
󸀠

1 := 𝐷1 −𝐷3,

𝐷
󸀠

2 := 𝐷2 −𝐷3.
(19)

Assume that𝐷󸀠1, 𝐷
󸀠

2 > 0, which means that𝐷3 is the smallest
diffusion coefficient (it is convenient to assume that 𝐷1 >

𝐷2 > 𝐷3). Thus, the ternary system (17) reduces to the
following:

𝜕𝑢

𝜕𝑡

= 𝐷1∇
2
𝑢− 𝑢 [𝐷

󸀠

1∇
2
𝑢+𝐷
󸀠

2∇
2V] −∇𝑢

⋅ [𝐷
󸀠

1∇𝑢+𝐷
󸀠

2∇V] ,

𝜕V
𝜕𝑡

= 𝐷2∇
2
𝑢− V [𝐷󸀠1∇

2
𝑢+𝐷
󸀠

2∇
2V] −∇V

⋅ [𝐷
󸀠

1∇𝑢+𝐷
󸀠

2∇V]

(20)

with 𝜕𝑢/𝜕𝑛 = 0, 𝜕V/𝜕𝑛 = 0 on the lateral boundary 𝑥 ∈ 𝜕𝑄,
𝑡 > 0 and 𝑢(0, 𝑥) = 𝑢0(𝑥) and V(0, 𝑥) = V0(𝑥) for 𝑥 ∈ 𝑄.
We reduce this to a parabolic system by virtue of a change of
dependent variables. Take

𝐺 := Γ ∘ (𝑢, V) ,

𝐺 (𝑡, 𝑥) = Γ (𝑢 (𝑡, 𝑥) , V (𝑡, 𝑥))
(21)

and denote

Γ1 =
𝜕Γ

𝜕𝑢

,

Γ2 =
𝜕Γ

𝜕V
;

(22)

then

𝜕𝐺

𝜕𝑡

= Γ1
𝜕𝑢

𝜕𝑡

+ Γ2
𝜕V
𝜕𝑡

= Γ1 {∇
2
𝑢 [𝐷1 −𝑢𝐷

󸀠

1] − 𝑢𝐷
󸀠

2∇
2V}

+ Γ2 {−V𝐷
󸀠

1∇
2
𝑢+ [𝐷2 − V𝐷

󸀠

2] ∇
2V}

− [Γ1∇𝑢+ Γ2∇V] ⋅ [𝐷
󸀠

1∇𝑢+𝐷
󸀠

2∇V] .

(23)

Similarly, one calculates

𝜕𝐺

𝜕𝑥
𝑗

= Γ1
𝜕𝑢

𝜕𝑥
𝑗

+ Γ2
𝜕V
𝜕𝑥
𝑗

(24)

for 𝑗 = 1, 2, 3 and

𝜕
2
𝐺

𝜕𝑥
2
𝑗𝑙

= Γ1
𝜕
2
𝑢

𝜕𝑥
2
𝑗𝑙

+ Γ2
𝜕
2V

𝜕𝑥
2
𝑗𝑙

+ Γ11 (
𝜕𝑢

𝜕𝑥
𝑗

)(

𝜕𝑢

𝜕𝑥
𝑙

)

+ Γ12
𝜕𝑢

𝜕𝑥
𝑗

𝜕V
𝜕𝑥
𝑙

+ Γ21
𝜕𝑢

𝜕𝑥
𝑙

𝜕V
𝜕𝑥
𝑗

+ Γ22 (
𝜕V
𝜕𝑥
𝑗

)(

𝜕V
𝜕𝑥
𝑙

)

(25)

for 𝑗, 𝑙 = 1, 2, 3 where Γ11, Γ12, Γ21, and Γ22 are the second-
order derivatives of Γ in 𝑢, V. Consider the parabolic operator

𝜕𝐺

𝜕𝑡

− 𝜆∇
2
𝐺 = {Γ1 [𝐷1 −𝑢𝐷

󸀠

1 −𝜆] − Γ2V𝐷
󸀠

1} ∇
2
𝑢

+ {−Γ1𝑢𝐷
󸀠

2 + Γ2 [𝐷2 − V𝐷
󸀠

2 −𝜆]} ∇
2V

+ “lower order terms”,

(26)

where “lower order terms” will be specified later.The second-
order terms vanish, provided that 𝜆 is an eigenvalue

