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The pricing of the two-asset double barrier option is modeled as an initial-boundary value problem of the two-dimensional Black-
Scholes partial differential equation. We use the hybrid finite different method to solve the problem. The hybrid method is a
combination of the Laplace transform and a finite differencemethod. It ismore efficient than a traditional finite differencemethod to
obtain a solutionwithout a step-by-step process.Themethod is implemented on a computer. Twonumerical examples are calculated
to verify the performance of the hybrid method. In our numerical examples, the convergence rate of the method is approximately
two. We conclude that the method is efficient for pricing two-asset barrier options.

1. Introduction

Pricing financial derivatives is important in financial engi-
neering. Following Black-Scholes arguments [1], pricing a
two-asset double barrier option is an initial-boundary value
problem of the Black-Scholes partial differential equation
(PDE). The Black-Scholes PDE is linear, nonhomogeneous,
and parabolic. In this study, we use the hybrid finite difference
method to calculate the price of two-asset double barrier
option. In order to solve the homogeneous heat equation [2–
4], the method we introduced is first applied in pricing the
two-asset double barrier option.

In the literature on this topic, most studies have discussed
a one-asset barrier option. However, the probability method
is popularly applied in the pricing barrier option; for example,
the methods discussed in [5–7]. Some methods have solved
the one-dimensional Black-Scholes PDE directly, for exam-
ple, in [8]. Others have used various simulation methods
to calculate the price, for example, in [9]. Pricing a two-
asset double barrier option will consume much more com-
putational time as compared to a one-dimensional pricing
problem. PDE methods are more efficient than probability
methods or simulations. Therefore, PDE methods prevail

for two-dimensional problems. There are some publication
reports [10–12] that have discussed the two-dimensional
problem using PDE methods. Compared to the traditional
finite difference method that solves the PDE in a step by step
manner, the hybrid finite difference method solved the two-
dimensional heat equation efficiently [13].

In this study, we introduce the hybrid finite difference
method to price the two-asset double barrier option. The
outline of this study is arranged as follows.Themathematical
problem for two-asset double barrier option is detailed in
Section 2. The hybrid method is introduced in Section 3.
Section 4 discusses the accuracy of the hybridmethod pricing
two-asset continuous barrier options. In Section 5, we take a
classic numerical example to price the two-asset double bar-
rier option with different immediate rebates. Finally, we draw
some conclusions in the last section.

2. Mathematical Problem for Two-Asset
Double Barrier Option

Two-asset double barrier options are path-dependent deriva-
tives. They are combinations of rainbow options and double
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barrier options. When one of the underlying asset prices
touches its upper barrier or lower barrier before expiration,
the barrier option will be knock-out. At the same time, the
option holder will receive different amounts of immediate
rebates. On the other hand, if the underlying asset prices
do not touch any barrier, the barrier option will live until
maturity and can be executed by their exercise prices.

Under Black-Scholes environments [1], two underlying
asset prices follow geometric Brownian motions. The option
price can be a function of 𝑥, 𝑦, and time to maturity 𝜏. Let
the price be𝐶(𝑥, 𝑦, 𝜏). The function𝐶 has to fulfill the Black-
Scholes equation [14]. The 2D Black-Scholes PDE is
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where 𝑥 and 𝑦 are two asset prices. 𝜎
𝑥
and 𝜎

𝑦
represent the

volatilities of 𝑥 and 𝑦, respectively. 𝑟 is the risk-free rate. 𝜌 is
the correlation of two underlying asset prices.

In this study, we set 𝐵𝑢
𝑥
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where𝑓𝑢
𝑥
(𝜏),𝑓𝑙
𝑥
(𝜏),𝑓𝑢
𝑦
(𝜏), and𝑓𝑙

𝑦
(𝜏) are the immediate rebate

functions with respect to time to maturity 𝜏. Equations (2)
are the option’s boundary payoffs when the underlying asset
prices touch the boundary constraints at time to maturity 𝜏.

