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Improving the ability to track abruptly changing states and resolving the degeneracy are two difficult problems to particle filter
applied to fault prognosis. In this paper, a novel strong tracking fault prognosis algorithm is proposed to settle the above problems. In
the proposed algorithm, the artificial immunity algorithm is first introduced to resolve the degeneracy problem, and then the strong
tracking filter is introduced to enhance the ability to track abruptly changing states. The particles are updated by strong tracking
filter, and better particles are selected by utilizing the artificial immune algorithm to estimate states. As a result, the degeneracy
problem is resolved and the accuracy of the proposed fault prognosis algorithm is improved accordingly.The feasibility and validity
of the proposed algorithm are demonstrated by the simulation results of the standard validation model and the DTS200 system.

1. Introduction

Particle filter (PF) is a leading and powerful algorithm for
estimating the states of nonlinear or non-Gaussian systems.
The past decades have witnessed a wide range of applications,
including target tracking [1–4], data detection [5], modeling
[6, 7], price forecasting, and fault detection [8–11]. On the
other hand, a great number of investigators are interested
in enriching particle filtering framework, and many new
particle filters are proposed in recent years [12–15]. In these
studies, it is found that resolving the degeneracy problem and
improving the ability to track abruptly changing states are two
difficult problems to particle filter applied to fault prognosis
[16–20]. The degeneracy problem means that most particles
are assigned to zero weights. As a result, the performance
of the particle filter deteriorates because most computational
resource is wasted. It is noted that, however, degeneracy
can be reduced by resampling or choosing good impor-
tance sampling functions. Along this line of research, many
resampling algorithms have been proposed for reducing
the degeneracy. In these resampling algorithms, sequential
importance resampling (SIR) is the representation which
largely copies the particles with larger weights to replace
the particles with smaller weights [21, 22]. The degeneracy
problem is partially addressed, but the sample impoverish-
ment is not fully concerned. Sample impoverishment means

that most particles are the same in the set of particles
since the particles with larger weights are largely copied.
In this circumstance, choosing good importance sampling
functions deserves further studies, andmany investigators are
interested in this question. For example, extended Kalman
filter (EKF)was introduced to propose extended particle filter
(EPF) by De Freitas et al. [6], and unscented Kalman filter
(UKF) was introduced to propose unscented particle filter
(UPF) by van der Merwe et al. [23]. Both EPF and UPF
can resolve the degeneracy problem, but they cannot track
abruptly changing states due to the disadvantages of EKF and
UKF.

Strong tracking filter (STF) has good performance for
tracking abruptly changing states, and thus it can be used
to update particles. In addition, it is known that artificial
immunity (AI) can search for the best one from all the
range, and thus it can be used to clone and vary particles.
Therefore, in this paper STF and AI algorithms are utilized
jointly to improve particle filter algorithm. As a result, a novel
fault prognosis algorithm based on strong tracking artificial
immunity particle filter (STAIPF) is proposed to settle the
above discussed problems. In the proposed algorithm, the
artificial immunity algorithm is first introduced to resolve
the degeneracy problem, and then the strong tracking filter is
introduced to enhance the ability to track abruptly changing
states. More specifically, the particles are updated by strong
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tracking filter, and better particles for states estimation are
selected by utilizing the artificial immune algorithm to
enhance the diversity of samples. Therefore, the degeneracy
problem and sample impoverishment are resolved simulta-
neously, and the accuracy of the proposed fault prognosis
algorithm is improved as well. Finally, the feasibility and
validity of the proposed algorithm are demonstrated by the
simulation results of the standard validation model and the
DTS200 system.

The remainder of this paper is structured as follows. In
Section 2, the particle filter is introduced. Section 3 provides
the artificial immune algorithm. In Section 4, we present a
strong tracking filter. A novel strong tracking fault prognosis
algorithm is proposed in Section 5. Section 6 provides simu-
lation results. This paper is concluded in Section 7.

2. Particle Filter

Actually, particle filter is a sequential Monte Carlo method-
ology. Its primary principle is to recursively compute rele-
vant probability distributions by importance sampling and
to approximate the probability distributions with discrete
random variables. Detailed information of particle filter can
be found in [21].