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝐷1 − 𝑢𝐷
󸀠

1 − 𝜆 −V𝐷󸀠1
−𝑢𝐷
󸀠

2 𝐷2 − V𝐷󸀠2 − 𝜆

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

= 0, (27)

and (Γ1, Γ2) is an eigenvector. The characteristic polynomial

𝜆
2
−𝜆 [𝐷1 +𝐷2 −𝑢𝐷

󸀠

1 − V𝐷
󸀠

2] +𝐷1𝐷2 −𝐷1V𝐷
󸀠

2

−𝐷2𝑢𝐷
󸀠

1

(28)

has positive and distinct roots, because 𝑢 + V + 𝑤 = 1; thus

1 > 𝑢(1−
𝐷3
𝐷1

)+ V(1−
𝐷3
𝐷2

) , (29)

and Δ 0(𝑢, V) > 0, where

Δ 0 (𝑢, V) = [𝐷1 −𝐷2 −𝑢𝐷
󸀠

1 + V𝐷
󸀠

2]
2
+ 4𝑢𝐷󸀠1V𝐷

󸀠

2. (30)

The eigenvalues are equal to

𝜆1,2 (𝑢, V) =
1
2
[𝐷1 +𝐷2 −𝑢𝐷

󸀠

1 − V𝐷
󸀠

2]

±

1
2
√Δ 0 (𝑢, V).

(31)

Their eigenvectors fulfill the algebraic equation

Γ1 [𝐷1 −𝑢𝐷
󸀠

1 −𝜆1,2 (𝑢, V)] − Γ2V𝐷
󸀠

1 = 0. (32)

Hence, we have the hyperbolic PDE

𝜕Γ/𝜕𝜉

𝜂𝐷
󸀠

1
−

𝜕Γ/𝜕𝜂

𝐷1 − 𝜉𝐷
󸀠

1 − 𝜆1,2 (𝜉, 𝜂)
= 0. (33)

Its characteristics

𝜂𝐷
󸀠

1𝑑𝜉 + [𝐷1 − 𝜉𝐷
󸀠

1 −𝜆1,2 (𝜉, 𝜂)] 𝑑𝜂 = 0 (34)
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have solutions Γ(𝜉, 𝜂) = const. Thus, we get two families of
curves Γ(1) = const. for 𝜆1 and Γ

(2)
= const. for 𝜆2. Introduce

new dependent variables

𝐺1 = Γ
(1)

(𝑢, V) ,

𝐺2 = Γ
(2)

(𝑢, V)
(35)

and the inverse functions

𝑢 = 𝑈 (𝐺1, 𝐺2) ,

V = 𝑉 (𝐺1, 𝐺2) ,
(36)

wherever they exist. We find their gradients from the system

∇𝐺1 =
𝜕Γ
(1)

𝜕𝑢

∇𝑢+

𝜕Γ
(1)

𝜕V
∇V,

∇𝐺2 =
𝜕Γ
(2)

𝜕𝑢

∇𝑢+

𝜕Γ
(2)

𝜕V
∇V,

(37)

which can be inverted as

∇𝑢 = 𝑈1∇𝐺1 +𝑈2∇𝐺2,

∇V = 𝑉1∇𝐺1 +𝑉2∇𝐺2,
(38)

where 𝑈
𝑖
= 𝑈
𝑖
(𝐺1, 𝐺2) and 𝑉

𝑖
= 𝑉
𝑖
(𝐺1, 𝐺2) for 𝑖 = 1, 2. The

ultimate parabolic PDE system looks as follows:

𝜕𝐺
𝑖

𝜕𝑡

− 𝜆
𝑖
Δ𝐺
𝑖
= −𝜆
𝑖
{Γ
(𝑖)

11
󵄨
󵄨
󵄨
󵄨
𝑈1∇𝐺1 +𝑈2∇𝐺2

󵄨
󵄨
󵄨
󵄨

2

+ 2Γ(𝑖)12 (𝑈1∇𝐺1 +𝑈2∇𝐺2) ⋅ (𝑉1∇𝐺1 +𝑉2∇𝐺2)

+ Γ
(𝑖)

22
󵄨
󵄨
󵄨
󵄨
𝑉1∇𝐺1 +𝑉2∇𝐺2

󵄨
󵄨
󵄨
󵄨

2
}

(39)

for 𝑖 = 1, 2, where 𝜆
𝑖
= 𝜆
𝑖
(𝑈, 𝑉). The right-hand side of (39)

consists of the “lower order terms” from (26).