On the other hand, if the underlying asset prices 𝑥 and 𝑦
never touch their barriers, the option will not be knock-out
until maturity and can be executed by their exercise prices.
Then, the option payoff at the maturity is the initial condition
of the PDE (1),

𝐶 (𝑥, 𝑦, 0) = max {𝑥 − 𝑘
𝑥
, 𝑦 − 𝑘

𝑦
, 0} , (3)

where 𝑘
𝑥
and 𝑘
𝑦
are the exercise prices with respect to 𝑥 and

𝑦, respectively.

The PDE (1), boundary conditions (2) and initial condi-
tion (3) compose a well-posed boundary value problem.

3. The Hybrid Method

In this section, we use the hybrid method to calculate the
solutions of the two-asset double barrier option. The hybrid
method is a combination of the Laplace transform and a finite
difference method. It is more efficient than a traditional finite
difference method to obtain a solution without a step-by-
step process since the application of the Laplace transform
is used to remove time-dependent terms in the PDE and
boundary conditions.We then use the numerical inversion of
the Laplace transform to obtain the option price.The Laplace
transform is defined as

𝐶 (𝑥, 𝑦, 𝑝) = ∫

∞

0

𝑒
−𝑝𝜏

𝐶 (𝑥, 𝑦, 𝜏) d𝜏. (4)

After using Laplace transform, the time domain will
be transformed to the 𝑝-domain. The derivative of 𝐶 with
respect to 𝜏, (𝜕/𝜕𝜏)𝐶, is transformed to 𝑝𝐶 − 𝐶(𝑥, 𝑦, 0).
Therefore, the Black-Scholes PDE (1) becomes
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and the boundary conditions (2) are rewritten as follows:
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where the functions ̃
𝑓
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𝑥
(𝑝), ̃
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elliptic-type partial differential equation with two variables.
It should be noted that the original initial data 𝐶(𝑥, 𝑦, 0)

becomes a part of (5). Equation (5) and boundary conditions
(6) compose a well-posed boundary value problem. We
employ a finite differencemethod to solve the boundary value
problem.

When we set the increments of 𝑥 and 𝑦 as Δ𝑥 and Δ𝑦,
respectively, and the numbers for the 𝑥 and 𝑦 nodes as 𝑛
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and the 𝑥 and 𝑦 nodes are presented as

𝑥
𝑖
= 𝐵
𝑙

𝑥
+ 𝑖Δ𝑥, 𝑖 = 0, 1, 2, . . . , 𝑛
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Let 𝐶
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Applying the central difference formula provided by [15]
to (5), we have the differential equation as follows:
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Rearranging the differential equation (10), we obtain
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𝑥
− 1, and 𝑗 = 1, 2, . . . , 𝑛
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Combining the differential equation (11) with the Laplace
transform of the boundary conditions (9), we have the linear
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=

[

[

[

[

[

[

[

[

𝐹
1,1

𝐹
1,2

.

.

.

𝐹
1,𝑛
𝑦
−2

𝐹
1,𝑛
𝑦
−1

]

]

]

]

]

]

]

]

=

[

[

[

[

[

[

[

[

[

[

−𝐶 (𝑥
1
, 𝑦
1
, 0) − 𝑏

1
̃
𝑓
𝑙

𝑥
(𝑝) − 𝑑

1
̃
𝑓
𝑙

𝑦
(𝑝) + 𝑎

1,1
min { ̃𝑓𝑙

𝑥
(𝑝) ,

̃
𝑓
𝑙

𝑦
(𝑝)}

−𝐶 (𝑥
1
, 𝑦
2
, 0) − 𝑏

1
̃
𝑓
𝑙

𝑥
(𝑝)

.

.

.