In general, the following state-space and observation
equations are considered:

𝑥𝑘 = 𝑓 (𝑥𝑘−1, ]𝑘−1) ,

𝑦𝑘 = ℎ (𝑥𝑘, 𝑛𝑘) ,

(1)

where the subscript 𝑘 denotes time index, 𝑦𝑘 ∈ 𝑅
𝑛𝑦 is an

observations vector, 𝑥𝑘 ∈ 𝑅
𝑛𝑥 is a state vector, ]𝑘 ∈ 𝑅

𝑛]

is a system noise vector, 𝑛𝑘 ∈ 𝑅
𝑛𝑛 is an observation noise

vector, ℎ(⋅) is a measurement function, and 𝑓(⋅) is a system
transition function. The first equation is known as the state
equation while the second one is known as the measurement
equation. It is usually assumed that the analytical forms of the
two functions and the distributions of the two noises in (1) are
known.Then, the object is to recursively estimate 𝑥𝑘 based on
the observations 𝑦𝑘 and the above assumptions.

Due to the general nature of model (1) and the impact of
non-Gaussian noises, it is difficult to solve the above filtering
problem in an analytical manner. In this case, particle filter
is an effective alternative. In particle filter, the number of
effective particles is commonly denoted by𝑁eff, which is used
to weigh the degeneracy degree of the particles. In other
words, the smaller 𝑁eff implies the worse degeneracy degree.
Here,𝑁eff is defined as

𝑁eff = round(

1

∑
𝑁

𝑖=1
(𝑤
𝑖

𝑘
)
2
) , (2)

where 𝑤
𝑖

𝑘
denotes the normalized weighting coefficient of

particle 𝑖 at time 𝑘, and round(⋅) denotes rounding to the
nearest integer.

Based on the above descriptions, the SIR algorithm can be
summarized as follows [21], which is one of the most popular
particle filtering algorithms.

A Procedure Description of SIR

Step 1 (initialization). Draw 𝑁 particles according to initial
importance function, and ⟨𝑥

𝑖

𝑘
, 1/𝑁⟩ is assumed to denote the

𝑖th particle, and then set 𝑘 = 1.

Step 2. Update.

𝑥
𝑖

𝑘
= 𝑓 (𝑥

𝑖

𝑘−1
, ]𝑘−1) , (3)

where 𝑥
𝑖

𝑘
denotes the particle 𝑖 at time 𝑘, which is updated

according to formula (3).

Step 3. Assign the weighting coefficient of 𝑥𝑖
𝑘
according to

𝑤
𝑖

𝑘
= 𝑤
𝑖

𝑘−1
𝑝 (𝑦𝑘 | 𝑥

𝑖

𝑘
) . (4)

Step 4. Normalize weighting coefficient by

𝑤
𝑖

𝑘
=

𝑤
𝑖

𝑘

∑
𝑁

𝑖=1
𝑤
𝑖

𝑘

. (5)

Step 5. If𝑁eff < 𝑁/3, then run system resampling and assign
the same weighting coefficient to all particles:

𝑤
𝑖

𝑘
=

1

𝑁

. (6)

End.

Step 6. Estimate the state at time 𝑘 according to

𝑥
∗

𝑘
=

𝑁

∑

𝑖=1

𝑥
𝑖

𝑘
× 𝑤
𝑖

𝑘
. (7)

Step 7. Return to Step 2.

3. Artificial Immune Algorithm

Artificial immune algorithm (AIA), heredity algorithm, and
evolutionary algorithm are all bionic algorithms which sim-
ulate the behaviors of natural organisms. Artificial immune
algorithm is characterized by its diversity, self-regulation,
clone, and mutation, which is a global searching algorithm
based on natural immune systems [24, 25].

Antigen and antibody correspond to target function
and possible value of the associated optimization problem,
respectively. Generally, affinity has two forms. One is the
appetency which denotes the matching degree between anti-
gen and antibody. The other is the repellency which denotes
the similar degree of antigen and antibody, and the repellency
ensures the diversity of the antibodies. Immune algorithm
is based on the memory cell and clone number calculated
according to affinity, which can converge to the optimal
solution ensured by the above steps. The basic procedure of
immune algorithm is summarized as Figure 1.
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Identify antigen

Draw initial antibody

Update memory cell

Produce new antibody set

Calculate affinity

Clone and aberrance

End?No

Figure 1: The basic procedure of immune algorithm.

At first, we should identify antigen and draw the initial
antibody, then calculate the affinity between the antibodies
and antigen, and update the memory cell. Next, clone and
mutate the better antibodies to produce the new antibody set.
Finally, return to calculate the affinity until the end.

