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This paper presents the design of an optimized Interval Type 2 Fuzzy Proportional Derivative Controller (IT2F-PDC) in cascade
form for Rotary Inverted Pendulum (RIP) system.Theparameters of the IT2F-PDC are optimised by usingGenetic Algorithm (GA)
and Particle Swarm Optimization (PSO). The goal is to balance the pendulum in upright unstable equilibrium position. The IT2F-
PDCwhich is the extended version of conventional type 1 fuzzy logic controller, improves the control strategy by using the advantage
of its footprint of uncertainty for the fuzzy membership function.The performance characteristics considered for the controller are
steady state error, settling time, rise time, maximum overshoot, and control energy. Experimental and simulation results indicated
that the effectiveness and robustness of the proposed GA- and PSO-based controllers on the RIP with respect to load disturbances,
parameter variation, and noise effects have been improved over state-of-the-art method. However, the comparative results for
simulation and experiment based on cascade IT2F-PDC indicate that GA-based IT2F-PDC has lower steady state error while PSO-
based IT2F-PDC has lower overshoot, settling time, and control energy, but both have almost the same rise time. The proposed
control strategy can be regarded as a promising strategy for controlling different unstable and nonlinear systems.

1. Introduction

Most real industrial systems are nonlinear in nature and
exhibit some level of uncertainty [1, 2]. In the past decade,
some modern controls such as nonlinear control, adap-
tive control, variable structure control and optimal control
were used [3–5]. Although these control strategies exhibit a
very good performance, they are also complex and difficult
to implement [6]. The conventional proportional integral
derivative (PID) controller exhibits good performance for
linear system and it is widely employed in industry due to
its simple structure and robustness in different operation
conditions. However, the tuning of the parameters of PID
accurately becomes difficult becausemost of industrial plants
are highly complex and have some issues such as nonlineari-
ties, time delay, and higher order [7]. Due to the complexity
of most industrial plants and the limitation of PID controller,
an unprecedented interest was diverted to the applications

of the fuzzy logic controller (FLC). This is because it uses
the expert knowledge and its control action is described by
linguistic rules. Also, the FLC does not require the complete
mathematical model of the system to be controlled and it can
work properly with nonlinearities and uncertainties [1, 2, 8–
13]. FLC are of two types, namely, type 1 fuzzy logic controller
(T1FLC) and type 2 fuzzy logic controller (T2FLC). In T1FLC,
the uncertainty is represented by a precise number in a range
of (0, 1) interpreted as a degree of membership functions
(MF). In view of the fact that it is too difficult to know
a precise value for uncertainty, working with type 1 model
is more reasonable. However, some researchers argued that,
in case where there is high level of uncertainty, T1FLC has
limited ability to handle it because its membership degree
for each input is a crisp number [14]. The T2FLC which
uses type 2 fuzzy set (T2FS) was introduced to circumvent
the limitations of the T1FLC. The main characteristic of
T2FLC is that its MFs are fuzzy. Therefore, it has more
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degree of freedom in designing varieties of systems with
uncertainties [1, 2, 8]. The control performance of T1FLC
can be improved by T2FLC because it has the advantage of
footprint of uncertainty (FOU) that can be used to improve
the corresponding MF [15].

The major disadvantage of T2FLC is that the process of
tuning becomes more difficult andmuch time consuming for
increasing number of inputs and outputs of the controller
[16].This problem of tuning can be solved by using optimiza-
tion methods [15, 16].

Looking at Rotary Inverted Pendulum (RIP) from the
control point of view, the RIP exhibits many interesting and
challenging properties, such as nonlinearities and instability.
The RIP is in the class of underactuated mechanical sys-
tems. These features make RIP become known widely as
experimental setup for testing linear and nonlinear control
algorithms [11]. RIP consists of a rotational servomotor
system which drives the output gear, rotational arm, and
a pendulum. It has many important real applications like
robotics, aerospace vehicles, pointing control, and marine
vehicles [15].

