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We consider a continuous-time mean-variance asset-liability management problem in a market with random market parameters;
that is, interest rate, appreciation rates, and volatility rates are considered to be stochastic processes. By using the theories of
stochastic linear-quadratic (LQ) optimal control and backward stochastic differential equations (BSDEs), we tackle this problem
andderive optimal investment strategies aswell as themean-variance efficient frontier analytically in terms of the solution of BSDEs.
We find that the efficient frontier is still a parabola in a market with random parameters. Comparing with the existing results, we
also find that the liability does not affect the feasibility of themean-variance portfolio selection problem. However, in an incomplete
market with random parameters, the liability can not be fully hedged.

1. Introduction

Mean-variance portfolio selection model was pioneered by
Markowitz [1] in the single-period setting. In his seminal
paper, Markowitz proposed the variance as the measure of
the risk. The advantage of using variance for measuring
the risk of a portfolio is due to the simplicity of com-
putation. Thus, the mean-variance approach has inspired
literally hundreds of extensions and applications and also
has been commonly used in practical financial decisions.
For example, Wang and Xia [2] gave an excellent review
on portfolio selection problem. Li and Ng [3] employed the
framework ofmultiobjective optimization and an embedding
technique to obtain the exact mean-variance efficient frontier
for multiperiod investment. Wu and Li [4] investigated a
multiperiod mean-variance portfolio selection with regime
switching and uncertain exit time. Zhou and Li [5] studied a
continuous-time mean-variance portfolio selection problem
under a stochastic LQ framework. Furthermore, Li et al.
[6] considered a continuous-time mean-variance portfolio
selection problem with no-shorting constraints. Under par-
tial information, Xiong and Zhou [7] and Wang and Wu

[8] considered a continuous-time mean-variance portfolio
selection problem and a problem of hedging contingent
claims by portfolios, respectively.

Among several extensions of the classic mean-variance
portfolio selection model, asset and liability management
problem is an important subject in both academic liter-
atures and the real world situations. In the real world,
liability is so important that almost all financial institutions
and individual investors should manage their debt. Thus,
incorporating liability into the portfolio selection model
can make investment strategies more practical. The research
on mean-variance asset-liability management also evokes
recent concern. Sharpe and Tint [9] first investigated mean-
variance asset-liability management in a single-period set-
ting. Leippold et al. [10] considered a multiperiod asset-
liabilitymanagement problemandderived both the analytical
optimal policy and the efficient frontier. Chiu and Li [11]
studied a mean-variance asset-liability management problem
in the continuous-time case where the liability was governed
by a geometric Brownian motion (GBM). Xie et al. [12]
also considered a continuous-time asset-liability manage-
ment problem under the mean-variance criterion where the
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dynamic of liability is a Brownian motion with drift. Further,
Xie [13] studied a mean-variance portfolio selection model
with stochastic liability in a Markovian regime switching
financial market. Zeng and Li [14] investigated an asset-
liability management problem in a jump diffusion market.
Yao et al. [15] studied continuous-time mean-variance asset-
liability management with endogenous liabilities. By using
the time-consistent approach, Wei et al. [16] considered
a mean-variance asset-liability management problem with
regime switching.

Among these studies, we note that all market parameters
are assumed to be deterministic. However, in the real world,
market parameters observed in many situations are always
uncertain (see, e.g., [17–20]). In order to capture the features
of optimal investment strategies with random parameters,
random parameter models have drawn more attention over
last few years. For example, Lim and Zhou [21] investigated
a mean-variance portfolio selection problem with random
parameters in a complete market and derived efficient invest-
ment strategies as well as the efficient frontier analytically in
terms of the solution of BSDEs. Further, Lim [22] extended
Lim and Zhou’s [21] results to the case where the market is
incomplete.

Up to now, the studies on the asset-liability management
problem are under a common assumption that all parameters
are assumed to be known with certainty. An interesting and
unexplored question is what happens in a more realistic
situation with random parameters. This is the main focus of
our research. In view of this, we study a mean-variance asset-
liability management problem with random parameters and
derive both the mean-variance optimal portfolio strategies
and the efficient frontier. Referring to Lim [22], we consider
a market where the related market parameters are random,
such as interest rate, the appreciation rates, and the volatility
rates of stocks’ price. Further, we routinely assume that the
liability is dynamically exogenous and evolves according to
a Brownian motion with drift. Note that this description of
liability has beenwidely used (see, e.g., [12, 23, 24]). Under the
above assumptions, we introduce an unconstrained stochas-
tic control problem with random parameters and derive the
optimal control strategies in terms of the solutions of BSDEs.
Then, by using the Lagrange multiplier technique, we derive
both the mean-variance optimal investment strategies and
the efficient frontier.

Our model is most closely related to the model of
Lim [22]. The main differences between our model and
Lim’s model are in two dimensions. Firstly, we consider a
portfolio selection problem with liability. Since the liability
is dynamically exogenous, the driving factors of the wealth
in our model include that of stocks’ price and liability, which
is an essential difficulty in our model but not encountered in
[22]. Secondly, due to the introduction of random liability,
the wealth process derived from our model is no longer
homogenous with respect to the control variables, whereas
the wealth process in the model without liability (see, e.g.,
[21, 22]) is homogenous.

This paper proceeds as follows. In Section 2, we give
some preliminaries and formulate a continuous-time mean-
variance portfolio selection model with liability and random

parameters. In Section 3, we introduce an unconstrained
stochastic LQ control problem andderive the optimal policies
and value function in closed forms in terms of the solution
of BSDEs. Further, Section 4 presents the optimal investment
strategies and the efficient frontier for the mean-variance
asset-liability management problem with random parame-
ters. Section 5 concludes the paper.

2. Model Formulation

In this section, we describe the financial market, the liability,
and the mean-variance asset-liability management problem,
respectively. Throughout this paper, let 𝑇 be a fixed terminal
time, (Ω,F, 𝑃) a complete probability space, and 𝑀

 the
transpose of the vector or matrix𝑀.

2.1. The Financial Market. Let (Ω,F, 𝑃, {F
𝑡
}
𝑡≥0

) be a filtered
complete probability space on which a standard {F

𝑡
}
𝑡≥0

-
adapted 𝑚 + 𝑑-dimensional Brownian motion 𝑊(𝑡) :=

(𝑊(𝑡)

, 𝐵(𝑡)

)


:= (𝑊
1
(𝑡), . . . ,𝑊

𝑚
(𝑡), 𝐵
1
(𝑡), . . . , 𝐵

𝑑
(𝑡))
 for

𝑚 ≥ 1 and 𝑑 ≥ 0 is defined. It is assumed thatF
𝑡
= 𝜎{𝑊(𝑠) :

𝑠 ≤ 𝑡}. In this paper, we use𝐵(𝑡) tomodel the financial market
incompleteness as Lim [22] did. When 𝑑 = 0, the financial
market corresponds to a complete market.

Consider a financial market with 𝑚 + 1 securities which
consists of a bond and 𝑚 stocks. The price of bond 𝐴

0
(𝑡)

satisfies the following differential equation:

𝑑𝐴
0

(𝑡) = 𝑟 (𝑡) 𝐴
0

(𝑡) 𝑑𝑡, 𝑡 ∈ [0, 𝑇] ,

𝐴
0

(0) = 𝐴
0

0
> 0,

(1)

where the interest rate is as follows: 𝑟(𝑡) > 0. The price of
the 𝑖th stock, 𝐴𝑖(𝑡), is described by the following stochastic
differential equation (SDE):

𝑑𝐴
𝑖

(𝑡) = 𝐴
𝑖

(𝑡) [

[

𝜇
𝑖

(𝑡) 𝑑𝑡 +

𝑚

∑

𝑗=1

𝜎
𝑖𝑗

(𝑡) 𝑑𝑊
𝑗

(𝑡)]

]

,

𝐴
𝑖

(0) = 𝐴
𝑖

0
> 0,

(2)

where 𝜇𝑖(𝑡) > 0 and 𝜎𝑖(𝑡) := (𝜎
𝑖1
(𝑡), . . . , 𝜎

𝑖𝑚
(𝑡)) are apprecia-

tion rate and volatility rate of the 𝑖th stock, respectively. The
R𝑚×𝑚-valued process of volatility coefficients

𝜎 (𝑡) := (𝜎
1

(𝑡)

, . . . , 𝜎

𝑚

(𝑡)

)
 (3)

is known as the volatility. In addition, we assume that the
market parameters 𝑟(⋅), 𝜇𝑖(⋅), and 𝜎

𝑖𝑗
(⋅) are {F

𝑡
}
𝑡≥0

-adapted
stochastic processes.

2.2. Liability. We assume that an exogenous accumulative
liability 𝐿(𝑡) is governed by

𝑑𝐿 (𝑡) = 𝑢 (𝑡) 𝑑𝑡 + V (𝑡) 𝑑𝐵
𝐿
(𝑡) ,

𝐿 (0) = 𝐿
0
> 0,

(4)
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where𝐵
𝐿
(𝑡) is a one-dimensional standard Brownianmotion.

We assume that the diffusion term of the liability, 𝐵
𝐿
, is

correlated with 𝑊(𝑡), and 𝜌 = (𝜌
1
, . . . , 𝜌

𝑚+𝑑
)
 is the cor-

relation coefficient. Then, 𝐵
𝐿
(𝑡) can be further expressed as

follows (see (2.6) of [25] for more details):

𝐵
𝐿
(𝑡) = 𝜌


𝑊(𝑡) + √1 − 𝜌𝜌𝑊

0

(𝑡) , (5)

where 𝑊0(𝑡) is a standard Brownian motion which is inde-
pendent of𝑊(𝑡). It follows from Itô’s formula that

𝑑𝐵
𝐿
(𝑡) = 𝜌


𝑑𝑊 (𝑡) + √1 − 𝜌𝜌𝑑𝑊

0

(𝑡) . (6)

Thus, the liability 𝐿(𝑡) can be rewritten as

𝑑𝐿 (𝑡) = 𝑢 (𝑡) 𝑑𝑡 − 𝛿
1
(𝑡)

𝑑𝑊 (𝑡) − 𝛿

2
(𝑡)

𝑑𝐵 (𝑡)

− 𝛿
0
(𝑡) 𝑑𝑊

0

(𝑡) ,

(7)

where 𝛿
1
(𝑡) := −V(𝑡)(𝜌

1
, . . . , 𝜌

𝑚
)
, 𝛿
2
(𝑡) := −V(𝑡)(𝜌

𝑚+1
, . . .,

𝜌
𝑚+𝑑

)
, and 𝛿

0
(𝑡) := −V(𝑡)√1 − 𝜌𝜌. Further, we assume

that 𝑢(⋅) and 𝛿(⋅) := (𝛿
1
(⋅)

, 𝛿
2
(⋅)

, 𝛿
0
(⋅))
 are {F̂

𝑡
}
𝑡≥0

-adapted
stochastic processes, where F̂

𝑡
:= 𝜎{(𝑊(𝑠)


,𝑊
0
(𝑠))

: 𝑠 ≤ 𝑡}.

Remark 1. When 𝐵
𝐿
(𝑡) is independent of𝑊(𝑡), that is, 𝜌 = 0,

𝐵
𝐿
(𝑡) is equal to𝑊0(𝑡). When 𝜌𝜌 = 1, 𝐵

𝐿
(𝑡) can be expressed

as a linear combination of𝑊1(𝑡), . . . ,𝑊𝑚(𝑡), 𝐵1(𝑡), . . . , 𝐵𝑑(𝑡).

Remark 2. Since 𝑟(⋅), 𝜇𝑖(⋅), and 𝜎
𝑖𝑗
(⋅) are the parameters for

describing the financial market and 𝑢(⋅) and V(⋅) are used to
describe the exogenous liability, it is reasonable to assume that
𝑟(⋅), 𝜇𝑖(⋅), and 𝜎

𝑖𝑗
(⋅) are {F

𝑡
}
𝑡≥0

-adapted for 𝑖, 𝑗 = 1, . . . , 𝑚,
and 𝑢(⋅), V(⋅), and 𝛿(⋅) are {F̂

𝑡
}
𝑡≥0

-adapted.

