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We show that the eigenvalues of a class of higher-order Sturm-Liouville problems depend not only continuously but also smoothly
on boundary points and that the derivative of the 𝑛th eigenvalue as a function of an endpoint satisfies a first order differential
equation. In addition, we prove that as the length of the interval shrinks to zero all 2𝑘th-order Dirichlet eigenvalues march off to
plus infinity; this is also true for the first (i.e., lowest) eigenvalue.

1. Introduction

Dauge and Helffer in [1, 2] considered the second-order
Sturm-Liouville (SL) problems and obtained the equations
for the eigenvalues of self-adjoint separated boundary con-
ditions. In addition, they showed that the lowest Dirichlet
eigenvalue is a decreasing function of the endpoints and thus
must have a finite or infinite limit as the end-points approach
each other but left open the question of whether this limit is
finite or infinite. In [3] the authors showed that it is infinite.

Following the above, Ge et al. in [4] considered the
fourth-order Sturm-Liouville differential equation
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same differential equation form as [1, 2] and the equation for
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𝜆

= −

1

𝑝
0

(𝑝
0
𝑢

)

2

+ (𝑝
2
− 𝜆𝑤) 𝑢

2
+ 2 (𝑝

0
𝑢

)



𝑢

. (2)

In particular, they also proved that the lowest Dirichlet eigen-
value is a decreasing function of the endpoints and thus have
infinite limit as the endpoints approach each other.

In this paper, partly motivated by the work of Ge et al. in
[4], we continue to consider the dependence of eigenvalues
of more general form and higher 2𝑘th-order Sturm-Liouville
problems on the boundary and also show that the eigenvalues
dependnot only continuously but also smoothly on boundary
points and that the 2𝑘th-order Dirichlet eigenvalues, as
functions of the endpoint 𝑏, satisfy a differential equation of
the form
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We also find the equation satisfied by the 2𝑘th-order Neu-
mann eigenvalues
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and the equation for the eigenvalues of self-adjoint separated
boundary conditions,

𝜆

=

𝑘−1

∑

𝑟=1

[𝑝
𝑘−𝑟
(𝑢
(𝑟)
)

2

+ 2𝑢
[2𝑘−𝑟]
𝑢
(𝑟)
]

+ (𝑝
𝑘
− 𝜆𝑤) 𝑢

2
−

(𝑢
[𝑘]
)

2

𝑝
0

.

(5)

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2015, Article ID 686102, 10 pages
http://dx.doi.org/10.1155/2015/686102



2 Mathematical Problems in Engineering

Furthermore, we prove that as the length of the interval
shrinks to zero all higher 2𝑘th-order Dirichlet eigenvalues
march off to plus infinity; this is also true for the first (i.e.,
lowest) eigenvalue. Although we use the same method of
proof as in [4] to get our main results, the specific process
of calculation and proof is not completely the same as in [4].
Besides that our conclusions are more concrete and general,
theoretical importance, the dependence of the eigenvalues on
the interval is fundamental from the numerical point of view
(see, e.g., [1–9]).

In Section 2, we summarize some of the basic results
needed later and establish the notation. The main results of
fourth-order Sturm-Liouville problem are given in Section 3.
In Section 4, we consider higher 2𝑘th-order Sturm-Liouville
problems and obtain more important results.The last section
involves some interesting description about Sturm-Liouville-
type boundary value problems.

2. Notation and Basic Results

Consider the differential equation
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We introduce the quasi derivatives of a function 𝑦, 𝑦[𝑗],
𝑗 = 0, 1, 2, . . . , 2𝑘 as follows:
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then 𝑙 in (6) may be simply written by
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In this way, the differential expression 𝑙 on 𝐼 is defined for all
functions𝑦 such that𝑦[0], 𝑦[1], . . . , 𝑦[2𝑘−1] exist and are abso-
lutely continuous over compact subintervals of 𝐼.

Let

𝐽 = [𝑎, 𝑏] , 𝐴 < 𝑎 < 𝑏 < 𝐵, (10)

and consider boundary conditions (BC)
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where the complex 2𝑘 × 2𝑘matrices 𝐶 and𝐷 satisfy

The 2𝑘 × 4𝑘 matrices (𝐶 | 𝐷) have full rank,
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(12)

A SL boundary value problem consists of (6) together
with boundary conditions (BC) (11).With conditions (7), (10),
and (12) it is well known that problem (6), (11) is a regular
2𝑘th-order self-adjoint SL problem which has an infinite but
countable number of only real eigenvalues.

From [10], these self-adjoint boundary conditions (11)-
(12) are divided into three disjoint subclasses: separated,
coupled, and mixed. In the separated case, there are many
forms for the 2𝑘th-order problems. In this paper, we only
study one form of them.

Consider the following boundary conditions (BC):

cos𝛼𝑦 (𝑎) − sin𝛼𝑦[2𝑘−1] (𝑎) = 0, (13a)

cos𝛼𝑦[1] (𝑎) − sin𝛼𝑦[2𝑘−2] (𝑎) = 0,

.

.

.

(13b)

cos𝛼𝑦[𝑘−1] (𝑎) − sin𝛼𝑦[𝑘] (𝑎) = 0, 0 ≤ 𝛼 < 𝜋, (13c)

cos𝛽𝑦 (𝑏) − sin𝛽𝑦[2𝑘−1] (𝑏) = 0, (14a)

cos𝛽𝑦[1] (𝑏) − sin𝛽𝑦[2𝑘−2] (𝑏) = 0,

.

.

.

(14b)

cos𝛽𝑦[𝑘−1] (𝑏) − sin𝛽𝑦[𝑘] (𝑏) = 0, 0 < 𝛽 ≤ 𝜋. (14c)

Here we fix 𝑝
𝑖
(𝑖 = 0, 1, 2, . . . , 𝑘), 𝑤 and the boundary condi-

tion (constants), and one endpoint and study the dependence
of the eigenvalues and eigenfunctions on the other endpoint.

By a solution of (6) on 𝐼 we mean a function 𝑦[0], 𝑦[1],
. . . , 𝑦

[2𝑘−1]
∈ 𝐴𝐶loc(𝐼) and (6) is satisfied a.e. on 𝐼. Here

𝐴𝐶loc(𝐼) denotes the set of functions which are absolutely
continuous on all compact subintervals of 𝐼.

It is well known that the 2𝑘th-order SL boundary value
problem consisting of (6) together with boundary conditions
(BC) (13a)–(13c), (14a)–(14c) is a regular 2𝑘th-order self-
adjoint boundary value problem which has an infinite but
countable number of only real eigenvalues. If 𝑝

0
≥ 0, a.e. on

𝐽 = (𝑎, 𝑏), then the eigenvalues are bounded below and can
be ordered to satisfy

−∞ < 𝜆
0
≤ 𝜆
1
≤ 𝜆
2
≤ ⋅ ⋅ ⋅ , 𝜆

𝑛
→ +∞ as 𝑛 → +∞.

(15)
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Notation. Let 𝑁
0
= {0, 1, 2, . . .}; for the fourth-order or

higher-order Dirichlet and Neumann eigenvalues we use the
special notation

𝜆
𝐷

𝑛
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; 𝑎, 𝑏) . (16)

By a normalized eigenfunction 𝑢 of the BVP (6), (13a)–
(14c), we mean an eigenfunction 𝑢 that satisfies

∫

𝑏

𝑎

|𝑢|
2
𝑤 = 1. (17)

For fixed 𝑎 and fixed boundary condition constants 𝛼, 𝛽 we
abbreviate the notation to 𝜆

𝑛
(𝑏) and study 𝜆

𝑛
(𝑏) as a function

of 𝑏 for fixed 𝑛 ∈ 𝑁
0
, as 𝑏 varies in the interval (𝑎, 𝐵).