4. Trajectories in R3

An arbitrary smooth trajectory 𝑧 = 𝑧(𝑡) is governed by the
ordinary differential problem

𝑑

𝑑𝑡

𝑧 = 𝑔 (𝑡, 𝑧) ,

𝑧 (0) = 𝑥 ∈ 𝑄,

(40)

where 𝑔 depends on 𝑢, V, 𝑤 and ∇𝑢, ∇V, ∇𝑤; confer [23].
Recall that 𝑥 = (𝑥1, 𝑥2, 𝑥3). It is obvious that trajectories
of material points are governed by ordinary differential
equations.The only question is as follows: how to derive these
ODEs? We draw the reader’s attention to the microscopic
setting based on stochastic diffusion equations in [24].

4.1. Material Trajectories. In Darken’s method the function 𝑔
is equal to the Darken (material) velocity V𝐷:

V𝐷 = 𝐷1∇𝑢+𝐷2∇V+𝐷3∇𝑤. (41)

Suppose that the marker at 𝑡 = 0 is placed at a surface 𝐹0(𝑥) =
0 for 𝑥 = (𝑥1, 𝑥2, 𝑥3). We want to trace its trajectory for 𝑡 ≥
0 which constitutes planes 𝐹(𝑡, 𝑥) = 0 for 𝑥 = (𝑥1, 𝑥2, 𝑥3).
Since the characteristics are governed by (40), 𝐹 fulfills the
hyperbolic initial-value problem

𝜕𝐹

𝜕𝑡

+∇𝐹 ⋅ 𝑔 = 0,

𝐹 (0, 𝑥) = 𝐹0 (𝑥) ,

(42)

because
𝑑

𝑑𝑡

𝐹 (𝑡, 𝑧 (𝑡)) =

𝜕𝐹

𝜕𝑡

+∇𝐹 ⋅

𝑑𝑧

𝑑𝑡

= 0. (43)

In particular, Darken’s trajectory fulfills the equation
𝑑𝑧

𝑑𝑡

= V𝐷 (𝑡, 𝑧) , (44)

and Kirkendall’s plane satisfies the PDE
𝜕𝐹

𝜕𝑡

+∇𝐹 ⋅ V𝐷 = 0,

𝐹 (0, 𝑥) = 𝐹0 (𝑥) ,

(45)

where 𝑥 = (𝑥1, 𝑥2, 𝑥3); see [23].
The Kirkendall plane given by (45) with characteristics

coinciding with Darken’s trajectories (44) fulfills the follow-
ing elegant property.

Proposition 1. For any regular region Ω
𝑡
with the boundary

𝜕Ω
𝑡
defined by 𝐹(𝑡, 𝑥) = 0 where 𝐹 is the solution of the PDE

(45), or equivalently being constituted by the characteristics
(𝑡, 𝑧(𝑡)) obeying (44) starting from the initial plane 𝐹0(𝑥) = 0,
the total mass of each component 𝑢, V, 𝑤 plus its overall inflow
through the boundary is constant:

∫

Ω
𝑡

𝑢 𝑑𝑥−∫

𝑡

0
∫

𝜕Ω
𝜏

𝐷1
𝜕𝑢

𝜕𝑛

𝑑𝑆 𝑑𝜏 = ∫

Ω0

𝑢0 𝑑𝑥. (46)

Analogous identities are valid for V and 𝑤.

Proof. Denote by LH = LH(𝑡) the left-hand side of (46).Then,
we have

LH = ∫

Ω
𝑡

𝑢 𝑑𝑥−∫

𝑡

0
∫

Ω
𝜏

𝐷1∇
2
𝑢 𝑑𝑥 𝑑𝜏. (47)

We differentiate LH as follows:

LH󸀠 = ∫

𝜕Ω
𝑡

𝑛 ⋅ (𝑢𝑧
󸀠
) 𝑑𝑆 +∫

Ω
𝑡

𝑢
𝑡
𝑑𝑥−∫

Ω
𝑡

𝐷1∇
2
𝑢 𝑑𝑥

= ∫

𝜕Ω
𝑡

𝑛 ⋅ (𝑢𝑧
󸀠
) 𝑑𝑆 −∫

Ω
𝑡

∇ ⋅ (𝑢V𝐷) 𝑑𝑥

= ∫

𝜕Ω
𝑡

𝑛 ⋅ (𝑢𝑧
󸀠
) 𝑑𝑆 −∫

𝜕Ω
𝑡

𝑛 ⋅ (𝑢V𝐷) 𝑑𝑆 = 0.