4. Strong Tracking Filter

The usual EKF cannot track abruptly changing states when
the system and the filter become steady, which may result
in greater tracking error and even divergence. It is known
that strong tracking filter has the advantage to track abruptly
changing states. In this paper, the adopted strong tracking
filter is a suboptimal fading extended Kalman filter (SFEKF)
[26, 27].

Consider a kind of systems as follows:

𝑥 (𝑘 + 1) = 𝑓 (𝑘, 𝑢 (𝑘) , 𝑥 (𝑘)) + Γ (𝑘) V (𝑘) ,

𝑦 (𝑘 + 1) = ℎ (𝑘 + 1, 𝑥 (𝑘 + 1)) + 𝑒 (𝑘 + 1) ,

(8)

where the integer 𝑘 ≥ 0 is a discrete time variable, 𝑥 ∈ 𝑅
𝑛

is a state vector, 𝑢 ∈ 𝑅
𝑝 is an input vector, and 𝑦 ∈ 𝑅

𝑚 is
an output vector. 𝑓 : 𝑅

𝑝
× 𝑅
𝑛

→ 𝑅
𝑛 and ℎ : 𝑅

𝑛
→ 𝑅
𝑚 are

nonlinear functionswhich have first-order continuous partial
derivatives with respect to the states. Γ ∈ 𝑅

𝑛×𝑞 is a known
matrix. V(𝑘) is a q-dimension Gaussian white noise vector,
and 𝑒(𝑘) is an m-dimension Gaussian white noise vector.
In this paper, we consider the case that the noises have the
following statistical characteristics:

𝐸V (𝑘) = 𝐸𝑒 (𝑘) = 0,

𝐸 [V (𝑘) V𝑇 (𝑗)] = 𝑄 (𝑘) 𝛿𝑘,𝑗,

𝐸 [𝑒 (𝑘) 𝑒
𝑇
(𝑗)] = 𝑅 (𝑘) 𝛿𝑘,𝑗,

𝐸 [V (𝑘) 𝑒
𝑇
(𝑗)] = 0,

(9)

where 𝑄(𝑘) is a symmetric nonnegative definite matrix,
𝑅(𝑘) is a symmetric positively definite matrix, and 𝑥(0) ∼

𝑁(𝑥0, 𝑃0) is the initial state. It is further assumed that 𝑥(0)
is statistically independent of V(𝑘) and 𝑒(𝑘).

For the considered system represented by (8), a procedure
description of strong tracking filter is summarized as follows
[26, 27].

A Procedure Description of Strong Tracking Filter

Step 1. Set 𝑘 = 1, and choose the initial value of 𝑥(0 | 0),
𝑃(0 | 0) and infirmness gene 𝛽.

Step 2. Calculate 𝑥(𝑘 + 1 | 𝑘) according to

𝑥 (𝑘 + 1 | 𝑘) = 𝑓 (𝑘, 𝑢 (𝑘) , 𝑥 (𝑘 | 𝑘)) . (10)

Step 3. Calculate 𝐻(𝑘 + 1, 𝑥(𝑘 + 1 | 𝑘)) and 𝐹(𝑘, 𝑥(𝑘 | 𝑘))

according to

𝐻(𝑘 + 1, 𝑥 (𝑘 + 1 | 𝑘)) =

𝜕ℎ (𝑘 + 1, 𝑥 (𝑘 + 1))

𝜕𝑥

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑥(𝑘+1)=𝑥(𝑘+1|𝑘)

,

𝐹 (𝑘, 𝑥 (𝑘 | 𝑘)) =

𝜕𝑓 (𝑘, 𝑢 (𝑘) , 𝑥 (𝑘))

𝜕𝑥

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑥(𝑘)=𝑥(𝑘|𝑘)

.

(11)

Step 4. Calculate 𝛾(𝑘 + 1) according to

𝛾 (𝑘 + 1) = 𝑦 (𝑘 + 1) − ℎ (𝑘 + 1, 𝑥 (𝑘 + 1 | 𝑘)) . (12)

Step 5. Calculate the fading factor 𝜆(𝑘 + 1) as

𝑉0 (𝑘 + 1) =

{
{

{
{

{

𝛾 (1) 𝛾
𝑇
(1) , 𝑘 = 0,

𝜌𝑉0 (𝑘) + 𝛾 (𝑘 + 1) 𝛾
𝑇
(𝑘 + 1)

1 + 𝜌

, 𝑘 ≥ 1,

(13)

where the parameter 𝜌 is named forgetting factor, and 0 ≤

𝜌 ≤ 1. In general, we set 𝜌 = 0.95.