−𝐶 (𝑥
1
, 𝑦
𝑛
𝑦
−2
, 0) − 𝑏

1
̃
𝑓
𝑙

𝑥
(𝑝)

−𝐶 (𝑥
1
, 𝑦
𝑛
𝑦
−1
, 0) − 𝑏

1
̃
𝑓
𝑙

𝑥
(𝑝) − 𝑓

𝑛
𝑦
−1
̃
𝑓
𝑢

𝑦
(𝑝) + 𝑐

1,𝑛
𝑦
−1
min { ̃𝑓𝑙

𝑥
(𝑝) ,

̃
𝑓
𝑢

𝑦
(𝑝)}

]

]

]

]

]

]

]

]

]

]

,

F
𝑛
𝑥
−1
=

[

[

[

[

[

[

[

[

𝐹
𝑛
𝑥
−1,1

𝐹
𝑛
𝑥
−1,2

.

.

.

𝐹
𝑛
𝑥
−1,𝑛
𝑦
−2

𝐹
𝑛
𝑥
−1,𝑛
𝑦
−1

]

]

]

]

]

]

]

]

=

[

[

[

[

[

[

[

[

[

[

−𝐶 (𝑥
𝑛
𝑥
−1
, 𝑦
1
, 0) − 𝑔

𝑛
𝑥
−1
̃
𝑓
𝑢

𝑥
(𝑝) − 𝑑

1
̃
𝑓
𝑙

𝑦
(𝑝) + 𝑐

𝑛
𝑥
−1,1

min { ̃𝑓𝑢
𝑥
(𝑝) ,

̃
𝑓
𝑙

𝑦
(𝑝)}

−𝐶 (𝑥
𝑛
𝑥
−1
, 𝑦
2
, 0) − 𝑔

𝑛
𝑥
−1
̃
𝑓
𝑢

𝑥
(𝑝)

.

.

.

−𝐶 (𝑥
𝑛
𝑥
−1
, 𝑦
𝑛
𝑦
−2
, 0) − 𝑔

𝑛
𝑥
−1
̃
𝑓
𝑢

𝑥
(𝑝)

−𝐶 (𝑥
𝑛
𝑥
−1
, 𝑦
𝑛
𝑦
−1
, 0) − 𝑔

𝑛
𝑥
−1
̃
𝑓
𝑢

𝑥
(𝑝) − 𝑓

𝑛
𝑦
−1
̃
𝑓
𝑢

𝑦
(𝑝) + 𝑎

𝑛
𝑥
−1,𝑛
𝑦
−1
min { ̃𝑓𝑢

𝑥
(𝑝) ,

̃
𝑓
𝑢

𝑦
(𝑝)}

]

]

]

]

]

]

]

]

]

]

,

F
𝑖
=

[

[

[

[

[

[

[

[

𝐹
𝑖,1

𝐹
𝑖,2

.

.

.

𝐹
𝑖,𝑛
𝑦
−2

𝐹
𝑖,𝑛
𝑦
−1

]

]

]

]

]

]

]

]

=

[

[

[

[

[

[

[

[

[

[

−𝐶 (𝑥
𝑖
, 𝑦
1
, 0) − 𝑑

1
̃
𝑓
𝑙

𝑦
(𝑝)

−𝐶 (𝑥
𝑖
, 𝑦
2
, 0)

.

.

.

−𝐶 (𝑥
𝑖
, 𝑦
𝑛
𝑦
−2
, 0)

−𝐶 (𝑥
𝑖
, 𝑦
𝑛
𝑦
−1
, 0) − 𝑓

𝑛
𝑦
−1
̃
𝑓
𝑢

𝑦
(𝑝)

]

]

]

]

]

]

]

]

]

]

, for 𝑖 = 2, . . . , 𝑛
𝑥
− 2.