(48)

Since LH󸀠 = 0, we have LH ≡ const. = ∫
Ω0
𝑢0𝑑𝑥. This proves

the assertion.

This property proves that in ternary and higher solid
solutions the Kirkendall plane allows finding the Matano
plane that is identical for all components.
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4.2. Displacement Field. Since the velocity field k is described
in terms of laboratory coordinates, the displacement field u is
a function of the laboratory coordinates and time as well.The
relation between the reference and laboratory coordinates is
defined by a mapping 𝑍 = 𝑍(𝑡, 𝑧) which gives a reference
(initial) position of the marker that is currently at position
𝑧; the inverse mapping is 𝑧 = 𝑧(𝑡, 𝑍) providing the current
position 𝑧 of the marker initially placed at position 𝑍. The
displacement field u satisfies the relation

u (𝑡, 𝑧) = 𝑧 −𝑍 (𝑡, 𝑧) . (49)

That is, u(𝑡, 𝑧) is the difference between the current and initial
positions of the marker which is now at position 𝑧 in the
laboratory frame.The displacement and velocity fields satisfy
the equation

k (𝑡, 𝑧) =
𝜕u (𝑡, 𝑧)

𝜕𝑡

+ k (𝑡, 𝑧)
𝜕u (𝑡, 𝑧)

𝜕𝑧

. (50)

4.3. Component Trajectories. Consider any regular subdo-
mainΩ0 ⊂ 𝑄 inR3 with a smooth boundary 𝐹0(𝑥) = 0. If we
are interested in the evolution of 𝑢 starting from Ω0 then we
obtain a family of subdomainsΩ

𝑡
described by the equations

𝐹(𝑡, 𝑥) = 0. The mass balance leads to the integral identity

𝑑

𝑑𝑡

∫

Ω
𝑡

𝑢 𝑑𝑥 = 0. (51)

The integration by parts leads to the formula

∫

𝜕Ω
𝑡

{𝑢

𝜕𝐹

𝜕𝑡

+ 𝑛 ⋅ [𝐷1∇𝑢−𝑢V
𝐷
]} 𝑑𝑆 = 0, (52)

where 𝑛 = 𝑛(𝑥) is the unit normal vector, proportional to ∇𝐹,
and 𝑑𝑆 is the surface element. A similar relation holds for V
and 𝑤. We can get the evolution of a region which contains
some amount of 𝑢, V:

𝑑

𝑑𝑡

∫

Ω
𝑡

[𝑢 + V] 𝑑𝑥 = 0,

∫

𝜕Ω
𝑡

{(𝑢 + V)
𝜕𝐹

𝜕𝑡

+ 𝑛 ⋅ [𝐷1∇𝑢+𝐷2∇V− (𝑢 + V) V𝐷]} 𝑑𝑆

= 0.

(53)

(a) Balance of Mass in 1D.Consider the one-dimensional case
with the central position separating substances at𝑥 = 0.Thus,
𝐹0(𝑥) = 𝑥 ∈ R. Suppose that the separating position 𝑧 = 𝑧(𝑡)

moves according to the mass-balance law

∫

𝑧

−𝐿

(𝑢 + V) 𝑑𝑥 = const. (54)

which means that the total mass of 𝑢 + V is preserved on the
left of the separating position 𝑧 = 𝑧(𝑡). If we differentiate the
identity (54) with respect to 𝑡 we obtain

𝑧
󸀠
(𝑢 + V) +∫

𝑧

−𝐿

(𝑢
𝑡
+ V
𝑡
) 𝑑𝑥 = 0. (55)

Taking into account the governing equations, we get

𝑧
󸀠
(𝑢 + v) +∫

𝑧

−𝐿

{𝐷1𝑢𝑥𝑥 +𝐷2V𝑥𝑥 − [(𝑢 + V) V𝐷]
𝑥
} 𝑑𝑥

= 0;
(56)

hence,

𝑧
󸀠
(𝑢 + V) +𝐷1𝑢𝑥 +𝐷2V𝑥 − (𝑢 + V) V

𝐷
= 0. (57)

In this case, we arrive at the equation of the separating
position trajectory

𝑧
󸀠
= V𝐷 −

𝐷1𝑢𝑥 + 𝐷2V𝑥
𝑢 + V

(58)

or equivalently

𝑧
󸀠
(1−𝑤) +𝑤V𝐷 = 𝐷3𝑤𝑥. (59)

The respective plane is a solution of the PDE

𝜕𝐹

𝜕𝑡

+

𝜕𝐹

𝜕𝑥

{V𝐷 −
𝐷1𝑢𝑥 + 𝐷2V𝑥

𝑢 + V
} = 0,

𝐹 (0, 𝑥) = 𝑥.