In the following, we present a continuity result for the
eigenvalues and eigenfunctions.

Lemma 1. Let self-adjoint boundary value problems be de-
scribed as (6), (13a)–(14c). Fix the BC and the endpoint 𝑎 or
𝑏. Fix 𝑛 ∈ 𝑁

0
. Let 𝜆

𝑛
= 𝜆
𝑛
(𝑏) for 𝑏 ∈ (𝑎, 𝐵). Then

(1) 𝜆
𝑛
(𝑏) is a continuous function of 𝑏 for 𝑏 ∈ (𝑎, 𝐵).

(2) If 𝜆
𝑛
(𝑏) is simple for some 𝑏 ∈ (𝑎, 𝐵) then 𝜆

𝑛
(𝑏) is

simple for every 𝑏 ∈ (𝑎, 𝐵).

(3) There exists a normalized eigenfunction 𝑢
𝑛
(⋅, 𝑏) of

𝜆
𝑛
(𝑏) for 𝑏 ∈ (𝑎, 𝐵) such that, (𝑢[𝑗]

𝑛
)(⋅, 𝑏) (𝑗 = 0,

1, 2, . . . , 2𝑘 − 1) are uniformly convergent in 𝑏 on any
compact subinterval of (𝑎, 𝐵); that is,

𝑢
[𝑗]

𝑛
(⋅, 𝑏 + ℎ) → 𝑢

[𝑗]

𝑛
(⋅, 𝑏) , 𝑗 = 0, 1, 2, . . . , 2𝑘 − 1, (18)

and this convergence is uniform on any compact subinterval of
(𝑎, 𝐵).

Proof. See the proof of Theorem 3 in [3].

Lemma 2. Assume 𝑢 and V are solutions of (6) with 𝜆 = 𝜇 and
𝜆 = ], respectively. Then

[𝑢, V]𝑏
𝑎
= [𝑢, V] (𝑏) − [𝑢, V] (𝑎)

= (−1)
𝑘

2𝑘−1

∑

𝑟=0

(−1)
2𝑘+1−𝑟

𝑢
[𝑟]V[2𝑘−𝑟−1]

= (𝜇 − ]) ∫
𝑏

𝑎

𝑢V𝑤.

(19)

Proof. This follows from integration by parts.

Lemma3. Assume a real valued function𝑓 ∈ 𝐿 loc(𝐴, 𝐵).Then

lim
ℎ→0

1

ℎ

∫

𝑡+ℎ

𝑡

𝑓 = 𝑓 (𝑡) 𝑎.𝑒. 𝑖𝑛 (𝐴, 𝐵) . (20)

Proof. See the proof given in [3].

3. Eigenvalues of Fourth-Order
Sturm-Liouville Problem

In this section, we obtain the differentiability of the eigen-
values of the fourth-order boundary value problem, establish
differential equations satisfied by them, and discuss the be-
havior of the Dirichlet eigenvalues as functions of the end-
point 𝑏.

Consider the differential equation
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on (𝐴, 𝐵) , −∞ ≤ 𝐴 < 𝐵 ≤ ∞ with 𝜆 ∈ R,
(21)

where

𝑝
0
, 𝑝
1
, 𝑝
2
, 𝑤 : 𝐼 = (𝐴, 𝐵) → R;
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∈ 𝐿 loc (𝐼) , 𝑤 > 0 a.e. on 𝐼.

(22)

Let 𝐽 = [𝑎, 𝑏], 𝐴 < 𝑎 < 𝑏 < 𝐵 and consider the following
boundary conditions (BC)

cos𝛼𝑦 (𝑎) − sin𝛼𝑦[3] (𝑎) = 0, (23a)

cos𝛼𝑦[1] (𝑎) − sin𝛼𝑦[2] (𝑎) = 0, 0 ≤ 𝛼 < 𝜋, (23b)

cos𝛽𝑦 (𝑏) − sin𝛽𝑦[3] (𝑏) = 0, (24a)

cos𝛽𝑦[1] (𝑏) − sin𝛽𝑦[2] (𝑏) = 0, 0 < 𝛽 ≤ 𝜋, (24b)

where 𝑦[1] = 𝑦, 𝑦[2] = 𝑝
0
𝑦

, 𝑦
[3]
= (𝑝
0
𝑦

)

− 𝑝
1
𝑦
 are

quasiderivative. Fix 𝑝
0
, 𝑝
1
, 𝑝
2
, 𝑤 and the boundary condition

(constants) and one endpoint and study the dependence of
the eigenvalues and eigenfunctions on the other endpoint.

Theorem4 (fourth-order Dirichlet eigenvalue-eigenfunction
differential equation). Let (22) hold. Consider the BVP (21),
(23a)–(24b), with 0 ≤ 𝛼 < 𝜋 and 𝛽 = 𝜋, that is, arbitrary
separated conditions at 𝑎 and the fourth-order Dirichlet condi-
tions at 𝑏. Using the notation of Section 2 and letting 𝜆 = 𝜆

𝑛
,

𝑢 = 𝑢
𝑛
, we have the following differential equation:

(𝑝
0
𝜆

) (𝑏) = − (𝑢

[2]
)

2

(𝑏, 𝑏) 𝑎.𝑒. 𝑖𝑛 (𝑎, 𝐵) . (25)

In particular, if 𝑝
0
is continuous at 𝑏 ∈ [𝑎, 𝐵) and 𝑝

0
(𝑏) ̸= 0,

then (25) holds at 𝑏.

Proof. For small ℎ, in (19), choose 𝑘 = 2, 𝜇 = 𝜆(𝑏), ] = 𝜆(𝑏 +
ℎ), and 𝑢 = 𝑢(⋅, 𝑏), V = 𝑢(⋅, 𝑏+ℎ). From (19) and the boundary
conditions (23a)–(24b), noting that [𝑢, V](𝑎) = 0, 𝑢(𝑏, 𝑏) = 0
and 𝑢(𝑏, 𝑏) = 0, we have

𝑢
[3]
(𝑏, 𝑏) 𝑢 (𝑏, 𝑏 + ℎ) − 𝑢

[2]
(𝑏, 𝑏) 𝑢


(𝑏, 𝑏 + ℎ)

= [𝜆 (𝑏) − 𝜆 (𝑏 + ℎ)] ∫

𝑏

𝑎

𝑢 (𝑠, 𝑏) 𝑢 (𝑠, 𝑏 + ℎ)𝑤 (𝑠) 𝑑𝑠.

(26)
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Since
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(27)

By Lemmas 1 and 3, we have
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𝑝
0
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(29)

we have

lim
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(𝑏, 𝑏 + ℎ)

ℎ

= −
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𝑝
0
(𝑏)

(𝑝
0
𝑢

) (𝑏, 𝑏) . (30)

And we can obtain

∫

𝑏

𝑎

𝑢 (𝑠, 𝑏) 𝑢 (𝑠, 𝑏 + ℎ)𝑤 (𝑠) 𝑑𝑠 → ∫

𝑏

𝑎

𝑢
2
(𝑠, 𝑏) 𝑤 (𝑠) 𝑑𝑠 = 1,

as ℎ → 0.
(31)

Plugging (28), (30), and (31) into (26) divided by ℎ and taking
the limit as ℎ → 0, we get (25). The second part of the
theorem follows from above.