(15)

Therefore, we can represent the linear system (13) to a
simple matrix form as

[K] [̃C] = [F] , (16)

where [K] is an (𝑛
𝑥
−1)(𝑛

𝑦
−1)×(𝑛

𝑥
−1)(𝑛

𝑦
−1) squarematrix

with𝐵
𝑖
,𝐸
𝑖
, and𝐺

𝑖
. [̃C] is an (𝑛

𝑥
−1)(𝑛

𝑦
−1)×1 columnmatrix

with ̃C
𝑖
, and the matrix [̃C] represents the Laplace transform

value of the barrier option with respect to all nodes (𝑥
𝑖
, 𝑦
𝑗
)

in the transformed domain. [F] is a column matrix with F
𝑖
,

which is a combination of initial and boundary conditions.
The dimension of matrix [F] is the same as the matrix [̃C].
The matrices [K], [̃C] and [F] are described as follows:

[K] =

[

[

[

[

[

[

[

[

[

[

𝐸
1
𝐺
1

𝐵
2
𝐸
2
𝐺
2

O
𝐵
3
𝐸
3

𝐺
3

d d d
O 𝐵

𝑛
𝑥
−2

𝐸
𝑛
𝑥
−2

𝐺
𝑛
𝑥
−2

𝐵
𝑛
𝑥
−1

𝐸
𝑛
𝑥
−1

]

]

]

]

]

]

]

]

]

]

,

[
̃C] =

[

[

[

[

[

[

̃C
1

̃C
2

.

.

.

̃C
𝑛
𝑥
−1

]

]

]

]

]

]

, [F] =
[

[

[

[

[

F
1

F
2

.

.

.

F
𝑛
𝑥
−1

]

]

]

]

]

.

(17)

After using the double Gaussian elimination algorithm
procedures in the linear system (16), we can obtain the
Laplace transform value 𝐶

𝑖,𝑗
of the two-asset double barrier

option with respect to any point (𝑥
𝑖
, 𝑦
𝑗
) in the transformed

domain. We then use the numerical inversion of the Laplace
transform from Honig and Hirdes [16] and Durbin [17] to
obtain the option price 𝐶

𝑖,𝑗
in the original domain. In this

method, the inversion approximation formula (18) is used:

𝐶 (𝑥
𝑖
, 𝑦
𝑗
, 𝜏)

=

𝑒
V𝜏

𝑇

[−

1

2

Re {𝐶
𝑖,𝑗
(V)} +

∞

∑

𝑘=0

Re{𝐶
𝑖,𝑗
(V + 𝑖

𝑘𝜋

𝑇

)}

⋅ cos(𝑘𝜋
𝑇

𝜏) −

∞

∑

𝑘=0

Im{𝐶
𝑖,𝑗
(V + 𝑖

𝑘𝜋

𝑇

)}

⋅ sin(𝑘𝜋
𝑇

𝜏)] ,

(18)

where V is a constant value, V ∈ R, and 0 < 𝜏 < 𝑇. Here, we
set the constant number V = (Δ𝑥/𝜎

𝑥
)(Δ𝑦/𝜎

𝑦
)(1/𝑇).

Since we can only calculate finite terms, we truncate (18)
as follows:
𝐶 (𝑥
𝑖
, 𝑦
𝑗
, 𝜏)

=

𝑒
V𝜏

𝑇

[−

1

2

Re {𝐶
𝑖,𝑗
(V)} +

𝑛

∑

𝑘=0

Re{𝐶
𝑖,𝑗
(V + 𝑖

𝑘𝜋

𝑇

)}

⋅ cos(𝑘𝜋
𝑇

𝜏) −

𝑛

∑

𝑘=0

Im{𝐶
𝑖,𝑗
(V + 𝑖

𝑘𝜋

𝑇

)}

⋅ sin(𝑘𝜋
𝑇

𝜏)] ,

(19)
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Table 1: Accuracy of the valuations of the two-asset double barrier options using the hybrid method.