Four control objectives of RIP as found in the literature
are categorized as follows [17, 18]: (1) swing-up control: con-
trolling the pendulum from downward (stable position) to
upward (unstable position); (2) stabilization control, that is,
regulating the pendulum to remain at the unstable position;
(3) switching control, that is, the switching between swing-
up control and stabilization control; (4) trajectory control,
that is, to control the RIP in such a way that the arm tracks a
desired time varying trajectory while the pendulum remains
at unstable position.

Recently, a lot of research regarding the control of RIP has
been published. For example, energy based compensation,
PD cascade scheme, edge trigger counter, sliding mode
control, type 1 fuzzy control, and adaptive control have been
used for swing-up control of RIP [18–24]. To solve the
stabilization control problem on RIP, multiobjective integral
sliding mode controller, microcontrollers, fuzzy logic regula-
tor, pole placement technique, optimized PID controller, and
Linear Quadratic Regulator (LQR) have been applied [7, 18,
20, 23, 25–28]. Energywas considered for switching control in
[18, 29], and mode controller was used for the same purpose
in [20]. For trajectory control, adaptive PID with sliding
mode control, linear active disturbance rejection control,
hybrid of linear fusion function based on LQR mapping and
adaptive control with ANFIS tuning, feedback linearization
based controller, and energy based compensation controller
was used [17, 30–32]. Optimized cascade type 1 fuzzy logic
controller was used in [33] for controls of pendulum angle
and arm angles of RIP.

To the best of the author’s knowledge, at this moment
there is not any kind of GA and PSO optimised type 2 fuzzy
logic control applied to RIP. A cascade control method is
effective for a systemwith high level of disturbances and large
time error such as the RIP [24]. Also, as mentioned earlier
type 2 fuzzy control strategy is effective and gives robust
control response for systems with high level of uncertainty
and/or inaccurate model. Putting type 2 fuzzy in cascade
topology will have the advantages of type 2 fuzzy, and cascade

structure which will eventually give more robust controller
for system with uncertainties and large time error [33].

In this paper, the IT2F-PDC is designed in cascaded form
for RIP.The parameters of the IT2F-PDC are optimised using
Genetic Algorithm (GA) and Particle Swarm Optimization
(PSO). The GA and PSO were chosen in this research in
view of the fact that these algorithms are more established
in the literature than other evolutionary algorithms [34,
35]. In addition, the GA and PSO have proven to improve
performance over other algorithms in solving optimization
problems [36, 37]. The goal is to balance the pendulum in
upright position. The servo behaviour (reference tracking)
of RIP is analysed. Disturbances rejection of the proposed
controller is analysed by adding the internal noise and
external disturbance to the system. Also, the controller is
applied on the real RIP to validate the simulation results.
The performances of GA and PSO for the optimization
of the parameters of IT2F-PDC were compared. Also, the
designing of IT2F-PDC as an optimization dilemma that
slightly altered five performance indices was formulated
which includes steady state error, settling time, rise time,
maximum overshoot of the response, and control energy of
the system.

The organisation of the paper is as follows. Section 2
introduces the RIP, Section 3 gives brief on fuzzy logic
system, IT2FL-PDC, and the design of cascade IT2-PDC, and
Section 4 defines optimizationmethod and gives some basics
on GA and PSO.The formulation of the problem is discussed
in Section 5. Sections 6 and 7 present the simulation and
experimental results, respectively. Finally, Section 8 presents
conclusions.

2. RIP

The RIP is in the class of underactuated mechanical system,
consisting of a servomotor system that drives the output
gear. The rotational arm is attached to the output gear and a
pendulum is attached at one end of the rotating arm as shown
in Figure 1(a). The arm is driven by the gear with the aim of
balancing the pendulum in an upright position. The angle
(𝜙) is the angle of the arm and its direction depends on the
direction of the control voltage (𝑉

𝑚
) (voltage applied to the

servomotor). In this study, the counterclockwise direction is
considered as positive direction for the arm and the clockwise
direction is the positive direction for the pendulum. The
servomotor drives the rotating arm to move in horizontal
plane 𝑋𝑌 in such a way that it sets the pendulum to the
inverted position in the 𝑋𝑍 direction, perpendicular to the
arm. (𝛼) is the pendulum angle. Figure 1(b) shows the picture
of the experimental setup using Quanser RIP.