𝑁(𝑘 + 1) = 𝑉0 (𝑘 + 1) − 𝐻 (𝑘 + 1, 𝑥 (𝑘 + 1 | 𝑘)) Γ (𝑘)

× 𝑄 (𝑘) Γ
𝑇
(𝑘)𝐻
𝑇
(𝑘 + 1, 𝑥 (𝑘 + 1 | 𝑘))

− 𝛽 ⋅ 𝑅 (𝑘 + 1) ,

𝑀 (𝑘 + 1) = 𝐻 (𝑘 + 1, 𝑥 (𝑘 + 1 | 𝑘)) 𝐹 (𝑘, 𝑢 (𝑘) , 𝑥 (𝑘 | 𝑘))

× 𝑃 (𝑘 | 𝑘) 𝐹
𝑇
(𝑘, 𝑢 (𝑘) , 𝑥 (𝑘 | 𝑘))𝐻

𝑇

× (𝑘 + 1, 𝑥 (𝑘 + 1 | 𝑘)) ,

𝜆0 =

tr [𝑁 (𝑘 + 1)]

tr [𝑀 (𝑘 + 1)]

,

𝜆 (𝑘 + 1) = {

𝜆0, 𝜆0 ≥ 1,

1, 𝜆0 < 1.

(14)
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Step 6. Estimate the value of 𝑥(𝑘 + 1 | 𝑘 + 1) by the following
recursive formulas:

𝑃 (𝑘 + 1 | 𝑘) = 𝜆 (𝑘 + 1) 𝐹 (𝑘, 𝑢 (𝑘) , 𝑥 (𝑘 | 𝑘))

× 𝑃 (𝑘 | 𝑘) 𝐹
𝑇
(𝑘, 𝑢 (𝑘) , 𝑥 (𝑘 | 𝑘))

+ Γ (𝑘)𝑄 (𝑘) Γ
𝑇
(𝑘) ,

𝐾 (𝑘 + 1) = 𝑃 (𝑘 + 1 | 𝑘)𝐻
𝑇
(𝑘 + 1, 𝑥 (𝑘 + 1 | 𝑘))

× [𝐻 (𝑘 + 1, 𝑥 (𝑘 + 1 | 𝑘)) 𝑃 (𝑘 + 1 | 𝑘)𝐻
𝑇

× (𝑘 + 1, 𝑥 (𝑘 + 1 | 𝑘)) + 𝑅 (𝑘 + 1) ]

−1

,

𝑥 (𝑘 + 1 | 𝑘 + 1) = 𝑥 (𝑘 + 1 | 𝑘) + 𝐾 (𝑘 + 1) 𝛾 (𝑘 + 1) .

(15)

Step 7. Calculate 𝑃(𝑘 + 1 | 𝑘 + 1) by

𝑃 (𝑘 + 1 | 𝑘 + 1) = [𝐼 − 𝐾 (𝑘 + 1)𝐻 (𝑘 + 1, 𝑥 (𝑘 + 1 | 𝑘))]

⋅ 𝑃 (𝑘 + 1 | 𝑘)

(16)

𝑘 + 1 → 𝑘, andreturn to Step 2 until the end of circle.

5. Strong Tracking Fault Prognosis Algorithm

Anovel strong tracking fault prognosis algorithm is proposed
in this section, in which the artificial immunity algorithm
is introduced to resolve the degeneracy problem, and the
strong tracking filter is introduced to enhance the ability to
track abruptly changing states. To be specific, the particles
are updated by strong tracking filter, and better particles
for estimation are selected by artificial immune algorithm
to enhance the diversity of samples. As such, the proposed
algorithm can predict fault more accurately.

The following is the detailed idea description of the
proposed algorithm. First, draw 𝑁 particles as the initial
antibodies according to the important sampling function.
Then, we update the 𝑁 particles by STF and calculate the
appetency and repellency of the antibodies to ascertain the
clone number of every antibody. A new antibody set is made
up of the initial antibodies and clone antibodies, in which
some similar antibodies are discarded by respectively calcu-
lating affinities of all the antibodies. By this procedure, the
good ones are chosen to estimate the state of next time.Thus,
the degeneracy problem and the sample impoverishment are
resolved, and the ability of tracking abruptly changing states
is much improved because of the introduced STF in the
proposed fault prognosis algorithm.

In this paper, we consider the nonlinear dynamic system
as (1), and set 1 and ⟨𝑥

𝑖

𝑘
, 𝑤
𝑖

𝑘
⟩ as the antigen and antibody,

respectively. Based on the STF algorithm and AI algorithm,
we propose a novel strong tracking fault prognosis algorithm,
which is illustrated step by step in the following.