Theorem 5 (fourth-order Neumann eigenvalue-eigenfunc-
tion differential equation). Let (22) hold. Consider the BVP
(21), (23a)–(24b), with 0 ≤ 𝛼 < 𝜋 and 𝛽 = 𝜋/2, that is, arbi-
trary separated conditions at 𝑎 and the fourth-order Neumann
conditions at 𝑏. Using the notation of Section 2 and letting
𝜆 = 𝜆

𝑛
, 𝑢 = 𝑢

𝑛
, we have the following differential equation:

𝜆

(𝑏) = 𝑝

1
(𝑏) (𝑢


(𝑏, 𝑏))

2

+ (𝑝
2
(𝑏) − 𝜆 (𝑏) 𝑤 (𝑏)) 𝑢

2
(𝑏, 𝑏) 𝑎.𝑒. 𝑖𝑛 (𝑎, 𝐵) .

(32)

In particular, if 𝑝
1
, 𝑝
2
and𝑤 are continuous at 𝑏 ∈ [𝑎, 𝐵), then

(32) holds at 𝑏.

Proof. The proof is similar to Theorem 4. For small ℎ, we
choose 𝜇 = 𝜆(𝑏), ] = 𝜆(𝑏 + ℎ), and 𝑢 = 𝑢(⋅, 𝑏), V = 𝑢(⋅, 𝑏 + ℎ).

From (19) and the boundary conditions (23a)–(24b), noting
that [𝑢, V](𝑎) = 0, 𝑢[2](𝑏, 𝑏) = 0 and 𝑢[3](𝑏, 𝑏) = 0, we have

𝑢

(𝑏, 𝑏) 𝑢
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= [𝜆 (𝑏) − 𝜆 (𝑏 + ℎ)] ∫
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𝑢 (𝑠, 𝑏) 𝑢 (𝑠, 𝑏 + ℎ)𝑤 (𝑠) 𝑑𝑠.

(33)
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𝑠) 𝑢 (𝑠, 𝑏 + ℎ) − 𝜆 (𝑏 + ℎ) 𝑢 (𝑠, 𝑏 + ℎ)𝑤 (𝑠)] 𝑑𝑠

= ∫

𝑏+ℎ

𝑏

𝑝
2
(𝑠) 𝑢 (𝑠, 𝑏) 𝑑𝑠

+ ∫

𝑏+ℎ

𝑏

𝑝
2
(𝑠) 𝑢 (𝑠, 𝑏 + ℎ) − 𝑝

2
(𝑠) 𝑢 (𝑠, 𝑏) 𝑑𝑠

− 𝜆 (𝑏 + ℎ) ∫

𝑏+ℎ

𝑏

𝑢 (𝑠, 𝑏) 𝑤 (𝑠) 𝑑𝑠

+ 𝜆 (𝑏 + ℎ) ∫

𝑏+ℎ

𝑏

[𝑢 (𝑠, 𝑏) − 𝑢 (𝑠, 𝑏 + ℎ)] 𝑤 (𝑠) 𝑑𝑠

= ∫

𝑏+ℎ

𝑏

𝑝
2
(𝑠) 𝑢 (𝑠, 𝑏) 𝑑𝑠 − 𝜆 (𝑏 + ℎ) ∫

𝑏+ℎ

𝑏

𝑢 (𝑠, 𝑏) 𝑤 (𝑠) 𝑑𝑠.

(34)

By Lemmas 1 and 3 we have

lim
ℎ→0

𝑢
[3]
(𝑏, 𝑏 + ℎ)

ℎ

= (𝑝
2
(𝑏) − 𝜆 (𝑏) 𝑤 (𝑏)) 𝑢 (𝑏, 𝑏) . (35)

In a similar way, we have

lim
ℎ→0

𝑝
0
𝑢

(𝑏, 𝑏 + ℎ)

ℎ

= − (𝑝
0
𝑢

)



(𝑏, 𝑏) . (36)

Combining 𝑢[3](𝑏, 𝑏) = [(𝑝
0
𝑢

)

−𝑝
1
𝑢

](𝑏, 𝑏) = 0, we also can

get

lim
ℎ→0

𝑝
0
𝑢

(𝑏, 𝑏 + ℎ)

ℎ

= −𝑝
1
𝑢

(𝑏, 𝑏) . (37)

When ℎ → 0, noting that

∫

𝑏

𝑎

𝑢 (𝑠, 𝑏) 𝑢 (𝑠, 𝑏 + ℎ)𝑤 (𝑠) 𝑑𝑠 → ∫

𝑏

𝑎

𝑢
2
(𝑠, 𝑏) 𝑤 (𝑠) 𝑑𝑠 = 1,

(38)

and plugging (35)–(38) into (33), then we obtain (32). The
second part of the theorem follows from the above.
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Theorem 6 (eigenvalue-eigenfunction differential equation
for separated BVPs). Let (22) hold. Consider the BVP (21),
(23a)–(24b), with 0 ≤ 𝛼 < 𝜋, 0 < 𝛽 ≤ 𝜋, that is, arbitrary
separated conditions at 𝑎 and 𝑏. Using the notation of Section 2
and letting 𝜆 = 𝜆

𝑛
, 𝑢 = 𝑢

𝑛
, we have the following differential

equations:

𝜆

(𝑏) = 𝑝

1
(𝑏) (𝑢


(𝑏, 𝑏))

2

+ 2𝑢
[3]
(𝑏, 𝑏) 𝑢


(𝑏, 𝑏)

+ (𝑝
2
(𝑏) − 𝜆 (𝑏) 𝑤 (𝑏)) 𝑢

2
(𝑏, 𝑏)

−

(𝑢
[2]
)

2

(𝑏, 𝑏)

𝑝
0
(𝑏)

𝑎.𝑒. 𝑖𝑛 (𝑎, 𝐵) .

(39)

Furthermore, if 𝛽 ̸= 𝜋, then

𝜆

(𝑏) = 𝑝1 (

𝑏) (𝑢

(𝑏, 𝑏))

2

+ 2cot𝛽u (b, b) u (b, b)

+ (𝑝
2 (
𝑏) − 𝜆 (𝑏) 𝑤 (𝑏)) 𝑢

2
(𝑏, 𝑏) −

(𝑢
[2]
)

2

(𝑏, 𝑏)

𝑝
0
(𝑏)

.

(40)

If 𝛽 ̸= 𝜋/2, then

𝜆

(𝑏) = 𝑝1 (

𝑏) (𝑢

(𝑏, 𝑏))

2

+ 2 tan𝛽𝑢[2] (𝑏, 𝑏) 𝑢[3] (𝑏, 𝑏)

+ (𝑝
2 (
𝑏) − 𝜆 (𝑏) 𝑤 (𝑏)) 𝑢

2
(𝑏, 𝑏) −

(𝑢
[2]
)

2

(𝑏, 𝑏)

𝑝
0
(𝑏)

.

(41)

In particular, if 𝑝
0
, 𝑝
1
, and 𝑝

2
and 𝑤 are continuous at 𝑏 and

𝑝
0
(𝑏) ̸= 0, then (39)–(41) hold at 𝑏.

Proof. Theproof is more complicated but consists basically of
combining the techniques in the proofs ofTheorems 4 and 5.
For small ℎ, we choose 𝜇 = 𝜆(𝑏), ] = 𝜆(𝑏+ ℎ), and 𝑢 = 𝑢(⋅, 𝑏),
V = 𝑢(⋅, 𝑏+ℎ). From (19) and the boundary conditions (23a)–
(24b), noting that [𝑢, V](𝑎) = 0, we have

[𝜆 (𝑏) − 𝜆 (𝑏 + ℎ)] ∫

𝑏

𝑎

𝑢 (𝑠, 𝑏) 𝑢 (𝑠, 𝑏 + ℎ)𝑤 (𝑠) 𝑑𝑠

= 𝑢
[3]
(𝑏, 𝑏) 𝑢 (𝑏, 𝑏 + ℎ) − 𝑢

[2]
(𝑏, 𝑏) 𝑢


(𝑏, 𝑏 + ℎ)

+ 𝑢

(𝑏, 𝑏) 𝑢

[2]
(𝑏, 𝑏 + ℎ) − 𝑢 (𝑏, 𝑏) 𝑢

[3]
(𝑏, 𝑏 + ℎ) .