2.1. Nonlinear and Linear Dynamics Model of RIP. The
dynamic equations that describe the motion of rotary arm
and the pendulum with respect to the servomotor voltage
were obtained using Euler-Lagrange equation, which is the
systematic way of obtaining the equation of motion [38].
Once the kinetic and potential energy are obtained and the
Lagrangian is found. Subsequently, the task is to compute var-
ious derivatives to get the equations of motion of the system.
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Figure 1: (a) Convention of RIP, (b) Quanser RIP experimental setup.

After going through the process, the nonlinear equations of
motion for the RIP can be found [38]. Considering the total
length of the pendulum (𝐿

𝑝
), viscous damping coefficient

is seen at the pivot axis for arm and pendulum (𝐵
𝑟
) and

(𝐵
𝑝
), respectively, and moment of inertia about the centre of

mass for arm and pendulum (𝐽
𝑟
) and (𝐽

𝑝
), respectively. The

nonlinear equations of motions of RIP are found as follows:
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Let (1) be called nonlinear 1. Alternatively the nonlinear
equation of RIP can be found in (2) when the length of the
pendulum from its centre of mass (𝑙

𝑝
), equivalent moment

of inertia as seen at the load (𝐽eq), and equivalent viscous

damping coefficient as seen at the load (𝐵eq) are considered.
Let (2) be called nonlinear 2. Consider
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The torque (𝜏) at the load gear is generated by servomotor and
is described by
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𝜂
𝑔
𝐾
𝑔
𝜂
𝑚
𝑘
𝑡
(𝑉
𝑚
− 𝐾
𝑔
𝑘
𝑚

̇𝜙)

𝑅
𝑚

. (3)

The linearizedmodel of the nonlinear equations of RIP can be
found by substituting sin(𝛼) = 𝛼 and cos(𝛼) = 1 in nonlinear
equation [33] and presented in matrix form in (4)–(7). The
summary descriptions of the parameters and their values are
given in Table 1. Consider
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Table 1: The summary of the parameters values of RIP.

Symbol Description Value Unit
𝑚
𝑝

Mass of pendulum 0.127 kg
𝐿
𝑝

Total length of pendulum 0.337 m
𝐽
𝑝

Pendulum moment of inertia about its centre of mass 0.0012 kg⋅m2

𝐵
𝑝

Pendulum viscous damping coefficient as seen at the pivot axis 0.0024 N⋅m⋅s/rad
𝑙
𝑝

Length of pendulum centre of mass 0.156 m
𝐿
𝑟

Rotary arm length 0.168 m
𝐵
𝑟

Rotary arm viscous damping coefficient as seen at the pivot axis 0.0024 N⋅m⋅s/rad
𝐽
𝑟

Rotary arm moment of inertia about its centre of mass 0.000998 kg⋅m2

𝑅
𝑚

Motor armature resistance 2.6 Ω

𝑘
𝑡

Motor current-torque constant 0.00768 N-m/A
𝑘
𝑚

Motor back-emf constant 0.00768 V/(rad/s)
𝐾
𝑔

High-gear total gear ratio 70
𝜂
𝑚

Motor efficiency 69 %
𝜂
𝑔

Gearbox efficiency 90 %
𝐽eq Equivalent moment of inertia as seen at the load 0.0036 kg⋅m2

𝐵eq Equivalent viscous damping coefficient as seen at the load 0.004 Nms/rad

where 𝑘1 = 𝐽eq + 𝑚𝑝𝐿
2
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The open loop poles for the proposed RIP system are 𝑤 =
[0, 7.491, −18.04, −5.6596]. The system has one pole at the
right hand side of 𝑠-plane which confirms that the proposed
RIP system is unstable.Therefore, before continuing with any
control action, the test for controllability of the system has to
be done, in order to check for the rank of the matrix𝑊 in (8).
If𝑊 has full rank then the system is controllable [39]:

𝑊 = [𝐵, 𝐴𝐵, 𝐴
2
𝐵, 𝐴

3
𝐵, . . . , 𝐴

𝑛−1
𝐵] , rank (𝑊) = 4. (8)

The matrix𝑊 has full rank; then the system is controllable,
meaning that the RIP system has complete state controllabil-
ity.