A Procedure Description of the Proposed Fault
Prognosis Algorithm

Step 1 (initialization). Draw 𝑁 particles according to the
importance function at time k, and ⟨𝑥

𝑖

𝑘
, 1/𝑁⟩ is assumed to

denote each particle; then set 𝑘 = 1 and choose the initial
value of 𝑥(0 | 0), 𝑃(0 | 0), and infirmness gene 𝛽.

Step 2 (update). Update the particles using the strong track-
ing filter, which calculates 𝑥𝑖

𝑘
according to (10)–(15).

Step 3 (assign weights). Assign the weighting coefficients to
𝑥
𝑖

𝑘
according to (4) and then normalize weighting coefficients

according to (5).

Step 4 (build initial antibodies). The𝑁 updated particles are
regarded as initial antibodies put in the memory cell.

Step 5 (calculate the affinity). Calculate fit𝑘(𝑖) and off𝑘(𝑖, 𝑗)
according to the following formulas which are the appe-
tencies of every antibody and the repellencies between the
antibodies.

fit𝑘 (𝑖) = 1 − 𝑤
𝑖

𝑘
,

off𝑘 (𝑖, 𝑗) =

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑖

𝑘
− 𝑥
𝑗

𝑘

󵄨
󵄨
󵄨
󵄨
󵄨
.

(17)

Step 6 (clone the antibodies). Clone the antibodies according
to the appetencies of every antibody. Here the clone number
knum𝑘(𝑖) is ascertained by

knum𝑘 (𝑖) = round(𝑁 × cos(𝜋

2

× fit𝑘 (𝑖))) . (18)

Step 7 (mutation). Mutate the whole antibodies according to

𝑥
𝑖

𝑘
= 𝑥
𝑖

𝑘
+ fit𝑘 (𝑖) randn (⋅) . (19)

Step 8 (choose the optimal particles). Calculate fit𝑘(𝑖) and
off𝑘(𝑖, 𝑗) of the mutated antibodies and discard one of the
two antibodies if off𝑘(𝑖, 𝑗) < 0.0001 which is set according
to the value range of particles. Sort the remainder antibodies
in terms of fit𝑘(𝑖) and choose the anterior 𝑁 antibodies to
replace the memory cell. Return to Step 3 until the ending
criterion is satisfied.

Step 9 (estimate). Consider the𝑁 antibodies in memory cell
as new particles to estimate the states at 𝑘+1 according to (7).

Step 10. 𝑗-step-ahead prediction.

𝑥
𝑖

𝑘+𝑗|𝑘+𝑗−1
= 𝑓 (𝑥

𝑖

𝑘+𝑗−1
, V𝑘+𝑗−1) , 𝑗 ∈ [1, 𝑝] . (20)

Step 11. 𝑗-step-ahead fault prognosis probability at 𝑘 time.

fault (𝑗, 𝑘) =

𝑁

∑

𝑖=1

𝑤
𝑖

𝑘
𝐼 (𝑥
𝑖

𝑘+𝑗|𝑘+𝑗−1
∈ 𝜔0) , (21)

where 𝜔0 denotes the fault state.
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Step 12. Calculate the weighted fault prognosis probability at
𝑘 + 𝑗 time.

𝑝fault(𝑘+𝑗) =

𝑝

∑

𝑗=1

fault (𝑗, 𝑘) × 𝑤
∗

𝑗
. (22)

Step 13. If𝑁eff < 𝑁/3, resample the particles.

Step 14. Set 𝑘 = 𝑘 + 1, return to Step 2.

6. Simulation Experiments and
Results Analysis

In this section, two simulation experiments are presented to
demonstrate the effectiveness of the proposed algorithm.The
first one is a standard validation model that has been widely
used to validate the ability to track the states and the ability to
resolve the degeneracy problem and sample impoverishment.
The second experiment is used to validate whether or not
the proposed algorithm can predict the system’s fault with
abruptly changing states.

6.1. Experiment 1 of the Standard Validation Model. The
model used in this section can be found in many studies
[28], which is a standard validation model to validate the
performance of various particle filters.