(42)

Now dividing (42) by ℎ and taking the limit as ℎ → 0,
plugging (28), (30), (35), and (36) into (42), and using the
continuity of 𝜆 at 𝑏, the uniform convergence of 𝑢(⋅, 𝑏 + ℎ)
to 𝑢(⋅, 𝑏), and Lemma 3, we obtain (39). In addition, from the
boundary conditions (24a)–(24b) we note that if 𝛽 ̸= 𝜋 then
𝑦
[3]
(𝑏) = cot𝛽y(b) and if 𝛽 ̸= 𝜋/2 then 𝑦[1](𝑏) = tan𝛽𝑦[2](𝑏);

plugging them into (39) we obtain (40) and (41).

It is easy to see thatTheorem 6 includesTheorems 4 and 5.

Theorem 7. Let (22) hold. Fix 𝑎 and consider the fourth-order
Dirichlet eigenvalues 𝜆𝐷

𝑛
(𝑏) = 𝜆

𝑛
(𝑏)(0, 𝜋; 𝑎, 𝑏) for 𝑏 in (𝑎, 𝐵)

defined as in (16). If

𝑝
0
≥ 0 𝑎.𝑒.,

𝑝
2

2

𝑤

∈ 𝐿 loc (𝐴, 𝐵) , (43)

then, for 𝑛 ∈ 𝑁
0
, 𝜆
𝑛
(𝑏) is strictly decreasing on (𝑎, 𝐵) and

𝜆
𝐷

𝑛
(𝑏) → +∞ 𝑎𝑠 𝑏 → 𝑎

+
. (44)

Proof. The decreasing property of 𝜆𝐷
𝑛

as a function of 𝑏
follows directly from Theorem 4. Assume (44) is false, and
then byTheorem 4 𝜆(𝑏) = 𝜆𝐷

0
(𝑏) has a finite limit, say 𝜆+(𝑎),

as 𝑏 → 𝑎+ and hence is bounded on (𝑎, 𝐵
1
) for 𝐵

1
< 𝐵. Let

𝑢 = 𝑢
0
(⋅, 𝑏) be an eigenfunction of 𝜆(𝑏) normalized to satisfy

∫

𝑏

𝑎

𝑢
2
𝑤 = 1. (45)

Next we show that

(𝑝
0
𝑢

)



(𝑎, 𝑏) → 0 as 𝑏 → 𝑎+. (46)

To see this, we first show there exists at least one point 𝑐 ∈
(𝑎, 𝑏) such that (𝑝

0
𝑢

)

(𝑐, 𝑏) = 0. Noting that 𝑢(𝑎, 𝑏) =

𝑢(𝑏, 𝑏) = 0 and according to the Rolle’s theorem we know,
there exists at least one point 𝜉

0
∈ (𝑎, 𝑏) such that 𝑢(𝜉

0
, 𝑏) =

0. Similarly, noting that 𝑢(𝑎, 𝑏) = 𝑢(𝑏, 𝑏) = 0, hence there
exist at least two points 𝜉

1
∈ (𝑎, 𝜉

0
) and 𝜉

2
∈ (𝜉
0
, 𝑏), such that

(𝑝
0
𝑢

)(𝜉
1
, 𝑏) = (𝑝

0
𝑢

)(𝜉
2
, 𝑏). Therefor there exists at least

one point 𝑐 ∈ (𝜉
1
, 𝜉
2
), such that (𝑝

0
𝑢

)

(𝑐, 𝑏) = 0. Using

(𝑝
0
𝑢

)

(𝑐, 𝑏) = 0, the boundedness of 𝜆 and the Schwarz

inequality, we get

[(𝑝
0
𝑢

)



(𝑎, 𝑏)]

2

= [(𝑝
0
𝑢

)



(𝑐, 𝑏) − (𝑝
0
𝑢

)



(𝑎, 𝑏)]

2

= [∫

𝑐

𝑎

(𝑝
0
𝑢

)



]

2

= [∫

𝑐

𝑎

(𝑝
1
𝑢

)



− (𝑝
2
− 𝜆𝑤) 𝑢]

2

= [(𝑝
1
𝑢

) (𝑐, 𝑏) − ∫

𝑐

𝑎

(𝑝
2
− 𝜆𝑤) 𝑢]

2

≤ 2 [(𝑝
1
𝑢

) (𝑐, 𝑏)]

2

+ 2 [∫

𝑐

𝑎

(𝑝
2
− 𝜆𝑤) 𝑢]

2

,

[∫

𝑐

𝑎

(𝑝
2
− 𝜆𝑤) 𝑢]

2

= [∫

𝑐

𝑎

(𝑝
2
𝑤
−1/2
− 𝜆𝑤
1/2
)𝑤
1/2
𝑢]

2

≤ ∫

𝑐

𝑎

(𝑝
2
𝑤
−1/2
− 𝜆𝑤
1/2
)

2

∫

𝑐

𝑎

𝑢
2
𝑤

≤ ∫

𝑏

𝑎

(

𝑝
2

2

𝑤

− 2𝜆𝑝
2
+ 𝜆
2
𝑤)∫

𝑏

𝑎

𝑢
2
𝑤 → 0 as 𝑏 → 𝑎+.

(47)
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So

[(𝑝
0
𝑢

)



(𝑎, 𝑏)]

2

→ 0 as 𝑏 → 𝑎+. (48)

For 𝑝
0
𝑢

(𝑎, 𝑏), we have

[(𝑝
0
𝑢

) (𝑎, 𝑏)]

2

= [(𝑝
0
𝑢

) (𝜉
1
, 𝑏) − (𝑝

0
𝑢

) (𝑎, 𝑏)]

2

= [∫

𝜉
1

𝑎

(𝑝
0
𝑢

)



]

2

= [∫

𝜉
1

𝑎

∫

𝑐

𝑡

(𝑝
1
𝑢

)



− (𝑝
2
− 𝜆𝑤) 𝑢𝑑𝜉 𝑑𝑡]

2

≤ 2 [∫

𝜉
1

𝑎

∫

𝑐

𝑡

(𝑝
1
𝑢

)



𝑑𝜉 𝑑𝑡]

2

+ 2 [∫

𝜉
1

𝑎

∫

𝑐

𝑡

(𝑝
2
− 𝜆𝑤) 𝑢𝑑𝜉 𝑑𝑡]

2

= 2 [∫

𝜉
1

𝑎

(𝑝
1
𝑢

) (𝑐) − (𝑝1

𝑢

) (𝑡) 𝑑𝑡]

2

+ 2 [∫

𝜉
1

𝑎

∫

𝑐

𝑡

(𝑝
2
− 𝜆𝑤) 𝑢𝑑𝜉 𝑑𝑡]

2

,

[∫

𝜉
1

𝑎

∫

𝑐

𝑡

(𝑝
2
− 𝜆𝑤) 𝑢𝑑𝜉 𝑑𝑡]

2

≤ (𝑏 − 𝑎) ∫

𝜉
1

𝑎

[∫

𝑐

𝑡

(𝑝
2
𝑤
−1/2
− 𝜆𝑤
1/2
)

2

𝑑𝜉∫

𝑐

𝑡

𝑢
2
𝑤𝑑𝜉] 𝑑𝑡

≤ (𝑏 − 𝑎)
2
∫

𝑏

𝑎

(

𝑝
2

2

𝑤

− 2𝜆𝑝
2
+ 𝜆
2
𝑤)

× ∫

𝑏

𝑎

𝑢
2
𝑤 → 0 as 𝑏 → 𝑎+.