2.2. Open Loop Response of Linear and Nonlinear Model of
RIP. The open loop responses for nonlinear 1, nonlinear 2,
and linear dynamic of RIP are shown in Figures 2(a) and 2(b).
Initially the pendulum is positioned in an inverted position
with very small displacement (0.005∘), and then it is allowed
to fall by applying a pulse signal to the model.The simulation
results show that nonlinear 1 and nonlinear 2 are similar
and their behaviours are the same for both pendulum angle
and arm angle. This shows that nonlinear 1 and nonlinear
2 can be considered as nonlinear model of the RIP because
nonlinear 1 has already been proved and used in [33]. The
linear model depicts the nonlinear pendulum motion for the
first 1.3 seconds, until it attains 21∘; then it began to deviate
from the actual motion. The response shows that the whole
system is nonlinear and unstable.

3. Fuzzy Logic Controller

A concise overview of FLC was presented in this section with
the intention of providing the basic knowledge needed to
understand the basic idea and formulation of interval type 2
fuzzy logic controller.

3.1. Interval Type 2 Fuzzy Logic System (IT2FLS). The idea of
fuzzy logic systems and T2FS was pioneered by Zadeh in 1965
and 1975, respectively [40, 41]. The uncertain knowledge is
used to build the fuzzy logic rules which leads to uncertain
antecedents and consequents of the rule to be uncertain,
which can not be handled by conventional type 1 fuzzy set
MF.This leads to the introduction of type 2 fuzzy logic which
can handle the issue of uncertainty by using the advantage of
FOU [2, 12]. All the secondary grades of the IT2FS are equal
to 1, and it is completely described by upper MF and lower
MF (UMF and LMF). Figure 3(a) shows the triangular MF of
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Figure 2: Open loop response for RIP: (a) pendulum angle, (b) pivot arm angle.

IT2FLS and its associated quantities. Also the corresponding
secondary MF is shown in Figures 3(b) and 3(c).

T2FLS and T1FLS are similar in terms of their normal
architecture. The main difference between them is in their
structure. The defuzzifier block in type 1 fuzzy is substituted
with the output processing in type 2 fuzzy comprised of type
reduction and defuzzifier blocks [15]. The block diagram of
T2FLS is shown in Figure 4.

3.2. Fuzzification. The fuzzifiers in T1FLS and T2FLS are
doing the same work, which is transforming numeric vector
entries 𝑥 = (𝑥

1
, . . . , 𝑥

𝑝
)𝑇 ∈ 𝑋

1
∗ 𝑋
1
∗ ⋅ ⋅ ⋅ ∗ 𝑋

𝑝
≡ 𝑋 into 𝐴

𝑥

(type 2 fuzzy set) defined in𝑋. Giving the singleton numeric
inputs, the mapping can be performed as follows [16]:

𝜇̃
𝐴
𝑥

(𝑥) = 1/1 with 𝑥 = 𝑥󸀠,

𝜇̃
𝐴
𝑥

(𝑥) = 1/0,

for ∀𝑥 ∈ 𝑥 with 𝑥 ̸= 𝑥
󸀠

.

(9)

Equation (9) shows that 𝜇
𝑥
𝑖

(𝑥
𝑖
) = 1/1 when 𝑥

𝑖
= 𝑥󸀠
𝑖
and

𝜇
𝑥
𝑖

(𝑥
𝑖
) = 1/0 when 𝑥

𝑖
̸= 𝑥󸀠
𝑖
for all 𝑖 = 1, . . . , 𝑝.