(60)

(b) Tracer Trajectory.Let us return to the trajectory of𝑤which
starts from a spike-shaped droplet. Suppose that we measure
the middle position 𝑧3 = 𝑧3(𝑡) of this marker; hence, we have
the equation

∫

𝑧3

−𝐿

𝑤𝑑𝑥 =

1
2
∫

𝐿

−𝐿

𝑤𝑑𝑥 = const. (61)

Alike (54), we arrive at the differential equation

𝑧
󸀠

3 = V𝐷 −𝐷3
𝑤
𝑥

𝑤

,

𝑧3 (0) = 0.
(62)

The ideal marker means a fictitious observer (indicator)
within solid moving with the local drift velocity [2] and
not altering the diffusive mass flow. In practical realizations
nonideal markers affect diffusion for the reason that they
are often metal wires or submicron inclusions of a stable
oxide embedded in the diffusion zone.Themethod presented
by Belova et al. [14] and analyzed in the present paper has
an advantage of a negligible impact on the diffusive mass
transport (when concentrations of marker atoms are low).
An obvious drawback of both methods (Belova’s and ours)
is diffusion of the marker itself. This process can be to some
extent delayed by an introduction of marker atoms whose
diffusivity in the material is low; see Figure 1. Observe that
the trajectory of 𝑧3 is very close to the ideal marker, since
the maximum of 𝑤(𝑡, ⋅) is attained at a point 𝑥 such that
𝑤
𝑥
(𝑡, 𝑥) = 0. We draw a useful conclusion: 𝑧󸀠3 ≈ V𝐷. We can

also derive similar equations to (62) for 𝑢 and V. Having in
mind a severe singularity at 𝑥 = 0, we can analyse the front
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Figure 1: Distribution at 𝑡 = 0.01 for 𝐷1 = 1, 𝐷2 = 0.7, and
𝐷3 = 0.01. The initial distribution of the component 𝑤 is a very
thin nanolayer around 𝑥 = 0 where 𝑤 = 0.2.

movement of 𝑢 and V as follows. Suppose that 𝑢 is initially
concentrated on the left 𝑥 ∈ [−𝐿, 0]. We study an evolution
𝑧1 = 𝑧1(𝑡) defined by

∫

𝑧1

−𝐿

𝑢 𝑑𝑥 = ∫

−𝜀

−𝐿

𝑢0 𝑑𝑥 = const. (63)

with some small 𝜀 > 0 (to avoid the singularity). Hence, we
get the differential equation

𝑧
󸀠

1 = V𝐷 −𝐷1
𝑢
𝑥

𝑢

,

𝑧1 (0) = − 𝜀.

(64)

Since 𝑢(𝑡, ⋅) is decreasing, we have 𝑢
𝑥
≤ 0 and 𝑧1 moves to

the right. In an analogous way 𝑧2 = 𝑧2(𝑡) initially placed at
𝑥 = +𝜀moves to the left according to the following:

𝑧
󸀠

2 = V𝐷 −𝐷2
V
𝑥

V
,

𝑧2 (0) = + 𝜀.

(65)

5. Results

In the case of a binary, one-dimensional system by using the
Gibbs-Duhem equation, (5), one can define the interdiffusion
mobility 𝐵:

𝐵 = 𝑁1𝑁2 (𝑁1𝐵2 +𝑁2𝐵1) , (66)

and diffusion equation has the form [17]

𝜕𝑐2
𝜕𝑡

= div [𝐵Ω1
Ω2

∇ (𝜇2 −𝜇1)] . (67)

Consider the one-dimensional case with Ω
𝑡
= [−𝐿, 𝑧(𝑡)],

where 𝑧 = 𝑧(𝑡) satisfies (44). We formulate a simple conse-
quence of Proposition 1 for the Kirkendall plane.