(49)

Thus

[(𝑝
0
𝑢

) (𝑎, 𝑏)]

2

→ 0 as 𝑏 → 𝑎+. (50)

Noting that 𝜆(𝑏) → 𝜆+(𝑎) as 𝑏 → 𝑎+, by (46) and the
continuous dependence of solutions (21) on initial conditions
and on the parameterwe conclude that𝑢(⋅, 𝑏) → 0uniformly
on any compact subinterval of [𝑎, 𝐵). Therefore, for 𝜀 > 0,
there exists a 𝑏

0
∈ (𝑎, 𝐵), such that

|𝑢 (𝑡, 𝑏)| < 𝜀, 𝑡 ∈ [𝑎, 𝑏] , 𝑎 < 𝑏 < 𝑏0
. (51)

This implies that

∫

𝑏

𝑎

𝑢
2
𝑤 < 𝜀

2
∫

𝑏

𝑎

𝑤 (52)

for 𝜀 sufficiently small. This contradicts the normalization
(45), which completes the proof.

4. Eigenvalues of Higher-Order
Sturm-Liouville Problem

In this section, we obtain the differentiability of the eigenval-
ues of the 2𝑘th-order boundary value problem and establish
differential equations satisfied by themand discuss the behav-
ior of 2𝑘th-order Dirichlet eigenvalueas functions of the end-
point 𝑏.

Theorem 8 (2𝑘th-order Dirichlet eigenvalue-eigenfunction
differential equation). Let (7) hold. Consider the BVP (6),
(13a)–(14c), with 0 ≤ 𝛼 < 𝜋 and 𝛽 = 𝜋, that is, arbi-
trary separated conditions at 𝑎 and the 2𝑘th-order Dirichlet
conditions at 𝑏. Using the notation of Section 2 and letting
𝜆 = 𝜆

𝑛
, 𝑢 = 𝑢

𝑛
, we have the following differential equation:

(𝑝
0
𝜆

) (𝑏) = − (𝑢

[𝑘]
)

2

(𝑏, 𝑏) 𝑎.𝑒. 𝑖𝑛 (𝑎, 𝐵) . (53)

In particular, if 𝑝
0
is continuous at 𝑏 ∈ [𝑎, 𝐵) and 𝑝

0
(𝑏) ̸= 0,

then (53) holds at 𝑏.

Proof. For small ℎ, in (19), choose 𝜇 = 𝜆(𝑏), ] = 𝜆(𝑏 + ℎ),
and 𝑢 = 𝑢(⋅, 𝑏), V = 𝑢(⋅, 𝑏 + ℎ). From (19) and the boundary
conditions (13a)–(14c), noting that [𝑢, V](𝑎) = 0, 𝑢[𝑗](𝑏, 𝑏) =
0 (𝑗 = 0, 1, 2, . . . , 𝑘 − 1), we have

(−1)
𝑘

2𝑘−1

∑

𝑟=𝑘

(−1)
2𝑘+1−𝑟

𝑢
[𝑟]
(𝑏, 𝑏) 𝑢

[2𝑘−𝑟−1]
(𝑏, 𝑏 + ℎ)

= [𝜆 (𝑏) − 𝜆 (𝑏 + ℎ)] ∫

𝑏

𝑎

𝑢 (𝑠, 𝑏) 𝑢 (𝑠, 𝑏 + ℎ)𝑤 (𝑠) 𝑑𝑠.

(54)

Hence

𝑢
[𝑟]
(𝑏, 𝑏 + ℎ)

= 𝑢
(𝑟)
(𝑏, 𝑏 + ℎ) − 𝑢

(𝑟)
(𝑏 + ℎ, 𝑏 + ℎ)

= −∫

𝑏+ℎ

𝑏

𝑢
(𝑟+1)
(𝑠, 𝑏 + ℎ) 𝑑𝑠, 𝑟 = 0, 1, . . . , 𝑘 − 2.

(55)

So by Lemmas 1 and 3, we have

lim
ℎ→0

𝑢
(𝑟)
(𝑏, 𝑏 + ℎ)

ℎ

= −𝑢
(𝑟+1)
(𝑏, 𝑏) , 𝑟 = 0, 1, . . . , 𝑘 − 2.

(56)

Similarly, from

𝑢
(𝑘−1)
(𝑏, 𝑏 + ℎ) = 𝑢

(𝑘−1)
(𝑏, 𝑏 + ℎ) − 𝑢

(𝑘−1)
(𝑏 + ℎ, 𝑏 + ℎ)

= −∫

𝑏+ℎ

𝑏

𝑢
(𝑘)
(𝑠, 𝑏 + ℎ) 𝑑𝑠

= −∫

𝑏+ℎ

𝑏

(𝑝
0
𝑢
(𝑘)
) (𝑠, 𝑏 + ℎ)

𝑝
0
(𝑠)

𝑑𝑠,

(57)
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we can have

lim
ℎ→0

𝑢
(𝑘−1)
(𝑏, 𝑏 + ℎ)

ℎ

= −

1

𝑝
0
(𝑏)

(𝑝
0
𝑢
(𝑘)
) (𝑏, 𝑏) . (58)

In addition, noting that

∫

𝑏

𝑎

𝑢 (𝑠, 𝑏) 𝑢 (𝑠, 𝑏 + ℎ)𝑤 (𝑠) 𝑑𝑠 → ∫

𝑏

𝑎

𝑢
2
(𝑠, 𝑏) 𝑤 (𝑠) 𝑑𝑠 = 1,

as ℎ → 0.
(59)

Plugging (56), (58), and (59) into (54) divided by ℎ and taking
the limit as ℎ → 0, we get (53). The second part of the
theorem follows from above.

Theorem 9 (2𝑘th-order Neumann eigenvalue-eigenfunction
differential equation). Let (7) hold. Consider the BVP (6),
(13a)–(14c), with 0 ≤ 𝛼 < 𝜋 and 𝛽 = 𝜋/2, that is,
arbitrary separated conditions at 𝑎 and the 2𝑘th-order Neu-
mann conditions at 𝑏. Using the notation of Section 2 and let-
ting𝜆 = 𝜆

𝑛
, 𝑢 = 𝑢

𝑛
, we have the following differential equation:

𝜆

(𝑏) =

𝑘−1

∑

𝑟=1

𝑝
𝑘−𝑟
(𝑏) (𝑢

(𝑟)
(𝑏, 𝑏))

2

+ (𝑝
𝑘
(𝑏) − 𝜆 (𝑏) 𝑤 (𝑏)) 𝑢

2
(𝑏, 𝑏) 𝑎.𝑒. 𝑖𝑛 (𝑎, 𝐵) .

(60)

In particular, if 𝑝
1
, 𝑝
2
, . . . , 𝑝

𝑘
and 𝑤 are continuous at 𝑏 ∈

[𝑎, 𝐵), then (60) holds at 𝑏.