3.3. Rules. Both T1FLS and T2FLS use IF-THEN rules. In
type 2, the antecedents and consequent MF are represented
by T2FS. The 𝑖th rule can be expressed as

𝑅
𝑖

: IF 𝑥1 is 𝐴𝑖1, and ⋅ ⋅ ⋅ 𝑥𝑝 is 𝐴
𝑖

𝑝
,

THEN 𝑌
𝑖

= 𝐶0 + 𝐶
𝑖

1𝑥1 + ⋅ ⋅ ⋅ + 𝐶
𝑖

𝑟
𝑥
𝑝
,
(10)

where 𝑖 = 1, . . . , 𝑚; 𝐶𝑖
𝑗
(𝑗 = 0, 1, . . . , 𝑝) are the consequent

type 1 fuzzy set;𝐴𝑖
𝑘
(𝑘 = 1, . . . , 𝑝) are type 2 antecedent fuzzy

set.

3.4. Inference. The inference mechanism in T2FLS is like the
one in type 1 fuzzy. It is a rule combination to produce a
mapping from input T2FSs to output T2FSs. It is necessary
to calculate the intersection, union, and composition of type
2 relations in order to realise this mapping [15]. The T2FS
𝐴
𝑥
whose MF is 𝜇̃

𝐴
𝑥

= ∩
𝑝

𝑖=1
𝜇
𝑥
𝑖
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𝑖
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𝑖
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2 input and antecedent process which are in the firing set
∩
𝑝
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𝜇
𝐹
𝑖
𝑖

(𝑥󸀠
𝑖
≡ 𝐹𝑖(𝑥󸀠)) is an interval type 1 fuzzy set as in (11)-

(12) [9]:
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1
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󸀠
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𝑝
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󸀠

𝑝
) .
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3.5. Output Processing. The output processing constitutes the
type reduction that generates type 1 fuzzy set and defuzzifier
that converts the generated type 1 fuzzy set to the crisp
output [15]. In this paper, theWu-Mendel uncertainty bound
method was used to approximate the type-reduced set, and
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Karnik and Mendel (KM) algorithm was used for calculating
the two end points of centroids of 𝑦

𝑙
and 𝑦

𝑟
[14] presented in

𝑦1 =
∑
𝑀

𝑖=1 𝑓
𝑖

1𝑦
𝑖

1

∑
𝑀

𝑖=1 𝑓
𝑖

1
,

𝑦
𝑟
=
∑
𝑀

𝑖=1 𝑓
𝑖

𝑟
𝑦𝑖
𝑟

∑
𝑀

𝑖=1 𝑓
𝑖

𝑟

.

(13)

Once 𝑦1 and 𝑦
𝑟
are found then the average of 𝑦1 and 𝑦

𝑟

is taken so that the output of the defuzzifier of an interval
singleton type 2 fuzzy is as follows:

𝑦 (𝑥) =
𝑦1 + 𝑦𝑟

2
. (14)

3.6. Cascade Interval Type 2 Fuzzy Logic PD Controller. In
this paper, the cascade controller was designed for RIP. The
RIP is a single input multiple output (SIMO) system. In
SIMO systems, change of one output by some disturbances
affects the control of the other output [33]. Considering

nonlinearities behaviour of RIP system, it is difficult to
achieve the past settling time. Also it has high level of
disturbances and large time constant. For system like this the
best control strategy is cascade because it has the advantage
of attenuating the effect of disturbances and improving the
dynamics of entire control loop [24]. The structure of the
cascade interval type 2 fuzzy logic PD controller is shown in
Figure 5. Both controllers have two inputs and one output.
The overall architecture comprises the outer and the inner
controllers.The input of the inner controller is the error𝐸

2
(𝑡)

and change in errorΔ𝐸
2
(𝑡), its output is the control voltage to

the servomotor𝑉
𝑚
(𝑡), and three gains 𝑔

4
, 𝑔
5
, and 𝑔

6
are used

to scale 𝑒
2
(𝑡), Δ𝑒

2
(𝑡), and V

𝑚
(𝑡), respectively, as shown in

𝐸2 (𝑡) = 𝑔4𝑒2 (𝑡) = 𝑔4 (𝑈 (𝑡) − 𝜙 (𝑡)) ,

Δ𝐸2 (𝑡) = 𝑔5Δ𝑒2 (𝑡) = 𝑔5 (𝑒2 (𝑡) − 𝑒2 (𝑡 − 1)) ,

𝑉
𝑚
(𝑡) = 𝑔6V𝑚 (𝑡) ,

(15)

where 𝑡 is the instance sampling, 𝑈(𝑡) is the control signal
from the outer loop, and𝜙(𝑡) is the arm angle.The input of the
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Table 2: Fuzzy rules of IT2FL-PDC.