2.3. The Mean-Variance Asset-Liability Management Model.
Suppose that the trading of shares takes place continuously
in a self-financing fashion and there are no transaction costs.
We assume that an investor has an initial endowment 𝑤 and
a liability 𝐿(𝑡). We denote by 𝑋(𝑡) the net total wealth of the
investor at time 𝑡 ∈ [0, 𝑇] and by 𝜋

𝑖
(𝑡), 𝑖 = 1, . . . , 𝑚, the

market value of the investor’s wealth in the 𝑖th stock. Then,
𝜋(𝑡) := (𝜋

1
(𝑡), . . . , 𝜋

𝑚
(𝑡))
 is a portfolio. The net total wealth

satisfies the following equation:

𝑑𝑋 (𝑡) = (𝑟 (𝑡) 𝑋 (𝑡) + 𝑏 (𝑡) 𝜋 (𝑡) − 𝑢 (𝑡)) 𝑑𝑡

+ (𝜋 (𝑡)

𝜎 (𝑡) + 𝛿

1
(𝑡)

) 𝑑𝑊 (𝑡)

+ 𝛿
2
(𝑡)

𝑑𝐵 (𝑡) + 𝛿

0
(𝑡) 𝑑𝑊

0

(𝑡) ,

𝑋 (0) = 𝑋
0
= 𝑤 − 𝐿

0
,

(8)

where 𝑏(𝑡) = (𝜇
1
(𝑡) − 𝑟(𝑡), . . . , 𝜇

𝑚
(𝑡) − 𝑟(𝑡)).

Next, we introduce the following notations.
One has |𝑥| := √∑

𝑛

𝑖=1
𝑥
2

𝑖
, where 𝑥 = (𝑥

1
, . . . , 𝑥

𝑛
)

∈ R𝑛.

L2F(0, 𝑇;R
𝑛
) is the set of {F

𝑡
}
𝑡≥0

-adapted, R𝑛-valued
stochastic processes on [0, 𝑇] such that

𝐸∫

𝑇

0

𝑓 (𝑡)


2

𝑑𝑡 < ∞. (9)

L∞F (Ω; 𝐶(0, 𝑇;R)) is the set of {F
𝑡
}
𝑡≥0

-adapted essen-
tially bounded stochastic processes on [0, 𝑇]with continuous
sample paths.

L2
F̂
(0, 𝑇;R𝑛) is the set of {F̂

𝑡
}
𝑡≥0

-adapted, R𝑛-valued
stochastic processes on [0, 𝑇] such that

𝐸∫

𝑇

0

𝑓 (𝑡)


2

𝑑𝑡 < ∞. (10)

L2
F̂
(Ω; 𝐶(0, 𝑇;R)) is the set of {F̂

𝑡
}
𝑡≥0

-adapted, R-
valued stochastic processes on [0, 𝑇] with 𝑃-a.s. continuous
sample paths such that 𝐸sup

𝑡∈[0,𝑇]
|𝑓(𝑡)|
2
< ∞.

L2,loc
F̂

(0, 𝑇;R𝑛) is the set of {F̂
𝑡
}
𝑡≥0

-adapted, R𝑛-valued
stochastic processes on [0, 𝑇] such that

∫

𝑇

0

𝑓 (𝑡)


2

𝑑𝑡 < ∞, 𝑃-a.s. (11)

L2
F̂𝑇

(Ω;R) is the set of F̂
𝑇
-measurable, square-integra-

ble random variables.
L∞

F̂
(0, 𝑇;R𝑚) is the set of {F̂

𝑡
}
𝑡≥0

-adapted essentially
bounded stochastic processes on [0, 𝑇].

Definition 3. A portfolio policy 𝜋(⋅) is said to be admissible if
𝜋(⋅) ∈ L2

F̂
(0, 𝑇;R𝑚) and there exists a unique solution of (8).

In this case, we refer to (𝑋(⋅), 𝜋(⋅)) as an admissible pair.

In this paper, we study the classical mean-variance
asset-liability management problem where the liability is
an exogenous liability 𝐿(𝑡). The objective of the investor is
to find a portfolio 𝜋(⋅) to minimize his/her risk which is
measured by the variance of the net terminal wealth subject
to archiving a prescribed expected terminal wealth. Then,
the mean-variance asset-liability management problem can
be formulated as follows:

𝐽
∗
:=min Var (𝑋 (𝑇)) = 𝐸 [𝑋 (𝑇) − 𝑐]

2
,

subject to: 𝐸𝑋 (𝑇)

= 𝑐, (𝑋 (⋅) , 𝜋 (⋅)) is admissible for (8) ,

(12)

where 𝑐 ∈ R is the prescribed expected terminal wealth. It
is clear that (12) is a linearly constrained convex program
problem. Thus, it can be reduced to an unconstrained
problem by introducing a Lagrange multiplier. Therefore,
in Section 3, we first consider the following unconstrained
problem parameterized by 𝑙 ∈ R,

min 𝐸 [𝑋 (𝑇) − 𝑙]
2
,

subject to: (𝑋 (⋅) , 𝜋 (⋅)) is admissible for (8) ,

(13)

and approach it from the perspective of stochastic LQoptimal
control and BSDEs. Further, in Section 4, based on the results
in Section 3, we employ the Lagrange multiplier method to
derive the mean-variance efficient portfolio and the efficient
frontier.

In addition, we assume that the following assumptions are
satisfied throughout this paper.
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Assumption 4. Consider the following:

𝑟 (⋅) , 𝜇
𝑖

(⋅) , 𝜎
𝑖𝑗

(⋅) ∈ L
∞

F (0, 𝑇;R) , 𝑖, 𝑗 = 1, . . . , 𝑚;

𝑢 (⋅) , V (⋅) ∈ L
∞

F̂
(0, 𝑇;R) ;

𝛿 (⋅) ∈ L
∞

F̂
(0, 𝑇;R

𝑚+𝑑+1
) ;

𝜎 (𝑡) 𝜎 (𝑡)

≥ 𝜖𝐼
𝑚
,

∀𝑡 ∈ [0, 𝑇] , for some 𝜖 > 0,

(14)

where 𝐼
𝑚
is the 𝑚 × 𝑚 identity matrix. Note that 𝜎(𝑡)𝜎(𝑡) ≥

𝜖𝐼
𝑚
is the so-called nondegeneracy condition and implies that

𝜎(𝑡) is invertible.

3. The Unconstrained Asset-Liability
Management Problem

The aim of this section is to derive the optimal solution for
the unconstrained problem (13).

Consider the following BSDEs:

𝑑𝑝 (𝑡) = [(−2𝑟 (𝑡) + |𝜃 (𝑡)|
2
) 𝑝 (𝑡) + 2𝜃 (𝑡)


Λ
1
(𝑡)

+
1

𝑝 (𝑡)

Λ 1 (𝑡)


2

] 𝑑𝑡 + Λ
1
(𝑡)

𝑑𝑊 (𝑡) + Λ

2
(𝑡)

𝑑𝐵 (𝑡) ,

𝑝 (𝑇) = 1, 𝑝 (𝑡) > 0, ∀𝑡 ∈ [0, 𝑇] ,

(15)

𝑑ℎ (𝑡) = (𝑟 (𝑡) ℎ (𝑡) + 𝜃 (𝑡)

𝜂
1
(𝑡) −

Λ
2
(𝑡)


𝑝 (𝑡)
𝜂
2
(𝑡)

− 𝑢 (𝑡) − 𝜃 (𝑡)

𝛿
1
(𝑡) + 𝛿

2
(𝑡)
 Λ 2 (𝑡)

𝑝 (𝑡)
) 𝑑𝑡 + 𝜂

1
(𝑡)

𝑑𝑊 (𝑡)

+ 𝜂
2
(𝑡)

𝑑𝐵 (𝑡) + 𝜂

0
(𝑡) 𝑑𝑊

0

(𝑡) ,

ℎ (𝑇) = 𝑙,

(16)

where 𝜃(𝑡) = 𝜎(𝑡)
−1
𝑏(𝑡)
. Throughout this paper, a pair of

processes (𝑝(⋅), Λ(⋅)) is called a solution of BSDE (15) if it
satisfies BSDE (15) and

Λ (⋅) = (Λ
1
(⋅)

, Λ
2
(⋅)

)


,

(𝑝 (⋅) , Λ (⋅)) ∈ L
∞

F (Ω; 𝐶 (0, 𝑇;R))

⋅L
2

F (0, 𝑇;R
𝑚+𝑑

) ,

1

𝑝 (⋅)
∈ L
∞

F (Ω; 𝐶 (0, 𝑇;R)) .

(17)

On the other hand, a pair (ℎ(⋅), 𝜂(⋅)) is called a solution of
BSDE (16) if (ℎ(⋅), 𝜂(⋅)) satisfies BSDE (16) and

𝜂 (⋅) = (𝜂
1
(⋅)

, 𝜂
2
(⋅)

, 𝜂
0
(⋅))


,

(ℎ (⋅) , 𝜂 (⋅)) ∈ L
2

F̂
(Ω; 𝐶 (0, 𝑇;R))

⋅L
2

F̂
(0, 𝑇;R

𝑚+𝑑+1
) .

(18)

Before deriving the optimal solution for problem (13), we
will prove the existence and uniqueness of solutions of BSDEs
(15) and (16), respectively. The following result can be found
in [22] (see Theorem 6.1 of [22]).

Lemma 5. If Assumption 4 holds, then the following BSDE,

𝑑𝑝 (𝑡) = [(−2𝑟 (𝑡) + |𝜃 (𝑡)|
2
) 𝑝 (𝑡) + 2𝜃 (𝑡)


Λ
1
(𝑡)

+

Λ 1 (𝑡)


2

𝑝 (𝑡)
] 𝑑𝑡 + Λ

1
(𝑡)

𝑑𝑊 (𝑡) + Λ̃

2
(𝑡)

𝑑𝐵 (𝑡) ,

𝑝 (𝑇) = 1, 𝑝 (𝑡) > 0, ∀𝑡 ∈ [0, 𝑇] ,

(19)

has a solution (𝑝(⋅), Λ̃(⋅)) where 𝐵(⋅) := (𝐵(⋅)

,𝑊
0
(⋅))
.

Moreover, if (𝑝(⋅), Λ(⋅)) and (𝑝(⋅), Λ̃(⋅)) are solutions of (19),
then 𝑝(⋅) ≡ 𝑝(⋅).

Here, we claim thatΛ(⋅) ≡ Λ̃(⋅) holds. In fact, by applying
Itô’s formula to Δ𝑝(𝑡) := 𝑝(𝑡) − 𝑝(𝑡), we have

𝑑Δ𝑝 (𝑡) = Δ𝐹 (𝑡) 𝑑𝑡 + ΔΛ
1
(𝑡)

𝑑𝑊 (𝑡)

+ ΔΛ
2
(𝑡)

𝑑𝐵 (𝑡) ,

Δ𝑝 (𝑇) = 0,

(20)

where ΔΛ
1
(⋅) := Λ̃

1
(⋅) − Λ

1
(⋅), ΔΛ

2
(⋅) := Λ̃

2
(⋅) − Λ

2
(⋅), and

Δ𝐹 (⋅) := (−2𝑟 (⋅) + |𝜃 (⋅)|
2
) Δ𝑝 (⋅) + 2𝜃 (⋅)


ΔΛ
1
(⋅)

+
1

𝑝 (⋅)
(

Λ̃
1
(⋅)


2

−

Λ
1
(⋅)


2

) .

(21)

Once again, it follows from Itô’s formula that

𝑑 (Δ𝑝 (𝑡))
2

= (2Δ𝑝 (𝑡) Δ𝐹 (𝑡) +
ΔΛ 1 (𝑡)



2

+
ΔΛ 2 (𝑡)



2

) 𝑑𝑡

+ 2Δ𝑝 (𝑡) ΔΛ
1
(𝑡)

𝑑𝑊 (𝑡)

+ 2Δ𝑝 (𝑡) ΔΛ
2
(𝑡)

𝑑𝐵 (𝑡) ,

(Δ𝑝 (𝑇))
2

= 0.

(22)
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Thus we have

− 𝐸 (Δ𝑝 (𝑡))
2

= 𝐸∫

𝑇

𝑡

(2Δ𝑝 (𝑠) Δ𝐹 (𝑠) +
ΔΛ 1 (𝑠)



2

+
ΔΛ 2 (𝑠)



2

) 𝑑𝑠.