Proof. The proof is similar to Theorem 8. For small ℎ, we
choose 𝜇 = 𝜆(𝑏), ] = 𝜆(𝑏 + ℎ), and 𝑢 = 𝑢(⋅, 𝑏), V = 𝑢(⋅, 𝑏 + ℎ).
From (19) and the boundary conditions (13a)–(14c), noting
that [𝑢, V](𝑎) = 0, 𝑢[𝑗](𝑏, 𝑏) = 0, 𝑗 = 𝑘, 𝑘 + 1, . . . , 2𝑘 − 1, we
have

(−1)
𝑘

𝑘−1

∑

𝑟=0

(−1)
2𝑘+1−𝑟

𝑢
[𝑟]
(𝑏, 𝑏) 𝑢

[2𝑘−𝑟−1]
(𝑏, 𝑏 + ℎ)

= [𝜆 (𝑏) − 𝜆 (𝑏 + ℎ)] ∫

𝑏

𝑎

𝑢 (𝑠, 𝑏) 𝑢 (𝑠, 𝑏 + ℎ)𝑤 (𝑠) 𝑑𝑠,

(61)

(−1)
𝑘
(𝑢
[2𝑘−1]
) (𝑏, 𝑏 + ℎ)

= (−1)
𝑘
𝑢
[2𝑘−1]
(𝑏, 𝑏 + ℎ) − (−1)

𝑘
𝑢
[2𝑘−1]
(𝑏 + ℎ, 𝑏 + ℎ)

= −∫

𝑏+ℎ

𝑏

(−1)
𝑘
(𝑢
[2𝑘−1]
)



(𝑠, 𝑏 + ℎ) 𝑑𝑠

= −∫

𝑏+ℎ

𝑏

(−1)
𝑘
(𝑢
[2𝑘]
− (−1)

𝑘
𝑝
𝑘
𝑢) (𝑠, 𝑏 + ℎ) 𝑑𝑠

= ∫

𝑏+ℎ

𝑏

[𝑝
𝑘
(𝑠) 𝑢 (𝑠, 𝑏 + ℎ) − 𝜆 (𝑏 + ℎ) 𝑢 (𝑠, 𝑏 + ℎ)𝑤 (𝑠)] 𝑑𝑠

= ∫

𝑏+ℎ

𝑏

𝑝
𝑘
(𝑠) 𝑢 (𝑠, 𝑏) 𝑑𝑠

+ ∫

𝑏+ℎ

𝑏

𝑝
𝑘 (
𝑠) 𝑢 (𝑠, 𝑏 + ℎ) − 𝑝𝑘 (

𝑠) 𝑢 (𝑠, 𝑏) 𝑑𝑠

− 𝜆 (𝑏 + ℎ) ∫

𝑏+ℎ

𝑏

𝑢 (𝑠, 𝑏) 𝑤 (𝑠) 𝑑𝑠

+ 𝜆 (𝑏 + ℎ) ∫

𝑏+ℎ

𝑏

[𝑢 (𝑠, 𝑏) − 𝑢 (𝑠, 𝑏 + ℎ)] 𝑤 (𝑠) 𝑑𝑠

= ∫

𝑏+ℎ

𝑏

𝑝
𝑘
(𝑠) 𝑢 (𝑠, 𝑏) 𝑑𝑠 − 𝜆 (𝑏 + ℎ) ∫

𝑏+ℎ

𝑏

𝑢 (𝑠, 𝑏) 𝑤 (𝑠) 𝑑𝑠.

(62)

By Lemmas 1 and 3 we have

lim
ℎ→0

(−1)
𝑘
(𝑢
[2𝑘−1]
) (𝑏, 𝑏 + ℎ)

ℎ

= (𝑝
𝑘
(𝑏) − 𝜆 (𝑏) 𝑤 (𝑏)) 𝑢 (𝑏, 𝑏) .

(63)

In a similar way, we have

lim
ℎ→0

(−1)
𝑘
(𝑢
[2𝑘−𝑟−1]

) (𝑏, 𝑏 + ℎ)

ℎ

= (−1)
𝑘+1
(𝑢
[2𝑘−𝑟−1]

)



(𝑏, 𝑏) .

(64)

Combining (𝑢[2𝑘−𝑟−1]) = 𝑢[2𝑘−𝑟] − (−1)𝑘−𝑟𝑝
𝑘−𝑟
𝑦
(𝑟), we also

can get

lim
ℎ→0

(−1)
𝑘
(𝑢
[2𝑘−𝑟−1]

) (𝑏, 𝑏 + ℎ)

ℎ

= (−1)
𝑘+1
𝑢
[2𝑘−𝑟]
(𝑏, 𝑏) − (−1)

2𝑘−𝑟+1
𝑝
𝑘−𝑟
𝑢
(𝑟)
(𝑏, 𝑏)

= − (−1)
2𝑘−𝑟+1

𝑝
𝑘−𝑟
𝑢
(𝑟)
(𝑏, 𝑏) , 𝑟 = 1, 2, . . . , 𝑘 − 1.

(65)

When ℎ → 0, noting that

∫

𝑏

𝑎

𝑢 (𝑠, 𝑏) 𝑢 (𝑠, 𝑏 + ℎ)𝑤 (𝑠) 𝑑𝑠 → ∫

𝑏

𝑎

𝑢
2
(𝑠, 𝑏) 𝑤 (𝑠) 𝑑𝑠 = 1,

(66)

and plugging (63)–(66) into (61), then we obtain (60). The
second part of the theorem follows from the above.

Theorem 10 (eigenvalue-eigenfunction differential equation
for separated BVPs). Let (7) hold. Consider the BVP (6),
(13a)–(14c), with 0 ≤ 𝛼 < 𝜋, 0 < 𝛽 ≤ 𝜋, that is, arbitrary
separated conditions at 𝑎 and 𝑏. Using the notation of Section 2
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and letting 𝜆 = 𝜆
𝑛
, 𝑢 = 𝑢

𝑛
, we have the following differential

equations:

𝜆

(𝑏) =

𝑘−1

∑

𝑟=1

[𝑝
𝑘−𝑟 (
𝑏) (𝑢
[𝑟]
(𝑏, 𝑏))

2

+ 2𝑢
[2𝑘−𝑟]
(𝑏, 𝑏) 𝑢

[𝑟]
(𝑏, 𝑏)]

+ (𝑝
𝑘
(𝑏) − 𝜆 (𝑏) 𝑤 (𝑏)) 𝑢

2
(𝑏, 𝑏)

−

(𝑢
[𝑘]
)

2

(𝑏, 𝑏)

𝑝
0
(𝑏)

𝑎.𝑒. 𝑖𝑛 (𝑎, 𝐵) .

(67)

Furthermore, if 𝛽 ̸= 𝜋, then

𝜆

(𝑏)

=

𝑘−1

∑

𝑟=1

[𝑝
𝑘−𝑟 (
𝑏) (𝑢
[𝑟]
(𝑏, 𝑏))

2

+ 2cot𝛽u[r−1] (b, b) u[r] (b, b)]

+ (𝑝
𝑘 (
𝑏) − 𝜆 (𝑏) 𝑤 (𝑏)) 𝑢

2
(𝑏, 𝑏) −

(𝑢
[𝑘]
)

2

(𝑏, 𝑏)

𝑝
0
(𝑏)

.

(68)

If 𝛽 ̸= 𝜋/2, then

𝜆

(𝑏)

=

𝑘−1

∑

𝑟=1

[𝑝
𝑘−𝑟 (
𝑏) (𝑢
[𝑟]
(𝑏, 𝑏))

2

+ 2 tan𝛽𝑢[2𝑘−𝑟] (𝑏, 𝑏) 𝑢[2𝑘−𝑟+1] (𝑏, 𝑏) ]

+ (𝑝
𝑘 (
𝑏) − 𝜆 (𝑏) 𝑤 (𝑏)) 𝑢

2
(𝑏, 𝑏) −

(𝑢
[𝑘]
)

2

(𝑏, 𝑏)

𝑝
0
(𝑏)

.