Specifically, the state equation and the measurement
equation of the standard validation model are represented as

𝑥𝑘 = 𝑓 (𝑥𝑘−1, 𝑘) + ]𝑘−1,

𝑦𝑘 =

𝑥
2

𝑘

20

+ 𝑛𝑘,

(23)

where

𝑓𝑘 (𝑥𝑘−1, 𝑘) =

𝑥𝑘−1

2

+

25𝑥𝑘−1

1 + 𝑥
2

𝑘−1

+ 8 cos (1.2𝑘) , (24)

and V𝑘 is a Gaussian noise with mean 0 and variance 10,
and 𝑛𝑘 is also a Gaussian noise with mean 0 and variance
1. The normal distribution 𝑁(0, 5) is the initial importance
function. For implementing the proposed algorithm, we set
𝑥0 = 0.1, 𝜌 = 0.95, 𝛽 = 4, and 𝑁 = 100, where 𝑁 is the
number of particles. In this simulation, we choose cycling 5
times as the terminal criterion.The estimated results of strong
tracking artificial immunity particle filter for the standard
validation model are shown in Figure 2.

Figure 2 shows that the estimate values of states are almost
the same with the real values of states, so STAIPF can track
states of the standard validation model and the proposed
algorithm is feasible and effective.

The number of effective particles 𝑁eff is used to weight
the degeneracy degree of the particles. The smaller 𝑁eff
denotes more serious degeneracy degree. In this simulation,
STAIPF and STPF run 10 times and the means of 𝑁eff
are respectively calculated to validate whether STAIPF can
resolve the degeneracy problem or not to a certain extent.
Table 1 is the simulation results of effective particles, in

Table 1: The number of effective particles.

Time 1 2 3 4 5 6 7 8 9 10
𝑁eff1 91 78 89 98 53 89 88 79 63 96
𝑁eff2 34 28 36 42 58 28 15 18 26 49
�̃�eff1 = 82.4.
�̃�eff2 = 33.4

which 𝑁eff1 and �̃�eff1 , respectively, denote the number of
effective particles and themean of STAIPF, and𝑁eff2 and �̃�eff2 ,
respectively, denote the number of effective particles and the
mean of STPF.

Table 1 and the mean of 𝑁eff of two algorithms show
that �̃�eff1 is 2.4 times as much as �̃�eff2 . Therefore, STAIPF is
better than STPF about the ability to resolve the degeneracy
problem. As a result, STAIPF can resolve degeneracy problem
because of introducing artificial immunity algorithm.

Further, the normalizedweighting coefficients of particles
at the final time are shown in Figure 3 to demonstrate that
STAIPF can resolve the degeneracy problem better than
STPF.

We can find that the normalized weighting coefficients
of particles at the final time about STAIPF are all greater
than zero, but most of the normalized weighting coefficients
about STPF equals zero. As a result, STAIPF can resolve the
degeneracy problem better than STPF.

6.2. Experiment 2 of the DTS200 System
6.2.1. SystemDescription. Amodifiedmathematical model of
the DTS200 system [26] as shown in Figure 4 was produced
by the Amira Automation Company in Germany. DTS200
system is composed of three cylinders tank 1 (𝑇1), tank 2 (𝑇2),
and tank 3 (𝑇3) with the cross-section area 𝐴. The cylinders
are connected to each other by pipes with the cross-section
area 𝑆𝑛. The outflow valve with circular cross-section area 𝑆𝑛

is located at tank 2.The outflowing distilled water collected in
a water tank supplies to the pump1 and pump2. A leak valve
with the cross-section area 𝑆1 is fixed on the bottom of each
tank, which is usually closed.

The pump flows 𝑄1 and 𝑄2 denote the input signals, and
the liquid heights ℎ1, ℎ2, and ℎ3 of 𝑇1, 𝑇2, and 𝑇3 denote the
output signals. The liquid heights ℎ1 and ℎ2 measured by 3
piezoresistive difference pressure sensors are controlled by𝑄1
and 𝑄2.

The system is modeled by
𝑑x
𝑑𝑡

= A (x) + Bu (𝑡) ,

y = [𝑥1 𝑥2 𝑥3]
𝑇
.

(25)

With the vectors defined by

X =
[

[

𝑥1

𝑥2

𝑥3

]

]

≜
[

[

ℎ1

ℎ2

ℎ3

]

]

, u ≜ [

𝑄1

𝑄2

] ,

A (x) = 1

𝐴

[

[

−𝑄13

𝑄32 − 𝑄20

𝑄13 − 𝑄32

]

]

, B =

1

𝐴

[

[

1 0

0 1

0 0

]

]

.

(26)
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Figure 2: The estimated results of STAIPF for the standard validation model: (a) and (b) about system noise, (c) about the observations, and
(d) about states estimate values.