(23)

From Lemma 5, we know that Δ𝑝(⋅) ≡ 0 and so

0 = 𝐸∫

𝑇

𝑡

(
ΔΛ 1 (𝑠)



2

+
ΔΛ 2 (𝑠)



2

) 𝑑𝑠. (24)

This implies that Λ(⋅) ≡ Λ̃(⋅) holds.
Since 𝑟(⋅) and 𝜃(⋅) are {F

𝑡
}
𝑡≥0

-adapted, BSDE (19) can
reduce to (15). This implies that BSDE (15) has a unique solu-
tion (𝑝(⋅), Λ(⋅)) under Assumption 4. Moreover, (𝑝(⋅), Λ̃(⋅)) is
the unique solution of BSDE (19), where Λ̃(⋅) = (Λ(⋅)


, 0)
.

From the discussion of Section 4 in [22], we have the
following lemma.

Lemma 6. If Assumption 4 holds, then

(

𝑋 (𝑡)

�̃� (𝑡)

) = (

𝑊(𝑡)

𝐵 (𝑡)

) + ∫

𝑡

0

(

𝜃 (𝑠)

−
Λ̃
2
(𝑠)

𝑝 (𝑠)

)𝑑𝑠 (25)

is a standard Brownian motion under 𝑃 where

𝑑𝑃

𝑑𝑃
:= exp{−∫

𝑇

0

𝜃 (𝑠)

𝑑𝑊 (𝑠) + ∫

𝑇

0

Λ̃
2
(𝑠)


𝑝 (𝑠)
𝑑𝐵 (𝑠)

−
1

2
∫

𝑇

0

(|𝜃 (𝑠)|
2
+



Λ̃
2
(𝑠)

𝑝 (𝑠)



2

)𝑑𝑠} .

(26)

For the existence anduniqueness of solution of BSDE (16),
we have the following result.

Proposition 7. If Assumption 4 holds, then BSDE (16) has a
unique solution.

Proof. The assumption guarantees that there is a unique
optimal control �̂�(⋅) ∈ L2

F̂
(0, 𝑇;R𝑚) for (13). Denote by𝑋(⋅)

the net wealth process associated with the optimal control
�̂�(⋅). The optimal condition (see [26]) implies that

𝑏 (𝑡)

𝑦 (𝑡) + 𝜎 (𝑡) 𝑧

1
(𝑡) = 0, (27)

where (𝑦(⋅), 𝑧(⋅)) is the unique solution of the following linear
BSDE (called adjoint equation):

𝑑𝑦 (𝑡) = −𝑟 (𝑡) 𝑦 (𝑡) 𝑑𝑡 + 𝑧
1
(𝑡)

𝑑𝑊 (𝑡) + 𝑧

2
(𝑡)

𝑑𝐵 (𝑡)

+ 𝑧
0
(𝑡) 𝑑𝑊

0

(𝑡) ,

𝑦 (𝑇) = 𝑋 (𝑇) − 𝑙.

(28)

By using Itô’s formula, we have

𝑑(
1

𝑝 (𝑡)
) = (

2𝑟 (𝑡) − |𝜃 (𝑡)|
2

𝑝 (𝑡)
−
2𝜃 (𝑡)

Λ
1
(𝑡)

𝑝2 (𝑡)

+

Λ 2 (𝑡)


2

𝑝3 (𝑡)
) 𝑑𝑡 −

Λ
1
(𝑡)


𝑝2 (𝑡)
𝑑𝑊 (𝑡) −

Λ
2
(𝑡)


𝑝2 (𝑡)
𝑑𝐵 (𝑡) ,

𝑑 (
𝑦 (𝑡)

𝑝 (𝑡)
) = [

(𝑟 (𝑡) − |𝜃 (𝑡)|
2
) 𝑦 (𝑡)

𝑝 (𝑡)

−
2𝜃 (𝑡)

Λ
1
(𝑡) 𝑦 (𝑡) + Λ

1
(𝑡)

𝑧
1
(𝑡) + Λ

2
(𝑡)

𝑧
2
(𝑡)

𝑝2 (𝑡)

+
𝑦 (𝑡)

Λ 2 (𝑡)


2

𝑝3 (𝑡)
] 𝑑𝑡 + (

𝑧
1
(𝑡)


𝑝 (𝑡)
−
𝑦 (𝑡) Λ

1
(𝑡)


𝑝2 (𝑡)
) 𝑑𝑊 (𝑡)

+ (
𝑧
2
(𝑡)


𝑝 (𝑡)
−
𝑦 (𝑡) Λ

2
(𝑡)


𝑝2 (𝑡)
) 𝑑𝐵 (𝑡) +

𝑧
0
(𝑡)

𝑝 (𝑡)
𝑑𝑊
0

(𝑡) ,

𝑑 (𝑋 (𝑡) −
𝑦 (𝑡)

𝑝 (𝑡)
) = [𝑟 (𝑡) (𝑋 (𝑡) −

𝑦 (𝑡)

𝑝 (𝑡)
) + 𝜃 (𝑡)



⋅ (𝜎 (𝑡)

�̂� (𝑡) + 𝛿

1
(𝑡) −

𝑧
1
(𝑡)

𝑝 (𝑡)
+
𝑦 (𝑡) Λ

1
(𝑡)

𝑝2 (𝑡)
)] 𝑑𝑡

− [
Λ
2
(𝑡)


𝑝 (𝑡)
(𝛿
2
(𝑡) −

𝑧
2
(𝑡)

𝑝 (𝑡)
+
𝑦 (𝑡) Λ

2
(𝑡)

𝑝2 (𝑡)
) + 𝑢 (𝑡)

+ 𝜃


(𝑡) 𝛿
1
(𝑡) −

𝛿
2
(𝑡)

Λ
2
(𝑡)

𝑝 (𝑡)
] 𝑑𝑡 + [

𝑦 (𝑡) |𝜃 (𝑡)|
2

𝑝 (𝑡)

+
𝜃 (𝑡)

𝑧
1
(𝑡)

𝑝 (𝑡)
+
𝑦 (𝑡) 𝜃 (𝑡)


Λ
1
(𝑡) + Λ

1
(𝑡)

𝑧
1
(𝑡)

𝑝2 (𝑡)
] 𝑑𝑡

+ (𝜎 (𝑡)

�̂� (𝑡) + 𝛿

1
(𝑡) −

𝑧
1
(𝑡)

𝑝 (𝑡)
+
𝑦 (𝑡) Λ

1
(𝑡)

𝑝2 (𝑡)
)



𝑑𝑊 (𝑡)

+ (𝛿
2
(𝑡) −

𝑧
2
(𝑡)

𝑝 (𝑡)
+
𝑦 (𝑡) Λ

2
(𝑡)

𝑝2 (𝑡)
)



𝑑𝐵 (𝑡) + (𝛿
0
(𝑡)

−
𝑧
0
(𝑡)

𝑝 (𝑡)
) 𝑑𝑊

0

(𝑡) .

(29)

It follows from (27) that 𝜃(𝑡)𝑦(𝑡) + 𝑧
1
(𝑡) = 0. Further,

𝑑(𝑋 (𝑡) −
𝑦 (𝑡)

𝑝 (𝑡)
) = [𝑟 (𝑡) (𝑋 (𝑡) −

𝑦 (𝑡)

𝑝 (𝑡)
) + 𝜃 (𝑡)



⋅ (𝜎 (𝑡)

�̂� (𝑡) + 𝛿

1
(𝑡) −

𝑧
1
(𝑡)

𝑝 (𝑡)
+
𝑦 (𝑡) Λ

1
(𝑡)

𝑝2 (𝑡)
)] 𝑑𝑡

− [
Λ
2
(𝑡)


𝑝 (𝑡)
(𝛿
2
(𝑡) −

𝑧
2
(𝑡)

𝑝 (𝑡)
+
𝑦 (𝑡) Λ

2
(𝑡)

𝑝2 (𝑡)
) + 𝑢 (𝑡)

+ 𝜃 (𝑡)

𝛿
1
(𝑡) −

𝛿
2
(𝑡)

Λ
2
(𝑡)

𝑝 (𝑡)
] 𝑑𝑡 + (𝜎 (𝑡)


�̂� (𝑡)

+ 𝛿
1
(𝑡) −

𝑧
1
(𝑡)

𝑝 (𝑡)
+
𝑦 (𝑡) Λ

1
(𝑡)

𝑝2 (𝑡)
)



𝑑𝑊 (𝑡) + (𝛿
2
(𝑡)

−
𝑧
2
(𝑡)

𝑝 (𝑡)
+
𝑦 (𝑡) Λ

2
(𝑡)

𝑝2 (𝑡)
)



𝑑𝐵 (𝑡) + (𝛿
0
(𝑡) −

𝑧
0
(𝑡)

𝑝 (𝑡)
) 𝑑𝑊

0

(𝑡) .

(30)
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Comparing with BSDE (16), we conclude that (ℎ̃(⋅), 𝜂(⋅)) is a
solution of (16), where

ℎ̃ (𝑡) := 𝑋 (𝑡) −
𝑦 (𝑡)

𝑝 (𝑡)
,

𝜂
1
(𝑡) := 𝜎 (𝑡)


�̂� (𝑡) + 𝛿

1
(𝑡) −

𝑧
1
(𝑡)

𝑝 (𝑡)
+
𝑦 (𝑡) Λ

1
(𝑡)

𝑝2 (𝑡)
,

𝜂
2
(𝑡) := 𝛿

2
(𝑡) −

𝑧
2
(𝑡)

𝑝 (𝑡)
+
𝑦 (𝑡) Λ

2
(𝑡)

𝑝2 (𝑡)
,

𝜂
0
(𝑡) := 𝛿

0
(𝑡) −

𝑧
0
(𝑡)

𝑝 (𝑡)
.

(31)

Now we show the uniqueness of the solution for (16).
Assume that (ℎ(⋅), 𝜂(⋅)) and (ℎ̃(⋅), 𝜂(⋅)) are two solutions of
BSDE (16). It follows from Itô’s formula that

𝑑Δℎ (𝑡)

= (𝑟 (𝑡) Δℎ (𝑡) + 𝜃 (𝑡)

Δ𝜂
1
(𝑡) −

Λ
2
(𝑡)


𝑝 (𝑡)
Δ𝜂
2
(𝑡)) 𝑑𝑡

+ Δ𝜂
1
(𝑡)

𝑑𝑊 (𝑡) + Δ𝜂

2
(𝑡)

𝑑𝐵 (𝑡)

+ Δ𝜂
0
(𝑡) 𝑑𝑊

0

(𝑡) ,

Δℎ (𝑇) = 0,

(32)

where Δℎ(⋅) := ℎ(⋅) − ℎ̃(⋅), Δ𝜂
1
(⋅) := 𝜂

1
(⋅) − 𝜂

1
(⋅), Δ𝜂

2
(⋅) :=

𝜂
2
(⋅) − 𝜂

2
(⋅), and Δ𝜂

0
(⋅) := 𝜂

0
(⋅) − 𝜂

0
(⋅).

By using the transformation defined by (25) to (32), we
have

𝑑Δℎ (𝑡) = 𝑟 (𝑡) Δℎ (𝑡) 𝑑𝑡 + Δ𝜂
1
(𝑡)

𝑑𝑋 (𝑡)

+ (Δ𝜂
2
(𝑡)

, Δ𝜂
0
(𝑡)) 𝑑�̃� (𝑡) ,

Δℎ (𝑇) = 0

(33)

which is a linear BSDE and has a unique solution (0, 0) under
Assumption 4. In consequence, we have ℎ(⋅) = ℎ̃(⋅) and 𝜂(⋅) =
𝜂(⋅).

This completes the proof.

The following lemma is a generalization of Lemma 3.1 in
[22].

Lemma 8. Suppose that Assumption 4 holds. Let 𝜋(⋅) ∈

L2,𝑙𝑜𝑐
F̂

(0, 𝑇;R𝑚) be given and fixed. If net wealth equation (8)
corresponding to 𝜋(⋅) has a unique solution 𝑋(⋅) such that
𝑋(⋅) ∈ L2

F̂
(0, 𝑇;R) and 𝑋(𝑇) ∈ L2

F̂𝑇
(Ω;R), then 𝜋(⋅) ∈

L2
F̂
(0, 𝑇;R𝑚) is admissible.