Proposition 2. If 𝑧 = 𝑧(𝑡) satisfies (44) with 𝑧(0) = 0, the
total mass of each component 𝑢, V, 𝑤 plus its total diffusive flux
through the boundary of the interval [−𝐿, 𝑧(𝑡)] is constant:

∫

𝑧

−𝐿

𝑢 𝑑𝑥−∫

𝑡

0
𝐷1 ∫
𝑧(𝜏)

−𝐿

𝑢
𝑥𝑥
𝑑𝑥 𝑑𝜏 = ∫

0

−𝐿

𝑢0 𝑑𝑥. (68)

Analogous identities are valid for V and 𝑤.

Proof. Denote by LH = LH(𝑡) the left-hand side of (68).Then,
we have

LH := ∫

𝑧

−𝐿

𝑢 𝑑𝑥−∫

𝑡

0
𝐷1 ∫
𝑧(𝜏)

−𝐿

𝑢
𝑥𝑥
𝑑𝑥 𝑑𝜏. (69)

If we differentiate this expression with respect to 𝑡, we get

𝑧
󸀠
𝑢+∫

𝑧

−𝐿

𝑢
𝑡
−𝐷1 ∫

𝑧

−𝐿

𝑢
𝑥𝑥
𝑑𝑥

= 𝑧
󸀠
𝑢−∫

𝑧

−𝐿

(𝑢V𝐷)
𝑥
𝑑𝑥 = 0.

(70)

This means that LH󸀠 = 0; hence, LH ≡ const. and the
assertion follows.

Remark 3. Wedraw the reader’s attention to the conclusion of
Proposition 2: the same trajectory, given by (44) with 𝑧(0) =
0, is feasible for each component 𝑢, V, 𝑤. This fact allows for
effective computations of Kirkendall’s planes.

Corollary 4 (gradients on the Kirkendall plane). Under the
assumptions of Proposition 2 we have the following gradient
representation on the Kirkendall plane 𝑧 = 𝑧(𝑡):

𝐷1𝑢𝑥 = V𝐷𝑢+∫
𝑧

−𝐿

𝑢
𝑡
𝑑𝑥. (71)

Analogous representations have 𝐷2V𝑥 and 𝐷3𝑤𝑥.

Proof. If we differentiate (68), we get

𝑢𝑧
󸀠
+∫

𝑧

−𝐿

𝑢
𝑡
𝑑𝑥−𝐷1 ∫

𝑧

−𝐿

𝑢
𝑥𝑥
𝑑𝑥 = 0. (72)

Because 𝑧󸀠 = V𝐷 and the last term is equal to −𝐷1𝑢𝑥(𝑧), we
obtain the assertion.

5.1. Up-Hill Diffusion. It was shown in [25] that uphill
diffusion of 𝑤 is indicated by the condition

𝜕𝑤

𝜕𝑡

> 0. (73)

This inequality can be locally achieved by means of suitable
distributions of 𝑢 and V, provided that𝐷1 ̸= 𝐷2.
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Figure 2: Characteristics for 𝜆1 and 𝜆2 with𝑁 = 10 and𝐷1 = 1,𝐷2 = 0.7, and𝐷3 = 0.0001.

We return to this discussion because it is possible to
simplify the reasoning. Taking into account (17) and 𝑢 + V =
1 − 𝑤 we get

−

𝜕𝑤

𝜕𝑡

= 𝐷1∇
2
𝑢+𝐷2∇

2V−∇ ⋅ ((1−𝑤) V𝐷) . (74)

Hence the uphill requirement (73) becomes

[𝐷1 − (1−𝑤) (𝐷1 −𝐷3)] ∇
2
𝑢

+ [𝐷2 − (1−𝑤) (𝐷1 −𝐷3)] ∇
2V+∇𝑤 ⋅ V𝐷 < 0.

(75)

Consider the case𝑤 ≡ const. ∈ (0, 1); see Figure 4.Then, one
gets ∇𝑤 ≡ 0 and 𝑢 + V ≡ const.; that is, ∇𝑢 + ∇V = 0. The
uphill condition (75) is as follows:

[𝐷1 − (1−𝑤) (𝐷1 −𝐷3)] ∇
2
𝑢

− [𝐷2 − (1−𝑤) (𝐷1 −𝐷3)] ∇
2
𝑢 < 0,

(76)

or equivalently

(𝐷1 −𝐷2) ∇
2
𝑢 < 0. (77)

If 𝐷1 > 𝐷2 then any region of concavity of 𝑢 yields ∇2
𝑢 <

0; hence, the concentration 𝑤 increases as it is illustrated in
Figure 4.