(69)

In particular, if 𝑝
0
, 𝑝
1
, . . . , 𝑝

𝑘
and 𝑤 are continuous at 𝑏 and

𝑝
0
(𝑏) ̸= 0, then (67)–(69) hold at 𝑏.

Proof. Theproof is more complicated but consists basically of
combining the techniques in the proofs ofTheorems 8 and 9.
The concrete process is omitted.

It is easy to see thatTheorem 10 includesTheorems 8 and
9.

Theorem 11. Let (7) hold. Fix 𝑎 and consider the 2𝑘th-order
Dirichlet eigenvalues 𝜆𝐷

𝑛
(𝑏) = 𝜆

𝑛
(𝑏)(0, 𝜋; 𝑎, 𝑏) for 𝑏 in (𝑎, 𝐵)

defined as in (16). If

𝑝
0
≥ 0 𝑎.𝑒. ,

𝑝
2

𝑘

𝑤

∈ 𝐿 loc (𝐴, 𝐵) , (70)

then, for 𝑛 ∈ 𝑁
0
, 𝜆
𝑛
(𝑏) is strictly decreasing on (𝑎, 𝐵) and

𝜆
𝐷

𝑛
(𝑏) → +∞ 𝑎𝑠 𝑏 → 𝑎

+
. (71)

Proof. The decreasing property of 𝜆𝐷
𝑛
as a function of 𝑏 fol-

lows directly fromTheorem 8. Assume (71) is false, and then

by Theorem 8 𝜆(𝑏) = 𝜆𝐷
0
has a finite limit, say 𝜆+(𝑎), as

𝑏 → 𝑎
+, and hence is bounded on (𝑎, 𝐵

1
) for 𝐵

1
< 𝐵. Let

𝑢 = 𝑢
0
(⋅, 𝑏) be an eigenfunction of 𝜆(𝑏) normalized to satisfy

∫

𝑏

𝑎

𝑢
2
𝑤 = 1. (72)

First we show that

(𝑝
0
𝑢
(𝑘)
)

(𝑘−1)

(𝑎, 𝑏) → 0 as 𝑏 → 𝑎+. (73)

To see this, we first show there exists at least one point 𝑐 ∈
(𝑎, 𝑏) such that (𝑝

0
𝑢
(𝑘)
)
(𝑘−1)
(𝑐, 𝑏) = 0. Noting that 𝑢(𝑟)(𝑎, 𝑏) =

𝑢
(𝑟)
(𝑏, 𝑏) = 0, 𝑟 = 0, 1, . . . , 𝑘 − 1, and according to the Rolle’s

theorem we know, there exists at least one point 𝜉
0
∈ (𝑎, 𝑏)

such that 𝑢(𝜉
0
, 𝑏) = 0. In the same way, there exist at least 𝑟

points 𝜉
𝑖
∈ (𝑎, 𝑏), 𝜉

1
< 𝜉
2
< ⋅ ⋅ ⋅ < 𝜉

𝑟
, such that 𝑢(𝑟)(𝜉

𝑖
, 𝑏) = 0,

𝑖 = 1, 2, . . . , 𝑟, 𝑟 = 1, 2, . . . , 𝑘 − 1. So there exist at least 𝑘
points 𝜂

𝑠
∈ (𝜉
𝑟−1
, 𝜉
𝑟
), 𝑟 = 1, 2, . . . , 𝑘, 𝜉

0
= 𝑎, 𝜉

𝑘
= 𝑏, such that

(𝑝
0
𝑢
(𝑘)
)(𝜂
𝑠
, 𝑏) = 0. Thus by the Rolle’s theorem we can get the

conclusion that there exist at least 𝑘 − 𝑟 points 𝜁
𝑘−𝑟

, such that
(𝑝
0
𝑢
(𝑘)
)
𝑟
(𝜁
𝑘−𝑟
, 𝑏) = 0, 𝑟 = 0, 1, . . . , 𝑘 − 1. In addition using

the boundedness of 𝜆 and the Schwarz inequality, we get

[(𝑝
0
𝑢
(𝑘)
)

(𝑘−1)

(𝑎, 𝑏)]

2

= [(𝑝
0
𝑢
(𝑘)
)

(𝑘−1)

(𝑐, 𝑏) − (𝑝0
𝑢
(𝑘)
)

(𝑘−1)

(𝑎, 𝑏)]

2

= [∫

𝑐

𝑎

(𝑝
0
𝑢
(𝑘)
)

(𝑘)

]

2

= [∫

𝑐

𝑎

𝑘−1

∑

𝑟=1

(𝑝
𝑘−𝑟
𝑢
(𝑟)
)

(𝑟)

− (𝑝
𝑘
− 𝜆𝑤) 𝑢]

2

≤ 2[∫

𝑐

𝑎

𝑘−1

∑

𝑟=1

(𝑝
𝑘−𝑟
𝑢
(𝑟)
)

(𝑟)

]

2

+ 2 [∫

𝑐

𝑎

(𝑝
𝑘
− 𝜆𝑤) 𝑢]

2

≤ 2[

𝑘−1

∑

𝑟=1

(𝑏 − 𝑎)
𝑟−1
(𝑝
𝑘−𝑟
𝑢
(𝑟)
) (𝑡, 𝑏)]

2

+ 2 [∫

𝑐

𝑎

(𝑝
𝑘
− 𝜆𝑤) 𝑢]

2

,

[∫

𝑐

𝑎

(𝑝
𝑘
− 𝜆𝑤) 𝑢]

2

= [∫

𝑐

𝑎

(𝑝
𝑘
𝑤
−1/2
− 𝜆𝑤
1/2
)𝑤
1/2
𝑢]

2

≤ ∫

𝑐

𝑎

(𝑝
𝑘
𝑤
−1/2
− 𝜆𝑤
1/2
)

2

∫

𝑐

𝑎

𝑢
2
𝑤

≤ ∫

𝑏

𝑎

(

𝑝
2

𝑘

𝑤

− 2𝜆𝑝
𝑘
+ 𝜆
2
𝑤)∫

𝑏

𝑎

𝑢
2
𝑤 → 0 as 𝑏 → 𝑎+.

(74)
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So

[(𝑝
0
𝑢
(𝑘)
)

(𝑘−1)

(𝑎, 𝑏)]

2

→ 0 as 𝑏 → 𝑎+. (75)

Next we show that

(𝑝
0
𝑢
(𝑘)
)

(𝑘−𝑟)

(𝑎, 𝑏) → 0, 𝑟 = 2, 3, . . . , 𝑘, as 𝑏 → 𝑎+.
(76)

For 𝑖 = 1, 2, . . . , 𝑘 − 1, 𝑖 ≥ 𝑗, also according to the Rolle’s
theorem we know, there exist at least 𝑖 − 𝑗 zero points such
that (𝑝

𝑘−𝑖
𝑢
(𝑖)
)
(𝑗)
(⋅, 𝑏) = 0. Let 𝑐

𝑟
be the first zero point of

(𝑝
0
𝑢
(𝑘)
)
(𝑘−𝑟)
(⋅, 𝑏) = 0. For (𝑝

0
𝑢
(𝑘)
)
(𝑘−𝑟)
(𝑎, 𝑏), we have

[(𝑝
0
𝑢
(𝑘)
)
(𝑘−𝑟)
(𝑎, 𝑏)]

2

= [(𝑝
0
𝑢
(𝑘)
)

(𝑘−𝑟)