0 50 100
0.00999

0.01000

0.01001

0.01002

Particles

 Th
e n

or
m

al
iz

ed
 w

ei
gh

tin
g 

co
effi

ci
en

ts

(a)

0

0.02

0.04

0.06

0.08

Th
e n

or
m

al
iz

ed
 w

ei
gh

tin
g 

co
effi

ci
en

ts

0 50 100
Particles

(b)

Figure 3: The normalized weighting coefficients of particles at the final time: (a) and (b) about STAIPF and STPF, respectively.
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Figure 4: A structural schematic diagram of DTS200.

The significance of the above mathematical symbols is
summarized as follows:

𝑎𝑧𝑖: outflow coefficients,

ℎ𝑖: liquid heights [m],

𝑄𝑖𝑗: flow rates [m3/s],

𝑄1, 𝑄2: pump flow rates [m3/s],

𝐴: cross-section area of cylinder [m2],

𝑆𝑛: cross-section area of connection pipe [m2],

where 𝑖 = 1, 2, 3, and (𝑖, 𝑗) ∈ {(1, 3); (3, 2); (2, 0)}. Consider

𝑞 = 𝑎𝑧𝑆𝑛 sgn (Δℎ) (2𝑔 |Δℎ|)
1/2

, (27)

where 𝑔: earth’s acceleration of gravity [m/s2], sgn(𝑧): sign
of the argument z, Δℎ: liquid height difference between two
tanks connected to each other, 𝑞: flow in the connecting pipe,
and 𝑎𝑧: outflow coefficient.

The results of the unknown quantities are calculated as

𝑄13 = 𝑎𝑧1𝑆𝑛 sgn (ℎ1 − ℎ3) (2𝑔
󵄨
󵄨
󵄨
󵄨
ℎ1 − ℎ3

󵄨
󵄨
󵄨
󵄨
)
1/2

,

𝑄32 = 𝑎𝑧3𝑆𝑛 sgn (ℎ3 − ℎ2) (2𝑔
󵄨
󵄨
󵄨
󵄨
ℎ3 − ℎ2

󵄨
󵄨
󵄨
󵄨
)
1/2

,

𝑄20 = 𝑎𝑧2𝑆𝑛 (2𝑔ℎ2)
1/2

.

(28)

The technical parameters of the DTS200 system are given
as follows:

𝐴 = 0.0154m2, 𝑆𝑛 = 5 × 10
−5m2,

𝑄1max = 𝑄2max = 100mL/s, ℎmax = 0.62 (±0.01m) ,

𝑔 = 9.81m/s2, 𝑎𝑧
0

1
= 0.5,

𝑎𝑧
0

2
= 0.6, 𝑎𝑧

0

3
= 0.5.

(29)

For the above concerned system, it can be equivalently
modeled with Euler discretization technique as the following
nonlinear discrete model:

x (𝑘 + 1) = x (𝑘) + Δ𝑡 ⋅ A (x) + Δ𝑡 ⋅ B ⋅ u (𝑘) + w (𝑘) ,

y (𝑘) = [

[

𝑥1 (𝑘)

𝑥2 (𝑘)

𝑥3 (𝑘)

]

]

+ k (𝑘) ,
(30)

where Δ𝑡 = 1 s is the sampling interval, the initial levels of
𝑇1, 𝑇2, and 𝑇3 are ℎ

0

1
= 0.4m, ℎ0

2
= 0.3m, ℎ0

3
= 0.35m,

respectively, and 𝑄1 = 𝑄2 = 4.5 × 10−5m3/s.
To achieve fault prognosis, in this experimental study, the

fault state 𝜔0 is defined as

𝜔0 ∈ {

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

ℎ𝑘 − ℎ
0

𝑘

ℎ
0

𝑘

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≥ 0.1} , 𝑘 = 1, 2, 3. (31)

6.2.2. Simulation Results and Analysis. The abrupt change
fault is introduced to the system in order to verify the
tracking ability of the proposed algorithm. We suppose that
az2 changes according to the following formula:

𝑎𝑧2 =

{
{

{
{

{

0.6, 0 < 𝑘 ≤ 20,

𝑎𝑧
0

2
+ (𝑘 − 20) × 0.06, 20 < 𝑘 ≤ 80,

4.2, 80 < 𝑘 ≤ 100.