6. Numerical Results and Conclusions

6.1. Numerical Experiments. We apply standard finite dif-
ference approximations to system (17) based on classical
theories [26]. Their stability and convergence can be justified
by the same parabolic transform which leads to the parabolic
system. In our numerical experiments we take the interval
𝑄 = [−1, 1]. We performed computations by means of

explicit FDMs with many discretization parameters. The
results presented here are done for time step ℎ

𝑡
= 1/500000

and space step ℎ
𝑥
= 1/500. The initial condition for Figures 1

and 4 are the same as in [27]; the initial condition for Figure 5
are taken from [14] in a graphical mode. The nonlinear parts
are approximated in the same way as in [27].

(i) Figure 1 presents the cases 𝐷1 = 1, 𝐷2 = 0.7,
𝐷3 = 0.01, and the marker at 𝑡 = 0 (droplet). The
initial conditions are as follows: the droplet 𝑤(0, 𝑥)
is equal to 0 outside the interval (−0.01, 0.01), and it
is a polynomial on (−0.01, 0.01), namely, 20000000 ⋅
𝑥
4
− 4000 ⋅ 𝑥

2
+ 0.2. The functions 𝑢(0, 𝑥), V(0, 𝑥)

satisfy the following properties: V(0, 𝑥) = 𝑢(0, −𝑥) and
𝑢(0, 𝑥)+V(0, 𝑥) = 1−𝑤(0, 𝑥); 𝑢(0, 𝑥) is nonincreasing
and V(0, 𝑥) is nondecreasing.

(ii) Figures 2 and 3 show characteristics for 𝜆1, 𝜆2 and
the regions mapped by the transformation (𝑢, V) 󳨃→

(Γ1, Γ2) for 𝐷1 = 1, 𝐷2 = 0.7, and 𝐷3 = 0.0001.
In order to show the range of characteristics we take
a coarse mesh with 𝑁 = 10, ℎ = 0.1 (Figure 2),
and a dense mesh 𝑁 = 50, ℎ = 0.02 (Figure 3).
Computations are made on the dense mesh, whereas
the figure shows only characteristics which start from
the coarse mesh.

(iii) Figure 4 shows the cases 𝐷1 = 1, 𝐷2 = 0.1, and 𝐷3 =
0.01 and a uniformly distributed substance𝑤 at 𝑡 = 0.
One can observe uphill effects. The medium 𝑤(0, 𝑥)
is uniformly distributed, 𝑤(0, 𝑥) ≡ 0. The func-
tions 𝑢(0, 𝑥), V(0, 𝑥) satisfy the following properties:
V(0, 𝑥) = 𝑢(0, −𝑥) and 𝑢(0, 𝑥) + V(0, 𝑥) = 1 − 𝑤(0, 𝑥);
𝑢(0, 𝑥) is nonincreasing, V(0, 𝑥) is nondecreasing, and
𝑢(0, 𝑥), V(0, 𝑥) are polynomials±200000⋅𝑥3∓60⋅𝑥+0.4
on (−0.01, 0.01).
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Figure 3: Regions mapped by the parabolic transformation.𝑁 = 50,𝐷1 = 1,𝐷2 = 0.7, and𝐷3 = 0.0001.

1

0.8

0.6

0.4

0.2

0

u
,�

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 10.8
x (𝜇m)

0.2

0.18

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

u(0, x)

�(0, x)

w(0, x)

u(t, x)

�(t, x)

w(t, x)

Figure 4: Uphill diffusion, distributions of 𝑢, V, 𝑤 at 𝑡 = 0 and 𝑡 =

0.01. Component 𝑤 is uniformly distributed for 𝑡 = 0, 𝑤 ≡ 0.2.

(iv) Figure 5 demonstrates the agreement with Belova’s
results from [14]. Our computations are made with
the same data as [14].

6.2. Conclusions

(1) In the literature one-dimensional Kirkendall’s planes
are treated.We show a three-dimensional evolution of
the Kirkendall plane; confer (45). Our considerations
of Darken’s trajectories passing through all points of
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Figure 5: Uphill diffusion, an experiment with data from Belova
[14].

the domain lead to the most convenient definition
of this object; namely, these trajectories are charac-
teristic curves of a transport equation that uniquely
defines a family of planes.