Proof. Assume that 𝜋(⋅) ∈ L2,loc
F̂

(0, 𝑇;R𝑚) is given and fixed
and SDE (8) corresponding to 𝜋(⋅) has a unique solution
𝑋(⋅) ∈ L2

F̂
(0, 𝑇;R). It follows from Itô’s formula that

𝑋 (𝑡)
2
= 𝑋 (0)

2
+ ∫

𝑡

0

2𝑋 (𝑠) (𝑟 (𝑠)𝑋 (𝑠) + 𝑏 (𝑠) 𝜋 (𝑠)

− 𝑢 (𝑠)) 𝑑𝑠 + ∫

𝑡

0

(

𝜎 (𝑠)

𝜋 (𝑠) + 𝛿

1
(𝑠)



2

+
𝛿2 (𝑠)



2

+
𝛿0 (𝑠)



2

) 𝑑𝑠 + ∫

𝑡

0

2𝑋 (𝑠) 𝛿
1
(𝑠)

𝑑𝑊 (𝑠)

+ ∫

𝑡

0

2𝑋 (𝑠) 𝛿
2
(𝑠)

𝑑𝐵 (𝑠) + ∫

𝑡

0

2𝑋 (𝑠)

⋅ 𝛿
0
(𝑠) 𝑑𝑊

0

(𝑠) + ∫

𝑡

0

2𝑋 (𝑠)

⋅ (𝜎 (𝑠)

𝜋 (𝑠))



𝑑𝑊 (𝑠) .

(34)

Under Assumption 4, we have 2𝑋(⋅)𝛿
1
(⋅) ∈ L2

F̂
(0, 𝑇;R𝑚),

2𝑋(⋅)𝛿
2
(⋅) ∈ L2

F̂
(0, 𝑇;R𝑑), and 2𝑋(⋅)𝛿

0
(⋅) ∈ L2

F̂
(0, 𝑇;R),

which imply that

∫

𝑡

0

2𝑋 (𝑠) 𝛿
1
(𝑠)

𝑑𝑊 (𝑠) + ∫

𝑡

0

2𝑋 (𝑠) 𝛿
2
(𝑠)

𝑑𝐵 (𝑠)

+ ∫

𝑡

0

2𝑋 (𝑠) 𝛿
0
(𝑠) 𝑑𝑊

0

(𝑠)

(35)

is a martingale and so

𝐸[∫

𝑡

0

2𝑋 (𝑠) 𝛿
1
(𝑠)

𝑑𝑊 (𝑠) + ∫

𝑡

0

2𝑋 (𝑠) 𝛿
2
(𝑠)

𝑑𝐵 (𝑠)

+ ∫

𝑡

0

2𝑋 (𝑠) 𝛿
0
(𝑠) 𝑑𝑊

0

(𝑠)] = 0.

(36)

Because 𝑋(⋅) is continuous (and bounded on
[0, 𝑇], a.s.), we have 2𝑋(⋅)𝜎(⋅)


𝜋(⋅) ∈ L2,loc

F̂
(0, 𝑇;R𝑚) and

∫
𝑡

0
2𝑋(𝑠)(𝜎(𝑠)


𝜋(𝑠))

𝑑𝑊(𝑠) is a local martingale. Therefore,

there exists a localizing sequence {𝜏
𝑖
} for the local martingale

such that

∫

𝑡∧𝜏𝑖

0

2𝑋 (𝑠) (𝜎 (𝑠)

𝜋 (𝑠))



𝑑𝑊 (𝑠) (37)

is a martingale.
Putting 𝑡 = 𝑇 ∧ 𝜏

𝑖
and taking expectations on both sides

of (34), we have

𝐸𝑋 (𝑇 ∧ 𝜏
𝑖
)
2

= 𝑋 (0)
2
+ 𝐸∫

𝑇∧𝜏𝑖

0

2𝑋 (𝑠) (𝑟 (𝑠)𝑋 (𝑠)

+ 𝑏 (𝑠) 𝜋 (𝑠) − 𝑢 (𝑠)) 𝑑𝑠

+ 𝐸∫

𝑇∧𝜏𝑖

0

(

𝜎 (𝑠)

𝜋 (𝑠) + 𝛿

1
(𝑠)



2

+
𝛿2 (𝑠)



2

+
𝛿0 (𝑠)



2

) 𝑑𝑠.

(38)
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Then it can be rewritten as

𝑋 (0)
2
+ 𝐸∫

𝑇∧𝜏𝑖

0

𝜋 (𝑠)

𝜎 (𝑠) 𝜎 (𝑠)


𝜋 (𝑠) 𝑑𝑠

+ 𝐸∫

𝑇∧𝜏𝑖

0

(
𝛿1 (𝑠)



2

+
𝛿2 (𝑠)



2

+
𝛿0 (𝑠)



2

) 𝑑𝑠

= 𝐸𝑋 (𝑇 ∧ 𝜏
𝑖
)
2

− 𝐸∫

𝑇∧𝜏𝑖

0

2𝑟 (𝑠)𝑋 (𝑠)
2
𝑑𝑠

+ 𝐸∫

𝑇∧𝜏𝑖

0

2𝑋 (𝑠) 𝑢 (𝑠) 𝑑𝑠

− 𝐸∫

𝑇∧𝜏𝑖

0

2𝛿
1
(𝑠)

𝜎 (𝑠)

𝜋 (𝑠) 𝑑𝑠

− 𝐸∫

𝑇∧𝜏𝑖

0

2𝑋 (𝑠) 𝑏 (𝑠) 𝜋 (𝑠) 𝑑𝑠.

(39)

Since

− 2𝑋 (𝑠) 𝑏 (𝑠) 𝜋 (𝑠) = −2(√
4

𝜖
𝑋 (𝑠) 𝑏 (𝑠))(√

𝜖

4
𝜋 (𝑠))

≤
4

𝜖
𝑋 (𝑠)
2

|𝑏 (𝑠)|
2
+
𝜖

4
|𝜋 (𝑠)|

2
,

− 2𝛿
1
(𝑠)

𝜎 (𝑠)

𝜋 (𝑠)

= −2(√
4

𝜖
𝛿
1
(𝑠)

𝜎 (𝑠)

)(√

𝜖

4
𝜋 (𝑠))

≤
4

𝜖

𝜎 (𝑠) 𝛿1 (𝑠)


2

+
𝜖

4
|𝜋 (𝑠)|

2
,

(40)

we have

𝑋 (0)
2
+ 𝐸∫

𝑇∧𝜏𝑖

0

𝜋 (𝑠)

𝜎 (𝑠) 𝜎 (𝑠)


𝜋 (𝑠) 𝑑𝑠

+ 𝐸∫

𝑇∧𝜏𝑖

0

(
𝛿1 (𝑠)



2

+
𝛿2 (𝑠)



2

+
𝛿0 (𝑠)



2

) 𝑑𝑠

≤ 𝐸𝑋 (𝑇 ∧ 𝜏
𝑖
)
2

− 𝐸∫

𝑇∧𝜏𝑖

0

2𝑟 (𝑠)𝑋 (𝑠)
2
𝑑𝑠

+ 𝐸∫

𝑇∧𝜏𝑖

0

2𝑋 (𝑠) 𝑢 (𝑠) 𝑑𝑠

+ 𝐸∫

𝑇∧𝜏𝑖

0

4

𝜖

𝜎 (𝑠) 𝛿1 (𝑠)


2

+
𝜖

4
|𝜋 (𝑠)|

2
𝑑𝑠

+ 𝐸∫

𝑇∧𝜏𝑖

0

4

𝜖
𝑋 (𝑠)
2

|𝑏 (𝑠)|
2
+
𝜖

4
|𝜋 (𝑠)|

2
𝑑𝑠.

(41)

Rewriting the inequality above, we have

𝑋(0)
2
+ 𝐸∫

𝑇∧𝜏𝑖

0

(
𝛿1 (𝑠)



2

+
𝛿2 (𝑠)



2

+
𝛿0 (𝑠)



2

) 𝑑𝑠

+ 𝐸∫

𝑇∧𝜏𝑖

0

𝜋 (𝑠)

𝜎 (𝑠) 𝜎 (𝑠)


𝜋 (𝑠) 𝑑𝑠

−
𝜖

2
𝐸∫

𝑇∧𝜏𝑖

0

|𝜋 (𝑠)|
2
𝑑𝑠

≤ 𝐸𝑋 (𝑇 ∧ 𝜏
𝑖
)
2

+ 𝐸∫

𝑇∧𝜏𝑖

0

𝑋 (𝑠)
2
(−2𝑟 (𝑠) +

4

𝜖
|𝑏 (𝑠)|
2
)𝑑𝑠

+ 𝐸∫

𝑇∧𝜏𝑖

0

2𝑋 (𝑠) 𝑢 (𝑠) 𝑑𝑠

+
4

𝜖
𝐸∫

𝑇∧𝜏𝑖

0

𝜎 (𝑠) 𝛿1 (𝑠)


2

𝑑𝑠.

(42)

From Fatou’s lemma, we obtain

𝑋(0)
2
+ 𝐸∫

𝑇

0

(
𝛿1 (𝑠)



2

+
𝛿2 (𝑠)



2

+
𝛿0 (𝑠)



2

) 𝑑𝑠

+ 𝐸∫

𝑇

0

𝜋 (𝑠)

𝜎 (𝑠) 𝜎 (𝑠)


𝜋 (𝑠) 𝑑𝑠

−
𝜖

2
𝐸∫

𝑇

0

|𝜋 (𝑠)|
2
𝑑𝑠 ≤ 𝐸𝑋 (𝑇)

2

+ 𝐸∫

𝑇

0

𝑋 (𝑠)
2
(−2𝑟 (𝑠) +

4

𝜖
|𝑏 (𝑠)|
2
)𝑑𝑠

+ 𝐸∫

𝑇

0

2𝑋 (𝑠) 𝑢 (𝑠) 𝑑𝑠 +
4

𝜖
𝐸∫

𝑇

0

𝜎 (𝑠) 𝛿1 (𝑠)


2

𝑑𝑠

< +∞,

(43)

where the last inequality comes from Assumption 4 and
𝑋(⋅) ∈ L2

F̂
(0, 𝑇;R).

Since 𝜎(𝑡)𝜎(𝑡) ≥ 𝜖𝐼
𝑚
, we have

𝜖

2
𝐸∫

𝑇

0

|𝜋 (𝑠)|
2
𝑑𝑠

≤ 𝑋 (0)
2

+ 𝐸∫

𝑇

0

(
𝛿1 (𝑠)



2

+
𝛿2 (𝑠)



2

+
𝛿0 (𝑠)



2

) 𝑑𝑠

+ 𝐸∫

𝑇

0

𝜋 (𝑠)

𝜎 (𝑠) 𝜎 (𝑠)


𝜋 (𝑠) 𝑑𝑠

−
𝜖

2
𝐸∫

𝑇

0

|𝜋 (𝑠)|
2
𝑑𝑠 < +∞

(44)

which implies that 𝜋(⋅) ∈ L2
F̂
(0, 𝑇;R𝑚) is admissible.

This completes the proof.
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The following result concerns the admissibility of (46).

Proposition 9. If Assumption 4 holds, then

𝑑𝑋 (𝑡) = {𝑟 (𝑡)𝑋 (𝑡) − 𝜃 (𝑡)

[𝛿
1
(𝑡) − 𝜂

1
(𝑡)

+ (𝑋 (𝑡) − ℎ (𝑡)) (𝜃 (𝑡) +
Λ
1
(𝑡)

𝑝 (𝑡)
)] − 𝑢 (𝑡)} 𝑑𝑡

+ [𝜂
1
(𝑡) − (𝑋 (𝑡) − ℎ (𝑡)) (𝜃 (𝑡) +

Λ
1
(𝑡)

𝑝 (𝑡)
)]



𝑑𝑊 (𝑡)

+ 𝛿
2
(𝑡)

𝑑𝐵 (𝑡) + 𝛿

0
(𝑡) 𝑑𝑊

0

(𝑡) ,

𝑋 (0) = 𝑋
0

(45)

(replace (8) by (46)) has a unique solution with 𝑋(⋅) ∈

L2
F̂
(0, 𝑇;R) and 𝑋(𝑇) ∈ L2

F̂𝑇
(Ω;R). Moreover,

𝜋 (𝑡) := − (𝜎 (𝑡)
−1
)


[𝛿
1
(𝑡) − 𝜂

1
(𝑡)

+ (𝑋 (𝑡) − ℎ (𝑡)) (𝜃 (𝑡) +
Λ
1
(𝑡)

𝑝 (𝑡)
)]

(46)

is admissible.