(𝑐
𝑟
, 𝑏) − (𝑝

0
𝑢
(𝑘)
)

(𝑘−𝑟)

(𝑎, 𝑏)]

2

= [∫

𝑐
𝑟

𝑎

(𝑝
0
𝑢
(𝑘)
)

(𝑘−𝑟+1)

]

2

= [∫

𝑐
𝑟

𝑎

(𝑝
0
𝑢
(𝑘)
)

(𝑘−𝑟+1)

(𝑐
𝑟+1
, 𝑏) − (𝑝

0
𝑢
(𝑘)
)

(𝑘−𝑟+1)

(𝑡
𝑟+1
, 𝑏)]

2

= [∫

𝑐
𝑟

𝑎

∫

𝑐
𝑟+1

𝑡
𝑟+1

(𝑝
0
𝑢
(𝑘)
)

(𝑘−𝑟+2)

]

2

= ⋅ ⋅ ⋅ = [∫

𝑐
𝑟

𝑎

∫

𝑐
𝑟+1

𝑡
𝑟+1

⋅ ⋅ ⋅ ∫

𝑐
𝑘

𝑡
𝑘

(𝑝
0
𝑢
(𝑘)
)

(𝑘)

]

2

= [∫

𝑐
𝑟

𝑎

∫

𝑐
𝑟+1

𝑡
𝑟+1

⋅ ⋅ ⋅ ∫

𝑐
𝑘

𝑡
𝑘

𝑘−1

∑

𝑖=1

(𝑝
𝑘−𝑖
𝑢
(𝑖)
)

(𝑖)

− (𝑝
𝑘
− 𝜆𝑤) 𝑢 𝑑𝜉

𝑘
⋅ ⋅ ⋅ 𝑑𝜉
𝑟+1
𝑑𝑡]

2

≤ 2[∫

𝑐
𝑟

𝑎

∫

𝑐
𝑟+1

𝑡
𝑟+1

⋅ ⋅ ⋅ ∫

𝑐
𝑘

𝑡
𝑘

𝑘−1

∑

𝑖=1

(𝑝
𝑘−𝑖
𝑢
(𝑖)
)

(𝑖)

𝑑𝜉
𝑘
⋅ ⋅ ⋅ 𝑑𝜉
𝑟+1
𝑑𝑡]

2

+ 2 [∫

𝑐
𝑟

𝑎

∫

𝑐
𝑟+1

𝑡
𝑟+1

⋅ ⋅ ⋅ ∫

𝑐
𝑘

𝑡
𝑘

(𝑝
𝑘
− 𝜆𝑤) 𝑢 𝑑𝜉

𝑘
⋅ ⋅ ⋅ 𝑑𝜉
𝑟+1
𝑑𝑡]

2

≤ 2 (𝑏 − 𝑎)
2(𝑘−𝑟)
[

𝑘−1

∑

𝑖=1

∫

𝑐
𝑘

𝑡
𝑘

(𝑝
𝑘−𝑖
𝑢
(𝑖)
)

(𝑖)

]

2

+ 2 (𝑏 − 𝑎)
2(𝑘−𝑟)
[∫

𝑐
𝑘

𝑡
𝑘

(𝑝
𝑘
− 𝜆𝑤) 𝑢 𝑑𝜉

𝑘
]

2

≤ 2

𝑘−1

∑

𝑖=1

(𝑏 − 𝑎)
2(𝑘−𝑟+𝑖)

[∫

𝑐
𝑘

𝑡
𝑘

𝑝
𝑘−𝑖
𝑢
(𝑖)
]

2

+ 2 (𝑏 − 𝑎)
2(𝑘−𝑟)
[∫

𝑐
𝑘

𝑡
𝑘

(𝑝
𝑘
− 𝜆𝑤) 𝑢 𝑑𝜉

𝑘
]

2

,

[∫

𝑐
𝑘

𝑡
𝑘

𝑝
𝑘−𝑖
𝑢
(𝑖)
]

2

≤ (𝑏 − 𝑎)
2 



𝑝
𝑘−𝑖
𝑢
(𝑖)
(𝑡)







2

→ 0 as 𝑏 → 𝑎+, 𝑡 ∈ (𝑎, 𝑏) , 𝑖 = 1, 2, . . . , 𝑘 − 1,

[∫

𝑐
𝑘

𝑡
𝑘

(𝑝
𝑘
− 𝜆𝑤) 𝑢 𝑑𝜉]

2

≤ [∫

𝑐
𝑘

𝑡
𝑘

(𝑝
𝑘
𝑤
−1/2
− 𝜆𝑤
1/2
)

2

𝑑𝜉∫

𝑐

𝑡

𝑢
2
𝑤𝑑𝜉]

≤ ∫

𝑏

𝑎

(

𝑝
2

𝑘

𝑤

− 2𝜆𝑝
𝑘
+ 𝜆
2
𝑤)∫

𝑏

𝑎

𝑢
2
𝑤 → 0 as 𝑏 → 𝑎+.

(77)

Thus

[(𝑝
0
𝑢
(𝑘)
)

(𝑘−𝑟)

(𝑎, 𝑏)]

2

→ 0, 𝑟 = 2, 3, . . . , 𝑘, as 𝑏 → 𝑎+.
(78)

Noting that 𝜆(𝑏) → 𝜆+(𝑎) as 𝑏 → 𝑎+, by (73), (78) and the
continuous dependence of solutions (6) on initial conditions
and on the parameterwe conclude that𝑢(⋅, 𝑏) → 0uniformly
on any compact subinterval of [𝑎, 𝐵). Therefore, for 𝜀 > 0,
there exists a 𝑏

0
∈ [𝑎, 𝐵), such that

|𝑢 (𝑡, 𝑏)| < 𝜀, 𝑡 ∈ [𝑎, 𝑏] , 𝑎 < 𝑏 < 𝑏0
. (79)

This implies that

∫

𝑏

𝑎

𝑢
2
𝑤 < 𝜀

2
∫

𝑏

𝑎

𝑤 (80)

for 𝜀 sufficiently small. This contradicts the normalization
(72), which completes the proof.

5. Conclusion

With a simple analysis, we showed that the eigenvalues of
a class of 2𝑘th-order Sturm-Liouville problems depend not
only continuously but also smoothly on boundary points
and that the derivative of the 𝑛th eigenvalue as a function
of an endpoint satisfies a first order differential equation.
It is satisfying that these equations are established without
any smoothness assumptions on the coefficients and also for
the case that the leading coefficient 𝑝

0
is not assumed to

be bounded away from zero and is even allowed to change
sign. More importantly, we show that the lowest Dirichlet
eigenvalue is a decreasing function of the endpoints and has
an infinite limit as the endpoints approach each other.

In recent years, the various physics applications of this
kind Sturm-Liouville problem are found in much literature
(see, e.g., [11–15]). Many topics in mathematical physics
require the investigation of the eigenvalues and eigenfunc-
tions of Sturm-Liouville-type boundary value problems. Our
results contain all the cases when 𝑘 is equal to certain special
positive integer. In particular, for 𝑘 = 2, Theorem 11 explains



10 Mathematical Problems in Engineering

that natural frequency of the rod will increase with the short-
ening of its length.

Furthermore, highly important results in this field have
been obtained for the case when the eigenparameter appears
not only in the differential equation with transmission con-
ditions but also in the boundary conditions. Particularly,
on computing eigenvalues of these types Sturm-Liouville
problems, we can refer to [16–18].Therefore, our proof meth-
ods and results will be useful to resolve eigenvalue problem
of discontinuous Sturm-Liouville operators and differential
operators with eigenparameter boundary conditions.
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