Current underlying asset prices 𝑛
𝑥
× 𝑛
𝑦

𝐶
𝑛

𝐶
2𝑛
− 𝐶
𝑛

𝐶
64
− 𝐶
𝑛

|𝐶
64
− 𝐶
𝑛
|

𝐶
64

𝑠
1
= 12

𝑠
2
= 15

4 × 4 0.225100 0.087465 0.124744 0.356570
8 × 8 0.312565 0.027761 0.037279 0.106559
16 × 16 0.340326 0.007581 0.009518 0.027206
32 × 32 0.347907 0.001937 0.001937 0.005537
64 × 64 0.349844 ∗ ∗ ∗

𝑠
1
= 16

𝑠
2
= 20

4 × 4 0.996184 0.364442 0.468376 0.319807
8 × 8 1.360626 0.080328 0.103934 0.070966
16 × 16 1.440954 0.018920 0.023606 0.016118
32 × 32 1.459874 0.004686 0.004686 0.003200
64 × 64 1.464560 ∗ ∗ ∗

𝑠
1
= 20

𝑠
2
= 25

4 × 4 1.141040 0.036247 0.048109 0.040457
8 × 8 1.177287 0.008428 0.011862 0.009975
16 × 16 1.185715 0.002704 0.003434 0.002888
32 × 32 1.188419 0.000730 0.000730 0.000614
64 × 64 1.189149 ∗ ∗ ∗

Option parameters: (𝐵𝑙
𝑥
, 𝐵
𝑢

𝑥
) = (8, 24), (𝐵𝑙

𝑦
, 𝐵
𝑢

𝑦
) = (10, 30), 𝑘𝑥 = 16, 𝑘𝑦 = 20, (𝑅

𝑙

𝑥
, 𝑅
𝑢

𝑥
) = (0, 0), (𝑅𝑙

𝑦
, 𝑅
𝑢

𝑦
) = (0, 0), 𝜎𝑥 = 0.3, 𝜎𝑦 = 0.2, 𝜌 = 0.3, 𝑟 = 0.01, and

𝑇 = 1 year.

for 0 < 𝜏 < 𝑇. Considering the truncation error in (19),

truncation error < 𝑒
V𝑇

2𝑇

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝐶
𝑖,𝑗
(V + 𝑖

𝑛𝜋

𝑇

)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

, (20)

and |𝐶
𝑖,𝑗
(V + 𝑖(𝑘𝜋/𝑇))| decreases monotonically to zero [17];

then we have
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝐶
𝑖,𝑗
(V + 𝑖

𝑛𝜋

𝑇

)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

2𝜀𝑇

𝑒
V𝑇 , (21)

for any 𝜀 > 0. That is, when we take any tolerance value 𝜀,
there exists a number 𝑛 to satisfy (21). The inequality (21) is
used to determine 𝑛. For the inverse Laplace transformation,
the discrete Laplace transform points are 𝑝

𝑘
= V + 𝑖(𝑘𝜋/𝑇),

𝑘 = 0, 1, 2, . . . , 𝑛.

4. Accuracy for the Hybrid Method

This section provides two numerical examples to verify the
performance of the hybrid finite difference method. To assess
the validity of the hybrid method for pricing the two-asset
double barrier option, we compare the results under various
numbers of nodes with the most accurate case.

For example, we set the pair of lower and upper bound-
aries for the first asset as (𝐵𝑙

𝑥
, 𝐵
𝑢

𝑥
) = (8, 24) and that for the

second asset as (𝐵𝑙
𝑦
, 𝐵
𝑢

𝑦
) = (10, 30). The exercise prices of the

first and second assets are 𝑘
𝑥
= 16 and 𝑘

𝑦
= 20. The volatili-

ties of the first and second assets’ prices are 𝜎
𝑥
= 0.3 and 𝜎

𝑦
=

0.2.The correlation between the two assets’ prices is 0.3, while
the risk free rate is 0.01. The time to maturity 𝑇 of the option
contract is one year. Since the construct of the inversion
approximation formula for the Laplace transform is 0 < 𝜏 <

𝑇, we solve a closed solution before the time to maturity𝑇. In

our numerical examples, we control the computational error
of 10−5 and solve the solution of time to maturity 𝑇−0.00001
as our construct value.