Proof. Consider the following SDE:

𝑑𝑌 (𝑡) = −𝑟 (𝑡) 𝑌 (𝑡) 𝑑𝑡 − 𝑌 (𝑡) 𝜃 (𝑡)

𝑑𝑊 (𝑡)

+ [𝑌 (𝑡) 𝛼
1
(𝑡) + 𝛼

2
(𝑡)]


𝑑𝐵 (𝑡)

+ 𝛽
2
(𝑡) 𝑑𝑊

0

(𝑡) ,

𝑌 (0) = 𝑝 (0) (𝑋 (0) − ℎ (0)) ,

(47)

where

𝛼
1
(𝑡) =

Λ
2
(𝑡)

𝑝 (𝑡)
,

𝛼
2
(𝑡) = 𝑝 (𝑡) (𝛿

2
(𝑡) − 𝜂

2
(𝑡)) ,

𝛽
2
(𝑡) = 𝑝 (𝑡) (𝛿

0
(𝑡) − 𝜂

0
(𝑡)) .

(48)

It can be shown that

𝑌 (𝑡) = Φ (𝑡) [𝑝 (0) (𝑋 (0) − ℎ (0))

− ∫

𝑡

0

𝛼
1
(𝑠)

𝛼
2
(𝑠) Φ
−1

(𝑠) 𝑑𝑠] + Φ (𝑡)

⋅ (∫

𝑡

0

𝛼
2
(𝑠)

Φ
−1

(𝑠) 𝑑𝐵 (𝑠)

+ ∫

𝑡

0

𝛽
2
(𝑠) Φ
−1

(𝑠) 𝑑𝑊
0

(𝑠))

(49)

is the unique solution of (47), where

Φ (𝑡) = exp{−1
2
∫

𝑡

0

(|𝜃 (𝑠)|
2
+
𝛼1 (𝑠)



2

+ 2𝑟 (𝑠)) 𝑑𝑠

− ∫

𝑡

0

𝜃 (𝑠)

𝑑𝑊 (𝑠) + ∫

𝑡

0

𝛼
1
(𝑠)

𝑑𝐵 (𝑠)} .

(50)

By using Itô’s formula, we have that

𝑋 (𝑡) = ℎ (𝑡) +
𝑌 (𝑡)

𝑝 (𝑡)
(51)

is the unique solution of SDE (45).
It follows from Itô’s formula that

𝑑 (𝑋 (𝑡) − ℎ (𝑡)) = [𝑟 (𝑡) (𝑋 (𝑡) − ℎ (𝑡))

− (𝑋 (𝑡) − ℎ (𝑡)) 𝜃 (𝑡)

(𝜃 (𝑡) +

Λ
1
(𝑡)

𝑝 (𝑡)
)

+
Λ
2
(𝑡)


𝑝 (𝑡)
(𝜂
2
(𝑡) − 𝛿

2
(𝑡))] 𝑑𝑡 − (𝑋 (𝑡) − ℎ (𝑡))

⋅ (𝜃 (𝑡) +
Λ
1
(𝑡)

𝑝 (𝑡)
)



𝑑𝑊 (𝑡)

+ (𝛿
2
(𝑡) − 𝜂

2
(𝑡))


𝑑𝐵 (𝑡) + (𝛿
0
(𝑡) − 𝜂

0
(𝑡)) 𝑑𝑊

0

(𝑡) ,

𝑑 (𝑋 (𝑡) − ℎ (𝑡))
2

= [(𝑋 (𝑡) − ℎ (𝑡))
2
(2𝑟 (𝑡) − |𝜃 (𝑡)|

2
+



Λ
1
(𝑡)

𝑝 (𝑡)



2

)

+ 2 (𝑋 (𝑡) − ℎ (𝑡)) (𝜂
2
(𝑡) − 𝛿

2
(𝑡))
 Λ 2 (𝑡)

𝑝 (𝑡)
] 𝑑𝑡

+ (
𝛿2 (𝑡) − 𝜂

2
(𝑡)


2

+
𝛿0 (𝑡) − 𝜂

0
(𝑡)


2

) 𝑑𝑡

− 2 (𝑋 (𝑡) − ℎ (𝑡))
2
(𝜃 (𝑡) +

Λ
1
(𝑡)

𝑝 (𝑡)
)



𝑑𝑊 (𝑡)

+ 2 (𝑋 (𝑡) − ℎ (𝑡)) (𝛿
2
(𝑡) − 𝜂

2
(𝑡))


𝑑𝐵 (𝑡) + 2 (𝑋 (𝑡)

− ℎ (𝑡)) (𝛿
0
(𝑡) − 𝜂

0
(𝑡)) 𝑑𝑊

0

(𝑡) ,

𝑑𝑝 (𝑡) (𝑋 (𝑡) − ℎ (𝑡))
2
= 𝑝 (𝑡) (

𝛿2 (𝑡) − 𝜂
2
(𝑡)


2

+
𝛿0 (𝑡) − 𝜂

0
(𝑡)


2

) 𝑑𝑡 − 𝑝 (𝑡) (𝑋 (𝑡) − ℎ (𝑡))
2
(2𝜃 (𝑡)

+
Λ
1
(𝑡)

𝑝 (𝑡)
)



𝑑𝑊 (𝑡)

+ [2𝑝 (𝑡) (𝑋 (𝑡) − ℎ (𝑡)) (𝛿
2
(𝑡) − 𝜂

2
(𝑡))


+ (𝑋 (𝑡) − ℎ (𝑡))
2
Λ
2
(𝑡)

] 𝑑𝐵 (𝑡) + 2𝑝 (𝑡) (𝑋 (𝑡)

− ℎ (𝑡)) (𝛿
0
(𝑡) − 𝜂

0
(𝑡)) 𝑑𝑊

0

(𝑡) .

(52)
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Then, we have

𝑝 (𝑡) (𝑋 (𝑡) − ℎ (𝑡))
2
= 𝑝 (0) (𝑋 (0) − ℎ (0))

2

+ ∫

𝑡

0

𝑝 (𝑠) (
𝛿2 (𝑠) − 𝜂

2
(𝑠)



2

+
𝛿0 (𝑠) − 𝜂

0
(𝑠)



2

) 𝑑𝑠

− ∫

𝑡

0

𝑝 (𝑠) (𝑋 (𝑠) − ℎ (𝑠))
2
(2𝜃 (𝑠)

+
Λ
1
(𝑠)

𝑝 (𝑠)
)



𝑑𝑊 (𝑠)

+ ∫

𝑡

0

[2𝑝 (𝑠) (𝑋 (𝑠) − ℎ (𝑠)) (𝛿
2
(𝑠) − 𝜂

2
(𝑠))


+ (𝑋 (𝑠) − ℎ (𝑠))
2
Λ
2
(𝑠)

] 𝑑𝐵 (𝑠) + ∫

𝑡

0

2𝑝 (𝑠)

⋅ (𝑋 (𝑠) − ℎ (𝑠)) (𝛿
0
(𝑠) − 𝜂

0
(𝑠)) 𝑑𝑊

0

(𝑠) .

(53)

Taking𝑋(𝑡) = ℎ(𝑡)+𝑌(𝑡)/𝑝(𝑡) into account, we conclude that

− ∫

𝑡

0

𝑝 (𝑠) (𝑋 (𝑠) − ℎ (𝑠))
2
(2𝜃 (𝑠) +

Λ
1
(𝑠)

𝑝 (𝑠)
)



𝑑𝑊 (𝑠)

+ ∫

𝑡

0

2𝑝 (𝑠) (𝑋 (𝑠) − ℎ (𝑠)) (𝛿
2
(𝑠) − 𝜂

2
(𝑠))


𝑑𝐵 (𝑠)

+ ∫

𝑡

0

(𝑋 (𝑠) − ℎ (𝑠))
2
Λ
2
(𝑠)

𝑑𝐵 (𝑠)

+ ∫

𝑡

0

2𝑝 (𝑠) (𝑋 (𝑠) − ℎ (𝑠)) (𝛿
0
(𝑠) − 𝜂

0
(𝑠)) 𝑑𝑊

0

(𝑠)

= −∫

𝑡

0

𝑌 (𝑠)
2

𝑝 (𝑠)
(2𝜃 (𝑠) +

Λ
1
(𝑠)

𝑝 (𝑠)
)



𝑑𝑊 (𝑠)

+ ∫

𝑡

0

2𝑌 (𝑠) (𝛿
2
(𝑠) − 𝜂

2
(𝑠))


𝑑𝐵 (𝑠)

+ ∫

𝑡

0

𝑌 (𝑠)
2

𝑝 (𝑠)
2
Λ
2
(𝑠)

𝑑𝐵 (𝑠)

+ ∫

𝑡

0

2𝑌 (𝑠) (𝛿
0
(𝑠) − 𝜂

0
(𝑠)) 𝑑𝑊

0

(𝑠)

(54)

is a local martingale under Assumption 4. Let {𝜏
𝑖
} be a

localizing sequence for the local martingale above. Then, for
any 𝑡 ∈ [0, 𝑇],

𝐸 [𝑝 (𝑡 ∧ 𝜏
𝑖
) (𝑋 (𝑡 ∧ 𝜏

𝑖
) − ℎ (𝑡 ∧ 𝜏

𝑖
))
2

] = 𝑝 (0) (𝑋 (0)

− ℎ (0))
2
+ 𝐸∫

𝑡∧𝜏𝑖

0

𝑝 (𝑠)

⋅ (
𝛿2 (𝑠) − 𝜂

2
(𝑠)



2

+
𝛿0 (𝑠) − 𝜂

0
(𝑠)



2

) 𝑑𝑠.

(55)

It follows from Fatou’s lemma and Assumption 4 that

𝐸 [𝑝 (𝑡) (𝑋 (𝑡) − ℎ (𝑡))
2
] ≤ 𝑝 (0) (𝑋 (0) − ℎ (0))

2

+ 𝐸∫

𝑡

0

𝑝 (𝑠)

⋅ (
𝛿2 (𝑠) − 𝜂

2
(𝑠)



2

+
𝛿0 (𝑠) − 𝜂

0
(𝑠)



2

) 𝑑𝑠

≤ 𝑝 (0) (𝑋 (0) − ℎ (0))
2
+ 𝐸∫

𝑇

0

𝑝 (𝑠)

⋅ (
𝛿2 (𝑠) − 𝜂

2
(𝑠)



2

+
𝛿0 (𝑠) − 𝜂

0
(𝑠)



2

) 𝑑𝑠.

(56)

Since 𝑝(⋅) > 0 and 1/𝑝(⋅) ∈ L∞F (Ω; 𝐶(0, 𝑇;R)), there exists a
constant 𝜀 > 0 such that, for any 𝑡 ∈ [0, 𝑇], 𝑝(𝑡) ≥ 𝜀. Thus, we
have

𝜀𝐸 [(𝑋 (𝑡) − ℎ (𝑡))
2
] ≤ 𝐸 [𝑝 (𝑡) (𝑋 (𝑡) − ℎ (𝑡))

2
] ≤ 𝐻, (57)

where𝐻 := 𝑝(0)(𝑋(0) − ℎ(0))
2
+ 𝐸∫
𝑇

0
𝑝(𝑠)(|𝛿

2
(𝑠) − 𝜂

2
(𝑠)|
2
+

|𝛿
0
(𝑠) − 𝜂

0
(𝑠)|
2
)𝑑𝑠 < +∞.

Further, we have

𝐸 [(𝑋 (𝑇) − ℎ (𝑇))
2
] ≤

1

𝜀
𝐸 [𝑝 (𝑇) (𝑋 (𝑇) − ℎ (𝑇))

2
]

≤
𝐻

𝜀
< +∞,

𝐸 [∫

𝑇

0

(𝑋 (𝑡) − ℎ (𝑡))
2
𝑑𝑡] = ∫

𝑇

0

𝐸 (𝑋 (𝑡) − ℎ (𝑡))
2
𝑑𝑡

≤
𝐻

𝜀
𝑇 < +∞

(58)

which means that (𝑋(𝑇) − ℎ(𝑇)) ∈ L2
F̂𝑇

(Ω;R) and (𝑋(⋅) −

ℎ(⋅)) ∈ L2
F̂
(0, 𝑇;R).

Because ℎ(𝑇) ∈ L2
F̂𝑇

(Ω;R) and ℎ(⋅) ∈ L2
F̂
(0, 𝑇;R), we

have
𝑋(⋅) = (𝑋 (⋅) − ℎ (⋅)) + ℎ (⋅) ∈ L

2

F̂
(0, 𝑇;R) ,

𝑋 (𝑇) = (𝑋 (𝑇) − ℎ (𝑇)) + ℎ (𝑇) ∈ L
2

F̂𝑇
(Ω;R) .