Δ𝑒
𝑒

NL NS ZO PS PL
NL PL PL PL PS ZO
NS PL PL PS ZO NS
ZO PL PS ZO NS NL
PS PS ZO NS NL NL
PL ZO NS NL NL NL

outer controller is the error 𝐸
1
(𝑡) and change in error Δ𝐸

1
(𝑡),

its output is the control signal to the inner loop 𝑢(𝑡), and three
gains 𝑔

1
, 𝑔
2
, and 𝑔

3
are used to scale 𝑒

1
(𝑡), Δ𝑒

1
(𝑡), and 𝑢(𝑡),

respectively, as shown in

𝐸1 (𝑡) = 𝑔1𝑒1 (𝑡) = 𝑔1 (𝛼𝑟 (𝑡) − 𝛼 (𝑡)) ,

Δ𝐸1 (𝑡) = 𝑔2Δ𝑒1 (𝑡) = 𝑔2 (𝑒1 (𝑡) − 𝑒1 (𝑡 − 1)) ,

𝑈 (𝑡) = 𝑔3𝑢 (𝑡) ,

(16)

where 𝛼
𝑟
and 𝛼 are reference pendulum angle and pendulum

angle, respectively. These scaling gains (𝑔
1
, 𝑔
2
, . . . , 𝑔

6
) are

adjustable parameters just like in any PID controller, and
they are used to calibrate input and output [11]. The excellent
performance of the controller depends on the values of these
gains [16]. The trial-and-error approach can be used to find
appropriate values of the gains but it is not feasible, so there
is a need of using a systematic procedure which is easier for
finding the optimised values of these gains. In this paper
GA and PSO are used (Table 3). The triangular MF of T2FS
was used and it is defined in the input and output spaces as
shown in Figures 6(a) and 6(b). These MFs are the same for
both two input variables (𝑒 and Δ𝑒) and they are applied to
both controllers (inner and outer). The fuzzy rules of IT2F-
PDC are shown in Table 2. Where NL, NS, ZO, PS, and PL
are negative large, negative small, zero, positive small, and
positive large respectively.

4. Optimization Method

Optimization refers to a class of soft computing techniques
that relate to obtaining the optimal or satisfactory or best

Table 3: Optimised gains of cascade IT2FL-PDC.

Gains 𝛼
𝑟
= 0 𝛼

𝑟
= 180

GA PSO GA PSO
𝑔
1

−9.5701 −9.6046 6.5632 5.9825
𝑔
2

−1.3161 −1.0527 0.0119 0.0102
𝑔
3

3.2616 2.7104 8.9646 10.0109
𝑔
4

−1.3664 −3.2773 0.3679 0.1998
𝑔
5

3.8597 6.2357 0.0612 0.0701
𝑔
6

0.8597 0.6589 0.3951 0.5094

solution for a particular problem, and the solution may be
absolutely best out of some other possible solution [42].

GA and PSO are stochastic global optimization tech-
niques. Over the past years GA has received a considerable
attention and it is applied for searching the optimal fuzzy
parameters which lead to the genetic fuzzy system [9, 10].
Although GA is successful in so many applications, some-
times it has a problem of getting trapped before it reaches the
optimal region of the search space, especially for multimodal
and highly dimensional problems [43, 44]. The advantages
that make PSO attract more attention are as follows: the
particles in PSO have memory, all the particles retained the
knowledge of good solution so far, and there is a constructive
cooperation among the particles, meaning the particles in the
swarm share the information among themselves [45].