Table 1 shows the performance of the hybrid method for
pricing the two-asset double barrier option out of the money
(the case of 𝑠

1
= 12 and 𝑠

2
= 15), at the money (the case of

𝑠
1
= 16 and 𝑠

2
= 20), and in the money (the case of 𝑠

1
= 20

and 𝑠
2
= 25), respectively. When we compare each pricing

result with the most accurate case, it can be seen that the
numerical errors and relative errors both have reached at least
a significant digit level of 2 in all scenarios with the number
of nodes 16× 16. From the fifth column of Table 1, we can see
that the error results become one fourth when the number of
nodes doubles at each dimension.The order of the method is
about two in our experimental results.

Additionally, in order to test the validity of the hybrid
method for pricing the two-asset single barrier option, we
extend boundary conditions to set two assets to only have
the upper barriers 𝐵𝑢

𝑥
= 16 and 𝐵

𝑢

𝑦
= 20, while there are

no lower barriers imposed in two assets. The exercise prices
with respect to the first asset and second asset are 𝑘

𝑥
= 8 and

𝑘
𝑦
= 10, while we set the volatilities 𝜎

𝑥
= 0.3 and 𝜎

𝑦
= 0.2.

The correlation between the two asset prices is 0.3, and the
risk free rate is 0.01.The time tomaturity of the barrier option
is one year.

Table 2 shows the performance of the hybrid method for
pricing the two-asset up-and-out barrier options out of the
money (𝑠

1
= 4, 𝑠
2
= 5), at the money (𝑠

1
= 8, 𝑠
2
= 10), and in

the money (𝑠
1
= 12, 𝑠

2
= 15), respectively. In this example,

the convergence performance is the best when the barrier
option is in the money. It can be seen that the numerical
errors for pricing the barrier option have reached at least a
significant digit level of 2 in all scenarios, while the number
of the nodes is 16 by 16.
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Table 2: Accuracy of the valuations of the two-asset single barrier options using the hybrid method.

Current underlying asset prices 𝑛
𝑥
× 𝑛
𝑦

𝐶
𝑛

𝐶
2𝑛
− 𝐶
𝑛

𝐶
64
− 𝐶
𝑛

|𝐶
64
− 𝐶
𝑛
|

𝐶
64

𝑠
1
= 4

𝑠
2
= 5

4 × 4 0.019511 −0.007309 −0.012745 1.883683

8 × 8 0.012202 −0.003689 −0.005436 0.803429

16 × 16 0.008513 −0.001371 −0.001747 0.258203

32 × 32 0.007142 −0.000376 −0.000376 0.055572

64 × 64 0.006766 ∗ ∗ ∗

𝑠
1
= 8

𝑠
2
= 10

4 × 4 0.680657 0.468757 0.683742 0.501131

8 × 8 1.149414 0.171159 0.214985 0.157568

16 × 16 1.320573 0.035646 0.043826 0.032121

32 × 32 1.356219 0.008180 0.008180 0.005995

64 × 64 1.364399 ∗ ∗ ∗

𝑠
1
= 12

𝑠
2
= 15

4 × 4 2.708195 0.138637 0.147685 0.051713

8 × 8 2.846832 0.006731 0.009048 0.003168

16 × 16 2.853563 0.001831 0.002317 0.000811

32 × 32 2.855394 0.000486 0.000486 0.000170

64 × 64 2.855880 ∗ ∗ ∗

Option parameters: 𝐵𝑢
𝑥
= 16, 𝐵𝑢

𝑦
= 20, 𝑘𝑥 = 8, 𝑘𝑦 = 10, 𝜎𝑥 = 0.3, 𝜎𝑦 = 0.2, 𝑅

𝑢

𝑥
= 0, 𝑅𝑢

𝑦
= 0, 𝜌 = 0.3, 𝑟 = 0.01, and 𝑇 = 1 year.