(59)

Since Λ
1
(⋅) ∈ L2F(0, 𝑇;R

𝑚
) and ℎ(⋅) ∈ L2

F̂
(Ω; 𝐶(0, 𝑇;

R)), it follows from (46) that 𝜋(⋅) ∈ L2,loc
F̂

(0, 𝑇;R𝑚). Further,
we conclude from Lemma 8 that 𝜋(⋅) ∈ L2

F̂
(0, 𝑇;R𝑚) and

𝜋(⋅) is admissible.
This completes the proof.

Next, we formulate the optimal control policy and the cost
for the unconstrained control problem (13).

Theorem 10. Let 𝜋(⋅) be given by (46). If Assumption 4 holds,
then 𝜋(⋅) is the unique optimal control policy for problem (13)
and

𝐽
∗
= 𝑝 (0) (𝑋 (0) − ℎ (0))

2
+ 𝐸∫

𝑇

0

𝑝 (𝑡)

⋅ (
𝛿2 (𝑡) − 𝜂

2
(𝑡)


2

+
𝛿0 (𝑡) − 𝜂

0
(𝑡)


2

) 𝑑𝑡

(60)

is the optimal cost.
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Proof. From Itô’s formula, (16) and (8) give

𝑑 (𝑋 (𝑡) − ℎ (𝑡)) = [𝑟 (𝑡) (𝑋 (𝑡) − ℎ (𝑡)) + 𝑏 (𝑡) 𝜋 (𝑡)

+ 𝜃 (𝑡)

(𝛿
1
(𝑡) − 𝜂

1
(𝑡)) +

Λ
2
(𝑡)


𝑝 (𝑡)
(𝜂
2
(𝑡) − 𝛿

2
(𝑡))] 𝑑𝑡

+ (𝜎 (𝑡)

𝜋 (𝑡) + 𝛿

1
(𝑡) − 𝜂

1
(𝑡))


𝑑𝑊 (𝑡) + (𝛿
2
(𝑡)

− 𝜂
2
(𝑡))


𝑑𝐵 (𝑡) + (𝛿
0

(𝑡) − 𝜂
0
(𝑡)) 𝑑𝑊

0

(𝑡) ,

𝑑 (𝑋 (𝑡) − ℎ (𝑡))
2
= 2 (𝑋 (𝑡) − ℎ (𝑡))

⋅ [𝑟 (𝑡) (𝑋 (𝑡) − ℎ (𝑡))

+ 𝑏 (𝑡) 𝜋 (𝑡) + 𝜃 (𝑡)

(𝛿
1
(𝑡) − 𝜂

1
(𝑡))

+
Λ
2
(𝑡)


𝑝 (𝑡)
(𝜂
2
(𝑡) − 𝛿

2
(𝑡))] 𝑑𝑡 + 2 (𝑋 (𝑡) − ℎ (𝑡))

⋅ (𝜎 (𝑡)

𝜋 (𝑡) + 𝛿

1
(𝑡)

− 𝜂
1
(𝑡))


𝑑𝑊 (𝑡) + 2 (𝑋 (𝑡) − ℎ (𝑡)) (𝛿
2
(𝑡) − 𝜂

2
(𝑡))


𝑑𝐵 (𝑡)

+ 2 (𝑋 (𝑡) − ℎ (𝑡)) (𝛿
0
(𝑡) − 𝜂

0
(𝑡)) 𝑑𝑊

0

(𝑡)

+ (

𝜎 (𝑡)

𝜋 (𝑡) + 𝛿

1
(𝑡) − 𝜂

1
(𝑡)


2

+
𝛿2 (𝑡) − 𝜂

2
(𝑡)


2

+ (𝛿
0
(𝑡) − 𝜂

0
(𝑡))
2

) 𝑑𝑡.

(61)

By using Itô’s formula again, we have

𝑑𝑝 (𝑡) (𝑋 (𝑡) − ℎ (𝑡))
2
= 𝑝 (𝑡) {𝜋 (𝑡)


𝜎 (𝑡) 𝜎 (𝑡)


𝜋 (𝑡)

+ 2𝜋 (𝑡)

[𝜎 (𝑡) (𝛿

1
(𝑡) − 𝜂

1
(𝑡))

+ (𝑋 (𝑡) − ℎ (𝑡)) (𝑏 (𝑡)

+
𝜎 (𝑡) Λ

1
(𝑡)

𝑝 (𝑡)
)]}𝑑𝑡

+ 𝑝 (𝑡) [
𝛿0 (𝑡) − 𝜂

0
(𝑡)


2

+
𝛿2 (𝑡) − 𝜂

2
(𝑡)


2

+



𝛿
1
(𝑡) − 𝜂

1
(𝑡)

+ (𝑋 (𝑡) − ℎ (𝑡)) (𝜃 (𝑡) +
Λ
1
(𝑡)

𝑝 (𝑡)
)



2

]𝑑𝑡 + (𝑋 (𝑡)

− ℎ (𝑡)) [(𝑋 (𝑡) − ℎ (𝑡)) Λ
1
(𝑡) + 2𝑝 (𝑡) (𝜎 (𝑡)


𝜋 (𝑡)

+ 𝛿
1
(𝑡) − 𝜂

1
(𝑡))]


𝑑𝑊 (𝑡) + (𝑋 (𝑡) − ℎ (𝑡)) [(𝑋 (𝑡)

− ℎ (𝑡)) Λ
2
(𝑡) + 2𝑝 (𝑡) (𝛿

2
(𝑡) − 𝜂

2
(𝑡))]


𝑑𝐵 (𝑡)

+ 2𝑝 (𝑡) (𝑋 (𝑡) − ℎ (𝑡)) (𝛿
0
(𝑡) − 𝜂

0
(𝑡)) 𝑑𝑊

0

(𝑡) ,

(62)

or

𝑑𝑝 (𝑡) (𝑋 (𝑡) − ℎ (𝑡))
2
= 𝑝 (𝑡)

⋅ [(𝜋 (𝑡) − 𝜋 (𝑡))

𝜎 (𝑡) 𝜎 (𝑡)



(𝜋 (𝑡) − 𝜋 (𝑡))] 𝑑𝑡

+ 𝑝 (𝑡) [
𝛿2 (𝑡) − 𝜂

2
(𝑡)


2

+
𝛿0 (𝑡) − 𝜂

0
(𝑡)


2

] 𝑑𝑡

+ (𝑋 (𝑡) − ℎ (𝑡)) [(𝑋 (𝑡) − ℎ (𝑡)) Λ
1
(𝑡)

+ 2𝑝 (𝑡) (𝜎 (𝑡)

𝜋 (𝑡) + 𝛿

1
(𝑡) − 𝜂

1
(𝑡))]


𝑑𝑊 (𝑡)

+ (𝑋 (𝑡) − ℎ (𝑡)) [(𝑋 (𝑡) − ℎ (𝑡)) Λ
2
(𝑡)

+ 2𝑝 (𝑡) (𝛿
2
(𝑡) − 𝜂

2
(𝑡))]


𝑑𝐵 (𝑡) + 2𝑝 (𝑡) (𝑋 (𝑡)

− ℎ (𝑡)) (𝛿
0
(𝑡) − 𝜂

0
(𝑡)) 𝑑𝑊

0

(𝑡) ,

(63)

where 𝜋(𝑡) is given by (46).
Then, by integrating from [0, 𝑇] and taking expectations,

we have

𝐸𝑝 (𝑇) (𝑋 (𝑇) − ℎ (𝑇))
2
= 𝑝 (0) (𝑋 (0) − ℎ (0))

2

+ 𝐸∫

𝑇

0

𝑝 (𝑡) [(𝜋 (𝑡) − 𝜋 (𝑡))

𝜎 (𝑡) 𝜎 (𝑡)



⋅ (𝜋 (𝑡) − 𝜋 (𝑡))] 𝑑𝑡 + 𝐸∫

𝑇

0

𝑝 (𝑡) (
𝛿2 (𝑡) − 𝜂

2
(𝑡)


2

+
𝛿0 (𝑡) − 𝜂

0
(𝑡)


2

) 𝑑𝑡 + 𝐸∫

𝑇

0

(𝑋 (𝑡) − ℎ (𝑡))

⋅ [(𝑋 (𝑡) − ℎ (𝑡)) Λ
1
(𝑡) + 2𝑝 (𝑡)

⋅ (𝜎 (𝑡)

𝜋 (𝑡) + 𝛿

1
(𝑡) − 𝜂

1
(𝑡))]


𝑑𝑊 (𝑡)

+ 𝐸∫

𝑇

0

(𝑋 (𝑡) − ℎ (𝑡)) [(𝑋 (𝑡) − ℎ (𝑡)) Λ
2
(𝑡)

+ 2𝑝 (𝑡) (𝛿
2
(𝑡) − 𝜂

2
(𝑡))]


𝑑𝐵 (𝑡)

+ 𝐸∫

𝑇

0

2𝑝 (𝑡) (𝑋 (𝑡) − ℎ (𝑡)) (𝛿
0
(𝑡)

− 𝜂
0
(𝑡)) 𝑑𝑊

0

(𝑡) = 𝑝 (0) (𝑋 (0) − ℎ (0))
2

+ 𝐸∫

𝑇

0

𝑝 (𝑡) [(𝜋 (𝑡) − 𝜋 (𝑡))

𝜎 (𝑡) 𝜎 (𝑡)



⋅ (𝜋 (𝑡) − 𝜋 (𝑡))] 𝑑𝑡 + 𝐸∫

𝑇

0

𝑝 (𝑡) (
𝛿2 (𝑡) − 𝜂

2
(𝑡)


2

+
𝛿0 (𝑡) − 𝜂

0
(𝑡)


2

) 𝑑𝑡.

(64)
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Due to the fact that 𝑝(𝑡) > 0 and 𝜎(𝑡)𝜎(𝑡) > 𝜖𝐼
𝑚
, we have

𝐸 [𝑋 (𝑇) − 𝑙]
2
= 𝐸𝑃 (𝑇) (𝑋 (𝑇) − ℎ (𝑇))

2
≥ 𝑝 (0)

⋅ (𝑋 (0) − ℎ (0))
2
+ 𝐸∫

𝑇

0

𝑝 (𝑡)

⋅ (
𝛿2 (𝑡) − 𝜂

2
(𝑡)


2

+
𝛿0 (𝑡) − 𝜂

0
(𝑡)


2

) 𝑑𝑡,

(65)

where the equality holds only when 𝜋(⋅) = 𝜋(⋅). This com-
pletes the proof.

Remark 11. If there is no liability, that is, 𝑢(⋅) = V(⋅) = 0 and
F
𝑡
= F̂
𝑡
, then 𝛿(⋅) = 0, and (16) boils down to

𝑑ℎ (𝑡) = (𝑟 (𝑡) ℎ (𝑡) + 𝜃 (𝑡)

𝜂
1
(𝑡) −

Λ
2
(𝑡)


𝑝 (𝑡)
𝜂
2
(𝑡)) 𝑑𝑡

+ 𝜂
1
(𝑡)

𝑑𝑊 (𝑡) + 𝜂

2
(𝑡)

𝑑𝐵 (𝑡)

+ 𝜂
0
(𝑡) 𝑑𝑊

0

(𝑡) ,

ℎ (𝑇) = 𝑙,

(66)

and the unique optimal control policy for problem (13) is

𝜋 (𝑡) = − (𝜎 (𝑡)
−1
)


⋅ [−𝜂
1
(𝑡) + (𝑋 (𝑡) − ℎ (𝑡)) (𝜃 (𝑡) +

Λ
1
(𝑡)

𝑝 (𝑡)
)] ,

(67)

which is the same as (12) in Lim [22].

4. The Mean-Variance Asset-Liability
Management Problem

An admissible portfolio 𝜋 is said to be a feasible portfolio for
(12) if it satisfies the constraint in (12). Then, problem (12) is
said to be feasible if it has a feasible portfolio. Following the
methodology of Lim [22], we get a necessary and sufficient
condition for feasibility of problem (12) as follows.

Proposition 12. Let (Ψ(⋅), 𝜉(⋅)) be a unique solution of the
following BSDE:

𝑑Ψ (𝑡) = −𝑟 (𝑡) Ψ (𝑡) 𝑑𝑡 + 𝜉
1
(𝑡)

𝑑𝑊 (𝑡)

+ 𝜉
2
(𝑡)

𝑑𝐵 (𝑡) ,

Ψ (𝑇) = 1.