(32)

To implement the proposed algorithm, we set the number
of particles𝑁 = 100, 𝑝 = 5, 𝛽 = 10, 𝜌 = 0.95, and the process
noise and measurement noiseare 𝑤(𝑘) ∼ 𝑁(0, 2 × 10

−4
) and

V(𝑘) ∼ 𝑁(0, 1 × 10
−4
), respectively. Further, we suppose that

the simulation time is 100Δ𝑡 and the initial particle meets the
condition as X0 ∼ 𝑁([ℎ

0

1
, ℎ
0

2
, ℎ
0

3
]
𝑇
, 10
−2
).

The simulation results of state estimation and fault prog-
nosis probability of the normal system are shown as Figure 5,
which are performed by the strong tracking fault prognosis
algorithm.

We can find from Figure 5 that the estimated values of the
system states are all around the real ones with time and the
weighted fault prognosis probability is always zero, and the
normalized weighting coefficients of most of particles are not
zero. As a result, the proposed algorithm can accurately pre-
dict the normal system and resolve the degeneracy problem.

The simulation results of the state estimation and fault
prognosis probability of the faulty system are shown as
Figure 6, which are performed by the strong tracking fault
prognosis algorithm.

In this case, it is found fromFigure 6 that the system states
deviate from the real value when az2 changes with time, and
the range ability of ℎ2 is the biggest. The system fault will
appear when ℎ2 deviates from the real value to a certain point.
The normalized weighting coefficients ofmost of particles are
not zero. As a result, the proposed algorithm can accurately
predict the system fault in time and resolve the degeneracy
problem well.

Further, we extract the values of ℎ2 and fault prognosis
probability from Figures 6(a) and 6(b). In this paper, the



8 Mathematical Problems in Engineering

0 50 100
0.25

0.3

0.35

0.4

0.45

Time

St
at

es

h1

h2

h3

(a)

0 50 100
Time

−1

−0.5

0

0.5

1

W
ei

gh
te

d 
fa

ul
t p

ro
gn

os
is 

pr
ob

ab
ili

ty

(b)

0 50 100
Time

−0.5

0

0.5

1

1.5

2

a
z
2

(c)

0 50 100
0.008

0.009

0.01

0.011

0.012

Particles

N
or

m
al

iz
ed

 w
ei

gh
tin

g 
co

effi
ci

en
t

(d)

Figure 5:The simulation results of state estimation and fault prognosis probability of normal system: (a) about the results of states estimation,
(b) about weighted fault prognosis probability, (c) about az2 changing with time, and (d) about the normalized weighting coefficient of
particles at the final time.

Table 2: The relation between prob and ℎ2.

Time 66 67 68 69 70 71 72 73 74 75
ℎ2 0.2798 0.2784 0.2770 0.2762 0.2754 0.2736 0.2716 0.2698 0.2682 0.2653
prob 0 0 0 0.2435 0.4353 0.5609 0.9214 1.0000 1.0000 1.0000

fault is declared when the fault prognosis probability prob is
greater than 0.5. Specifically, the values of ℎ2 and theweighted
fault prognosis probability prob during the period [66, 75] are
shown in Table 2 to demonstrate that the proposed algorithm
can accurately predict the system fault.

According to the definition of the fault state 𝜔0 in (31),
the system fault will happen when ℎ2 deviates from the real
value to 0.2700 at time 73. It is observed from Table 2 that
the proposed algorithm can predict the fault at time 71. As a
result, the algorithm can accurately predict the system fault
in time.

Together with the above simulation results, we can
observe that the degeneracy problem and the sample impov-
erishment can be resolved simultaneously in the proposed
fault prognosis algorithm, and thus the feasibility and validity
of the proposed algorithm are demonstrated.

7. Conclusions

Considering that SIR and EPF cannot track abruptly chang-
ing states and STPF can track abruptly changing states, a
novel strong tracking fault prognosis algorithm is proposed
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Figure 6: The simulation results of the state estimation and fault prognosis probability of the faulty system: (a) about the results of states
estimation, (b) about weighted fault prognosis probability, (c) about az2 changing with time, and (d) about the normalized weighting
coefficient of particles at the final time.

to settle the degeneracy problem and the sample impov-
erishment in particle filter, which is applied to predict the
fault of systems with abruptly changing states.The simulation
results of the standard validation model show that the strong
tracking fault prognosis algorithm can resolve degeneracy
problem, and the simulation results of the DTS200 system
demonstrate that the proposed algorithm can track abruptly
changing states and accurately predict the system fault in
time. As a result, the proposed algorithm is feasible and
effective for the applications in fault prognosis.
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