(2) The proposed parabolic transform is justified for
smooth initial data until they remain in [0, 1]. In
fact these densities become more regular as time
goes by. Moreover, they obey a kind of maximum
principle which implies the mass conservation and
[0, 1]-invariance.
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(3) Observe that the mass balance matching extremum
detection leads to a feasible criterion of experimental
finding the Kirkendall plane by introducing an iso-
tope thin layer on an initial contact interface; compare
(62).

(4) We propose a new method of overcoming the prob-
lems caused by an initial singularity at the contact
surface of the diffusing substances; see (64) and (65).

(5) Our discussion concerning uphill diffusion is con-
cluded by an intuitive observation: if 𝑤 is uniformly
distributed and𝐷1 > 𝐷2, then uphill diffusion of𝑤 is
driven by any concavity of 𝑢; see (75). However, if the
marker is a thin layer then an uphill effect is peculiar,
because a fast dissipation of this substance is expected
rather than any increase of this spike. Is it possible to
provoke an uphill effect for a thin layer of the marker
𝑤? Contrary to the above expected behavior, one can
find such initial distributions of 𝑢, V that an uphill
phenomenon occurs. Suppose that𝑤 is an isotope and
its maximum can be measured; then we have ∇𝑤 = 0
and ∇

2
𝑤 ≤ 0 at this maximal point. Hence, uphill

condition (75) is fulfilled provided that we have at this
maximal point the inequality

(𝐷1 −𝐷2) 𝑤∇
2
𝑢 < [𝐷2 − (1−𝑤) (𝐷2 −𝐷3)] ∇

2
𝑤. (78)

Since∇2
𝑤 ≤ 0 at this maximum, then uphill diffusion

can be generated by concavity of 𝑢 at this point under
the mild requirement 𝐷3 + 𝑤(𝐷2 − 𝐷3) ≥ 0, which
holds for the case𝐷1 > 𝐷2 > 𝐷3.

(6) There is an alternative view of the gradient ∇Γ in
our parabolic transform; namely, one can look for a
nondegenerate function Γ = Γ(𝑢, V) whose gradient
∇Γ = (Γ1, Γ2) is proportional to an eigenvector 𝐸 =

𝐸(𝑢, V) = (𝐸1, 𝐸2) corresponding to 𝜆 = 𝜆(𝑢, V). This
reads

∇Γ = 𝜌𝐸, 𝜌 = 𝜌 (𝑢, V) . (79)

Then 𝜌 > 0 satisfies the equation

𝜌
𝑢
𝐸2 +𝜌𝐸2,𝑢 = 𝜌V𝐸1 +𝜌𝐸1,V. (80)

Characteristics of this equation fulfill the systems 𝑢󸀠 =
𝐸2, V
󸀠
= −𝐸1, and Γ can be calculated explicitly as

Γ (𝑢, V) = ∫

(𝑢,V)

(0,0)
[𝜌𝐸1 𝑑𝑢+ 𝜌𝐸2 𝑑V] . (81)

This generalizes the diagonalizationmethod byKrish-
tal et al. [28]. Their transform of diffusivities was
linear, whereas our transform is nonlinear.

(7) Observe that the relation𝐷1 > 𝐷2 > 𝐷3 leads to find-
ing the eigenvalues 𝜆1, 𝜆2 in the intervals (𝐷2, 𝐷1),
(𝐷3, 𝐷2), respectively. One can prove an analogous
statement for multicomponent systems with 𝑛 > 4;
however, it is not obvious whether suitable parabolic
transforms can be derived, because the resulting PDE
system might well be overdetermined.
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and F. J. J. Van Loo, “Spatio-temporal instabilities of the
Kirkendall marker planes during interdiffusion in 𝛽

󸀠-AuZn,”
Philosophical Magazine A, vol. 82, no. 5, pp. 943–954, 2002.

[10] A. Paul, A. A. Kodentsov, and F. J. J. Van Loo, “Bifurcation of
the Kirkendall plane during interdiffusion in the intermetallic
compound 𝛽-NiAl,” Acta Materialia, vol. 52, no. 13, pp. 4041–
4048, 2004.

[11] L. Höglund and J. Ågren, “Analysis of the Kirkendall effect,
marker migration and pore formation,”ActaMaterialia, vol. 49,
no. 8, pp. 1311–1317, 2001.

[12] J. Dąbrowa, W. Kucza, K. Tkacz-Śmiech, B. Bożek, and
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