(68)

If Assumption 4 holds, then mean-variance problem (12) is
feasible for any 𝑐 ∈ R if and only if

𝐸∫

𝑇

0


Ψ (𝑡) 𝑏 (𝑡)


+ 𝜎 (𝑡) 𝜉

1
(𝑡)


2

𝑑𝑡 > 0. (69)

Proof. Let𝜋(⋅) be admissible and �̃�(⋅) = 𝜆𝜋(⋅) for some 𝜆 ∈ R.
Assume that𝑋(⋅) is the solution of (8) corresponding to �̃�(⋅).
It follows from Itô’s formula that𝑋(𝑡) = 𝑍

1
(𝑡)+𝜆𝑍

2
(𝑡), where

𝑑𝑍
1
(𝑡) = (𝑟 (𝑡) 𝑍

1
(𝑡) − 𝑢 (𝑡)) 𝑑𝑡 + 𝛿

1
(𝑡)

𝑑𝑊 (𝑡)

+ 𝛿
2
(𝑡)

𝑑𝐵 (𝑡) + 𝛿

0

(𝑡) 𝑑𝑊
0

(𝑡) ,

𝑍
1
(0) = 𝑋

0
,

𝑑𝑍
2
(𝑡) = (𝑟 (𝑡) 𝑍

2
(𝑡) + 𝑏 (𝑡) 𝜋 (𝑡)) 𝑑𝑡

+ 𝜋 (𝑡)

𝜎 (𝑡) 𝑑𝑊 (𝑡) ,

𝑍
2
(0) = 0.

(70)

Then we have 𝐸𝑋(𝑇) = 𝐸𝑍
1
(𝑇) + 𝜆𝐸𝑍

2
(𝑇), where

𝐸𝑍
2
(𝑇) = 𝐸∫

𝑇

0

(Ψ (𝑡) 𝑏 (𝑡)

+ 𝜎 (𝑡) 𝜉

1
(𝑡))


𝜋 (𝑡) 𝑑𝑡, (71)

which has been shown in Yong and Zhou [27] (see pp. 353 of
[27]). If (69) holds, then we can choose 𝜋(𝑡) = Ψ(𝑡)𝑏(𝑡)


+

𝜎(𝑡)𝜉
1
(𝑡) such that

𝐸𝑍
2
(𝑇) = 𝐸∫

𝑇

0


Ψ (𝑡) 𝑏 (𝑡)


+ 𝜎 (𝑡) 𝜉

1
(𝑡)


2

𝑑𝑡 > 0. (72)

Hence, for any 𝑐 ∈ R, 𝜆
𝑐
= (𝐸𝑍

2
(𝑇))
−1
(𝑐 − 𝐸𝑍

1
(𝑇)) is well

defined and

𝐸𝑋 (𝑇) = 𝐸𝑍
1
(𝑇) + 𝜆

𝑐
𝐸𝑍
2
(𝑇) = 𝑐. (73)

This implies that (12) is feasible for any 𝑐 ∈ R.
Conversely, if (12) is feasible for any 𝑐 ∈ R, then, for any

𝑐 ∈ R, there exists an admissible portfolio 𝜋(⋅) such that
𝐸𝑋(𝑇) = 𝐸𝑍

1
(𝑇) +𝐸𝑍

2
(𝑇) = 𝑐. Since 𝐸𝑍

1
(𝑇) is independent

of𝜋(⋅), we conclude that𝐸𝑍
2
(𝑇) ̸= 0 for some𝜋(⋅). From (71),

we know that (69) is true.
This completes the proof.

Remark 13. The necessary and sufficient condition (69) is
the same as that in [22] in which Lim studied the mean-
variance portfolio problem without liability.This implies that
the liability does not affect the feasibility of mean-variance
problem.

Remark 14. As claimed in [22], necessary and sufficient
condition (69) is very mild.
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In the case of mean-variance asset-liability management
problem, we can replace the unique solution (ℎ(⋅), 𝜂(⋅)) of
BSDE (16) by

ℎ (𝑡) = ℎ (𝑇) 𝑔
1
(𝑡) + 𝑔

2
(𝑡) ,

𝜂
1
(𝑡) = ℎ (𝑇) 𝑞

1
(𝑡) + 𝑞

1
(𝑡) ,

𝜂
2
(𝑡) = ℎ (𝑇) 𝑞

2
(𝑡) + 𝑞

2
(𝑡) ,

𝜂
0
(𝑡) = 𝑞

0
(𝑡) ,

(74)

where (𝑔
1
(⋅), 𝑞(⋅)) and (𝑔

2
(⋅), 𝑞(⋅)) are the unique solutions of

the following BSDEs:

𝑑𝑔
1
(𝑡) = (𝑟 (𝑡) 𝑔

1
(𝑡) + 𝜃 (𝑡)


𝑞
1
(𝑡) −

Λ
2
(𝑡)


𝑝 (𝑡)
𝑞
2
(𝑡)) 𝑑𝑡

+ 𝑞
1
(𝑡)

𝑑𝑊 (𝑡) + 𝑞

2
(𝑡)

𝑑𝐵 (𝑡) ,

𝑔
1
(𝑇) = 1,

(75)

𝑑𝑔
2
(𝑡) = (𝑟 (𝑡) 𝑔

2
(𝑡) + 𝜃 (𝑡)


𝑞
1
(𝑡) −

Λ
2
(𝑡)


𝑝 (𝑡)
𝑞
2
(𝑡)

− 𝑢 (𝑡) − 𝜃 (𝑡)

𝛿
1
(𝑡) + 𝛿

2
(𝑡)
 Λ 2 (𝑡)

𝑝 (𝑡)
) 𝑑𝑡 + 𝑞

1
(𝑡)

𝑑𝑊 (𝑡)

+ 𝑞
2
(𝑡)

𝑑𝐵 (𝑡) + 𝑞

0
(𝑡) 𝑑𝑊

0

(𝑡) ,

𝑔
2
(𝑇) = 0,

(76)

respectively.
By employing the results in Section 3 and Lagrange

multiplier technique (or duality theory), we give our main
result as follows.

Theorem 15. If Assumption 4 holds and (69) is satisfied,
then mean-variance asset-liability management problem (12)
is feasible for every 𝑐 ∈ R, and the inequality

1 −𝑀 − 𝑝 (0) 𝑔
2

1
(0) > 0 (77)

holds and the following constants,

𝑀 := 𝐸∫

𝑇

0

𝑝 (𝑡)
𝑞2 (𝑡)



2

𝑑𝑡,

𝑘
1
:= 𝐸∫

𝑇

0

𝑝 (𝑡) 𝑞
2
(𝑡)

(𝛿
2
(𝑡) − 𝑞

2
(𝑡)) 𝑑𝑡,

𝑘 :=
−𝑐 + 𝑝 (0) 𝑔

1
(0) (𝑋

0
− 𝑔
2
(0)) + 𝑘

1

1 −𝑀 − 𝑝 (0) 𝑔
2

1
(0)

,

𝐷 := 𝐸∫

𝑇

0

𝑝 (𝑡)

⋅ [
𝛿2 (𝑡) − 𝑞

2
(𝑡)


2

+ (𝛿
0
(𝑡) − 𝑞

0
(𝑡))
2

] 𝑑𝑡,

(78)

are well defined. The efficient frontier of problem (12) is given
by

Var𝑋∗ (𝑇) =
𝑀 + 𝑝 (0) 𝑔

2

1
(0)

1 −𝑀 − 𝑝 (0) 𝑔
2

1
(0)

[𝑐

−
𝑘
1
+ 𝑝 (0) 𝑔

1
(0) (𝑋

0
− 𝑔
2
(0))

𝑀 + 𝑝 (0) 𝑔
2

1
(0)

]

2

+ 𝐷

+ 𝑝 (0) (𝑋
0
− 𝑔
2
(0))
2

−
[𝑘
1
+ 𝑝 (0) 𝑔

1
(0) (𝑋

0
− 𝑔
2
(0))]
2

𝑀+ 𝑝 (0) 𝑔
2

1
(0)

,

(79)

where 𝑐 = 𝐸𝑋
∗
(𝑇) and the optimal portfolio associated with

the expected net terminal wealth 𝑐 is given as follows:

𝜋
∗

(𝑡) = − (𝜎 (𝑡)
−1
)


[𝛿
1
(𝑡) − 𝑞

1
(𝑡) + 𝑘𝑞

1
(𝑡)

+ (𝑋 (𝑡) − 𝑔
2
(𝑡) + 𝑘𝑔

1
(𝑡)) (𝜃 (𝑡) +

Λ
1
(𝑡)

𝑝 (𝑡)
)] .

(80)

Proof. It is easy to verify that problem (12) has a convex
constrained set and a convex cost which is bounded below.
These imply that (12) is a linearly constrained convex prob-
lem. Because problem (12) is feasible, it follows fromLagrange
multiplier technique (see [28] for more details) that

𝐽
∗
= max
𝜆∈R

inf
(𝑋(⋅),𝜋(⋅)) is admissible

𝐽 (𝜋 (⋅) , 𝜆) < +∞, (81)

where

𝐽 (𝜋 (⋅) , 𝜆) := 𝐸 (𝑋 (𝑇) − 𝑐)
2
+ 2𝜆 [𝐸𝑋 (𝑇) − 𝑐]

= 𝐸 (𝑋 (𝑇) − 𝑐 + 𝜆)
2
− 𝜆
2
.

(82)

For each fixed 𝜆, the unconstrained problem

𝐽 (𝜆) := inf
(𝑋(⋅),𝜋(⋅)) is admissible

𝐽 (𝜋 (⋅) , 𝜆) (83)

has the same form as (13). Then, it follows from Theorem 10
that

𝐽 (𝜆) = −𝜆
2
+ 𝑝 (0) (𝑋

0
− ℎ (0))

2

+ 𝐸∫

𝑇

0

𝑝 (𝑡)

⋅ [
𝛿2 (𝑡) − 𝜂

2
(𝑡)


2

+ (𝛿
0
(𝑡) − 𝜂

0
(𝑡))
2

] 𝑑𝑡

= 𝐸∫

𝑇

0

𝑝 (𝑡) [
𝛿2 (𝑡) − (𝑐 − 𝜆) 𝑞

2
(𝑡) − 𝑞

2
(𝑡)


2

+ (𝛿
0
(𝑡) − 𝑞

0
(𝑡))
2

] 𝑑𝑡 − 𝜆
2
+ 𝑝 (0) [𝑋

0
− (𝑐 − 𝜆)

⋅ 𝑔
1
(0) − 𝑔

2
(0)]
2

,

(84)
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and the optimal investment strategy is

𝜋 (𝑡) = − (𝜎 (𝑡)
−1
)


[𝛿
1
(𝑡) − 𝜂

1
(𝑡)

+ (𝑋 (𝑡) − ℎ (𝑡)) (𝜃 (𝑡) +
Λ
1
(𝑡)

𝑝 (𝑡)
)] = − (𝜎 (𝑡)

−1
)


⋅ [𝛿
1
(𝑡) − (𝑐 − 𝜆) 𝑞

1
(𝑡)

− 𝑞
1
(𝑡)] − (𝜎 (𝑡)

−1
)


[𝑋 (𝑡) − (𝑐 − 𝜆) 𝑔
1
(𝑡)

− 𝑔
2
(𝑡)] (𝜃 (𝑡) +

Λ
1
(𝑡)

𝑝 (𝑡)
) .

(85)

Rewriting 𝐽(𝜆), we have

𝐽 (𝜆) = (𝜆 − 𝑐)
2
(−1 + 𝑝 (0) 𝑔

2

1
(0)

+ 𝐸∫

𝑇

0

𝑝 (𝑡)
𝑞2 (𝑡)



2

𝑑𝑡) + 2 (𝜆 − 𝑐) [−𝑐

+ 𝑔
1
(0) 𝑝 (0) (𝑋

0
− 𝑔
2
(0))

+ 𝐸∫

𝑇

0

𝑝 (𝑡) 𝑞
2
(𝑡)

(𝛿
2
(𝑡) − 𝑞

2
(𝑡)) 𝑑𝑡] − 𝑐

2

+ 𝑝 (0) (𝑋
0
− 𝑔
2
(0))
2

+ 𝐷 = (𝜆 − 𝑐)
2
(−1

+ 𝑝 (0) 𝑔
2

1
(0) + 𝑀) + 2 (𝜆 − 𝑐) [−𝑐

+ 𝑝 (0) 𝑔
1
(0) (𝑋

0
− 𝑔
2
(0)) + 𝑘

1
] − 𝑐
2
+ 𝑝 (0) (𝑋

0

− 𝑔
2
(0))
2

+ 𝐷.