Table 3: The valuations of the two-asset double barrier options with various immediate rebates.

𝑅
𝑢

𝑦

𝑅
𝑢

𝑥

5 10 15 20 25 30
5 3.322664 4.256101 5.189538 6.122976 7.056413 7.989850
10 4.634732 5.567645 6.501082 7.434519 8.367956 9.301394
15 5.946800 6.879713 7.812626 8.746063 9.679500 10.612937
20 7.258868 8.191781 9.124694 10.057607 10.991044 11.924481
25 8.570936 9.503849 10.436762 11.369675 12.302587 13.236025
30 9.883004 10.815917 11.748830 12.681743 13.614655 14.547568
Option parameters: 𝑠1 = 45.6, 𝑠2 = 42.6, 𝑘𝑥 = 45.6, 𝑘𝑦 = 42.6, (𝐵

𝑙

𝑥
, 𝐵
𝑢

𝑥
) = (22.8, 68.4), (𝐵𝑙

𝑦
, 𝐵
𝑢

𝑦
) = (21.3, 63.9), 𝑅𝑙

𝑥
= 0, 𝑅𝑙

𝑦
= 0, 𝜌 = 0.3778, 𝑟 = 0.0154, and

𝑇 = 1 year. The number of nodes: 𝑛𝑥 × 𝑛𝑦 = 64 × 64.

From Tables 1 and 2, we can see that the convergent order
is about two whether the boundary conditions have single
barriers or double barriers when we double the number of
the nodes.

5. A Numerical Example in
Financial Engineering

In this section, a numerical example for pricing the two-
asset double barrier option is used to demonstrate the effect
of immediate rebates while common assumptions set imme-
diate rebates to be zero.

In this case, we set the current underlying asset prices,
and the exercise prices with respect to the first and second
assets are 45.6 and 42.6, respectively, so that the case (𝑠

1
=

𝑘
𝑥
= 45.6, 𝑠

2
= 𝑘
𝑦
= 42.6) is called at-the-money. The upper

and lower barriers with respect to the first and second assets
are (𝐵𝑙

𝑥
, 𝐵
𝑢

𝑥
) = (22.8, 68.4) and (𝐵

𝑙

𝑦
, 𝐵
𝑢

𝑦
) = (21.3, 63.9). The

correlation between the two asset prices is 0.3778, and the risk
free rate is 0.0154. The time to maturity of the barrier option
is one year.

The amounts of immediate rebates are important factors
with regard to the barrier option price. We compute the pric-
ing of the two-asset double barrier option with various upper
immediate rebates, 𝑅𝑢

𝑥
and 𝑅𝑢

𝑦
. The option holder will receive

the upper immediate rebates when the asset prices touch
their upper barriers. On the other hand, the lower immediate
rebates are set to be zero in this case. The results of pricing
the two-asset double barrier option with various upper
immediate rebates are shown in Table 3 via the hybrid finite
difference method with nodes 64 × 64. We can see that the
barrier option price increases significantly with the amount
of immediate rebates.

6. Conclusions

Pricing financial derivatives is a mathematical problem in
financial engineering. Through the hybrid finite difference
method, which is a combination of the Laplace transform
and a finite difference method, we solve the two-dimensional
Black-Scholes partial deferential equation to price the two-
asset double barrier option. The method is first applied in
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pricing the two-asset double barrier option although the
hybrid finite difference method is applied to solve the heat
conduct problem for a while. Then, we take a classic example
of a two-asset double barrier option with immediate rebates
in our study, and we find that the price of the two-asset
double barrier option increases with the immediate rebates.
The method is second order. Therefore, we can conclude that
the method is efficient for pricing two-asset barrier options.
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