(86)

Since 𝐽(𝜆) is quadratic in 𝜆 and 𝐽∗ is finite, we have

1 −𝑀 − 𝑝 (0) 𝑔
2

1
(0) > 0. (87)

In fact, if 1 − 𝑀 − 𝑝(0)𝑔
2

1
(0) = 0, then 𝐽

∗ can only be finite
when −𝑐+𝑔

1
(0)𝑝(0)(𝑋

0
−𝑔
2
(0))+𝑘

1
= 0 for any 𝑐, which is a

contradiction. So it must be the case that 1−𝑀−𝑝(0)𝑔
2

1
(0) >

0.
Rewriting (86), we have

𝐽 (𝜆) = − (1 −𝑀 − 𝑝 (0) 𝑔
2

1
(0)) (𝜆 − 𝑐 − 𝑘)

2

+ (1 −𝑀 − 𝑝 (0) 𝑔
2

1
(0)) 𝑘

2
− 𝑐
2

+ 𝑝 (0) (𝑋
0
− 𝑔
2
(0))
2

+ 𝐷.

(88)

Then we have the optimal 𝜆∗ = 𝑐 + 𝑘 for (81). Taking 𝜆∗ in
(88) and (85),

𝐽
∗
= (1 −𝑀 − 𝑝 (0) 𝑔

2

1
(0)) 𝑘

2
− 𝑐
2
+ 𝑝 (0) (𝑋

0

− 𝑔
2
(0))
2

+ 𝐷

=
[−𝑐 + 𝑘

1
+ 𝑝 (0) 𝑔

1
(0) (𝑋

0
− 𝑔
2
(0))]
2

1 −𝑀 − 𝑝 (0) 𝑔
2

1
(0)

− 𝑐
2

+ 𝑝 (0) (𝑋
0
− 𝑔
2
(0))
2

+ 𝐷

=
𝑀 + 𝑝 (0) 𝑔

2

1
(0)

1 −𝑀 − 𝑝 (0) 𝑔
2

1
(0)

[𝑐

−
𝑘
1
+ 𝑝 (0) 𝑔

1
(0) (𝑋

0
− 𝑔
2
(0))

𝑀 + 𝑝 (0) 𝑔
2

1
(0)

]

2

+ 𝐷 + 𝑝 (0)

⋅ (𝑋
0
− 𝑔
2
(0))
2

−
[𝑘
1
+ 𝑝 (0) 𝑔

1
(0) (𝑋

0
− 𝑔
2
(0))]
2

𝑀+ 𝑝 (0) 𝑔
2

1
(0)

,

𝜋
∗

(𝑡) = − (𝜎 (𝑡)
−1
)


[𝛿
1
(𝑡) + 𝑘𝑞

1
(𝑡) − 𝑞

1
(𝑡)

+ (𝑋 (𝑡) + 𝑘𝑔
1
(𝑡) − 𝑔

2
(𝑡)) (𝜃 (𝑡) +

Λ
1
(𝑡)

𝑝 (𝑡)
)] .

(89)

This completes the proof.

We claim that𝐷+𝑝(0)(𝑋
0
−𝑔
2
(0))
2
−[𝑘
1
+𝑝(0)𝑔

1
(0)(𝑋

0
−

𝑔
2
(0))]
2
/(𝑀 + 𝑝(0)𝑔

2

1
(0)) ≥ 0. In fact, since

𝑝 (⋅) ∈ L
∞

F (Ω; 𝐶 (0, 𝑇;R)) ,

𝑞
2
(⋅) , 𝑞
2
(⋅) ∈ L

2

F̂
(0, 𝑇;R

𝑑
) ,

𝛿
2
(⋅) ∈ L

∞

F̂
(0, 𝑇;R

𝑑
) ,

(90)

we have √𝑝(⋅)|𝛿
2
(⋅) − 𝑞

2
(⋅)|, √𝑝(⋅)|𝑞

2
(⋅)| ∈ L2

F̂
(0, 𝑇;R).

Further, because L2
F̂
(0, 𝑇;R) is a Hilbert space, it follows

from Cauchy-Schwarz’s inequality that

[𝑘
1
+ 𝑝 (0) 𝑔

1
(0) (𝑋

0
− 𝑔
2
(0))]
2

= [𝐸∫

𝑇

0

𝑝 (𝑡) 𝑞
2
(𝑡)


⋅ (𝛿
2
(𝑡) − 𝑞

2
(𝑡)) 𝑑𝑡]

2

+ [𝑝 (0) 𝑔
1
(0) (𝑋

0

− 𝑔
2
(0))]
2

+ 2𝑝 (0) 𝑔
1
(0) (𝑋

0
− 𝑔
2
(0)) 𝐸∫

𝑇

0

𝑝 (𝑡)

⋅ 𝑞
2
(𝑡)

(𝛿
2
(𝑡) − 𝑞

2
(𝑡)) 𝑑𝑡

≤ [𝐸∫

𝑇

0

(√𝑝 (𝑡)
𝛿2 (𝑡) − 𝑞

2
(𝑡)
)

⋅ (√𝑝 (𝑡)
𝑞2 (𝑡)

) 𝑑𝑡]

2

+ [𝑝 (0) 𝑔
1
(0) (𝑋

0
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− 𝑔
2
(0))]
2

+ 𝐸∫

𝑇

0

2 (√𝑝 (0) 𝑝 (𝑡)
𝑔1 (0)



⋅
𝛿2 (𝑡) − 𝑞

2
(𝑡)
) (

√𝑝 (0) 𝑝 (𝑡)
𝑋0 − 𝑔

2
(0)



⋅
𝑞2 (𝑡)

) 𝑑𝑡 ≤ 𝐸∫

𝑇

0

𝑝 (𝑡)
𝛿2 (𝑡) − 𝑞

2
(𝑡)


2

𝑑𝑡

⋅ 𝐸∫

𝑇

0

𝑝 (𝑡)
𝑞2 (𝑡)



2

𝑑𝑡 + [𝑝 (0) 𝑔
1
(0) (𝑋

0

− 𝑔
2
(0))]
2

+ 𝐸∫

𝑇

0

𝑝 (0) 𝑝 (𝑡)
𝑔1 (0)



2 𝛿2 (𝑡)

− 𝑞
2
(𝑡)


2

𝑑𝑡 + 𝐸∫

𝑇

0

𝑝 (0) 𝑝 (𝑡)
𝑋0 − 𝑔

2
(0)



2

⋅
𝑞2 (𝑡)



2

𝑑𝑡,

(91)

and so

(𝑀 + 𝑝 (0) 𝑔
2

1
(0)){𝐷 + 𝑝 (0) (𝑋

0
− 𝑔
2
(0))
2

−
[𝑘
1
+ 𝑝 (0) 𝑔

1
(0) (𝑋

0
− 𝑔
2
(0))]
2

𝑀+ 𝑝 (0) 𝑔
2

1
(0)

} = 𝑝 (0)

⋅ 𝑔
2

1
(0) 𝐸∫

𝑇

0

𝑝 (𝑡)

⋅ [
𝛿2 (𝑡) − 𝑞

2
(𝑡)


2

+ (𝛿
0
(𝑡) − 𝑞

0
(𝑡))
2

] 𝑑𝑡

+ [𝑝 (0) 𝑔
1
(0) (𝑋

0
− 𝑔
2
(0))]
2

+ 𝑝 (0) (𝑋
0

− 𝑔
2
(0))
2

𝐸∫

𝑇

0

𝑝 (𝑡)
𝑞2 (𝑡)



2

𝑑𝑡 + 𝐸∫

𝑇

0

𝑝 (𝑡)

⋅
𝛿2 (𝑡) − 𝑞

2
(𝑡)


2

𝑑𝑡𝐸∫

𝑇

0

𝑝 (𝑡)
𝑞2 (𝑡)



2

𝑑𝑡

+ 𝐸∫

𝑇

0

𝑝 (𝑡) (𝛿
0
(𝑡) − 𝑞

0
(𝑡))
2

𝑑𝑡𝐸∫

𝑇

0

𝑝 (𝑡)

⋅
𝑞2 (𝑡)



2

𝑑𝑡 − [𝑘
1
+ 𝑝 (0) 𝑔

1
(0) (𝑋

0
− 𝑔
2
(0))]
2

≥ 𝑝 (0) 𝑔
2

1
(0) 𝐸∫

𝑇

0

𝑝 (𝑡) (𝛿
0
(𝑡) − 𝑞

0
(𝑡))
2

𝑑𝑡

+ 𝐸∫

𝑇

0

𝑝 (𝑡) (𝛿
0
(𝑡) − 𝑞

0
(𝑡))
2

𝑑𝑡𝐸∫

𝑇

0

𝑝 (𝑡)

⋅
𝑞2 (𝑡)



2

𝑑𝑡 ≥ 0.

(92)

Since𝑀+ 𝑝(0)𝑔
2

1
(0) > 0, we have

𝐷 + 𝑝 (0) (𝑋
0
− 𝑔
2
(0))
2

−
[𝑘
1
+ 𝑝 (0) 𝑔

1
(0) (𝑋

0
− 𝑔
2
(0))]
2

𝑀+ 𝑝 (0) 𝑔
2

1
(0)

≥ 0.

(93)

Remark 16. Theorem 15 shows that efficient frontier (79) is
a parabola. Further, for a given mean target, the risk that
the investor has to bear is given by (79). In particular, if the
investor wants to take the global minimal risk, he/she can
obtain the expected terminal wealth (𝑘

1
+ 𝑝(0)𝑔

1
(0)(𝑋

0
−

𝑔
2
(0)))/(𝑀 + 𝑝(0)𝑔

2

1
(0)) by choosing the optimal strategy.

Remark 17. Theorem 15 also shows that the global minimal
risk is

𝐷 + 𝑝 (0) (𝑋
0
− 𝑔
2
(0))
2

−
[𝑘
1
+ 𝑝 (0) 𝑔

1
(0) (𝑋

0
− 𝑔
2
(0))]
2

𝑀+ 𝑝 (0) 𝑔
2

1
(0)

(94)

which is nonnegative. This implies that when the market
parameters are random and the financial market is incom-
plete, the liability can not be completely hedged.

Remark 18. Now we consider a financial market without
liability; that is, 𝑢(⋅) = V(⋅) = 0. Then, we have that 𝛿(⋅) = 0,
(0, 0) is the unique solution of BSDE (76) and the constants
in Theorem 15 are given by

𝑀 = 𝐸∫

𝑇

0

𝑝 (𝑡)
𝑞2 (𝑡)



2

𝑑𝑡,

𝑘
1
= 0,

𝑘 =
−𝑐 + 𝑝 (0) 𝑔

1
(0)𝑋
0

1 −𝑀 − 𝑝 (0) 𝑔
2

1
(0)

,

𝐷 = 0.

(95)

It follows from Theorem 15 that the efficient frontier in this
case is given by

Var𝑋∗ (𝑇)

=
𝑀 + 𝑝 (0) 𝑔

2

1
(0)

1 −𝑀 − 𝑝 (0) 𝑔
2

1
(0)

(𝑐 −
𝑝 (0) 𝑔

1
(0)𝑋
0

𝑀+ 𝑝 (0) 𝑔
2

1
(0)

)

2

+
𝑀𝑝 (0)𝑋

2

0

𝑀+ 𝑝 (0) 𝑔
2

1
(0)

,

(96)

which is the same as that of Lim [22]. This implies that Lim’s
result is a special case of our results. Therefore, our results
generalize and improve Lim’s results.

5. Conclusions

This paper studies the mean-variance asset-liability manage-
ment problemwith randommarket parameters. Sincemarket
parameters observed in the real world are always uncertain,
it is more realistic to consider how to manage both assets
and liabilities in a market with random market parameters.
By using the theories of stochastic LQ control and BSDE,
we derive both optimal investment strategies and the mean-
variance efficient frontier. Comparedwith the existing results,
the efficient frontier is still a parabola and liability does not
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affect the feasibility of the mean-variance portfolio selection
problem in a complete market with random parameters.
However, the liability can not be fully hedged in an incom-
plete market with random parameters.

Future studies can go one step further by considering
this problem in a more complex market, whose prices are
governed by SDEs with Lévy noise or Markovian switching.
By using the methods and techniques proposed by Zhu
[29, 30], it would be more interesting to discuss the optimal
investment strategies and the efficient frontiers in the market
mentioned above.
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