4.1. Genetic Algorithm. The basic foundation of GAs was
proposed in 1975 by JohnHolland [46]. It is based onDarwin’s
ideas. Darwin’s stated that, in a competing environment, the
stronger individuals are more likely to be the winners [47].
GA is a metaheuristic search algorithm based on natural
selection and genetic process [46, 47]. In GA, the potential
solution to a problem is an individual which can be repre-
sented by the set of parameters. These parameters are just
like a gene of a chromosome and can be represented by the
string of values in binary form [46]. The fitness value is used
to test the degree of goodness of the chromosome for solving
a problem that is directly related to the objective value.
The operators employed in a simple GA include selection,
crossover, and mutation [46]. GAs are often regarded as
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Figure 6: MFs of the (a) premise input variables, (b) input variables.

function optimizers and they have been applied in many
optimization problems such as energy consumption [48]. In
particular, the use of GAs for fuzzy systems design equips
them with the adaptation and learning capabilities which
bring about genetic fuzzy systems [10].

4.2. Particle Swarm Optimization. The PSO was introduced
in 1995 by Eberhart and Kennedy [49]. PSO is metaheuristic
search algorithm based on social and population behaviour,
just like flocking of bird or fish schooling. The population in
PSO is called swarm that can contain many particles. Each
particle in PSO updates its velocity based on (17) [49, 50].
Consider

𝑉
𝑖
(𝑚) = 𝑋 [𝑉

𝑖
(𝑚− 1) + 𝑐1𝑟1 (𝑃best

𝑖

−𝑄
𝑖
(𝑚− 1))

+ 𝑐2𝑟2 (𝑔best −𝑄𝑖 (𝑚− 1))] ,

𝑋 =
2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2 − 𝛽 − √𝛽2 − 4𝛽

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

, 𝛽 = 𝑐1 + 𝑐2 > 4,

(17)

where 𝑃best is the best position attained for the individual
particle and 𝑔best is the best position attained for the particle
among all the population.𝑃

𝑖
is the position of particle 𝑖, 𝑟

1
and

𝑟
2
are randomnumbers between 0 and 1, 𝑐

1
and 𝑐
2
are position

constants learning rate, and𝑋 is the constriction factor. Each
particle changes its position toward the 𝑃best and 𝑔best based
on the updated velocity as given in (18) [51]. Consider

𝑃
𝑖
= 𝑃
𝑖
(𝑚− 1) +𝑉

𝑖
(𝑚) . (18)

The velocity is restrictedwithin [−𝑉max, +𝑉max]. If the velocity
deviates from this range it has to be forced to be within the
range [50, 51].

The following steps are used for the implementation of
PSO algorithm.

Step 1. Specify the upper and lower bounds of the controller
parameter and generate the particles randomly; the values
of the performance criteria in time domain are calculated
iteratively by sending each controller parameter (particle) to
Matlab Simulink; after that, the cost function is evaluated
for each particle according to these performance criteria.
Then evaluate each particle in the initial population using the
objective function and search for 𝑝best and 𝑔best.

Step 2. Calculate the velocity and the constriction factor
for the particles and check for the maximum velocity; then
update the velocity and position of each particle.

Step 3. For each particle, 𝑝best is reset in comparison with the
previous 𝑝best through fitness of objective function; then 𝑔best
is updated in comparison with best 𝑝best.

Step 4. If one of the terminating conditions is satisfied, then
stop; else go to Step 2.

Step 5. The particle that has the latest 𝑔best is an optimal
parameter.

The trial-and-error method commonly used in the lit-
erature [52] was used for the selection of PSO and GA
parameters: For PSO method, number of particles = 25;
position constant learning rate 𝑐

1
= 𝑐
2
= 2; maximum

iteration = 150; and constriction factor = 0.4. For GAmethod,
number of individuals = 25; crossover rate = 0.5; mutation
rate = 0.1; maximum generation = 150; also the type of
operators used for each population in GA is linear ranking
selection algorithm, simple crossover, and uniformmutation.
Both algorithms are implemented in Matlab and each of the
methods is tested in 60 independent runs with 60 distinct
initial trial solutions. All these were conducted in Matlab
R2013a, 2.4GHz processor with 8GB RAM.



Mathematical Problems in Engineering 9

10

20

30

40

50
M

ea
n 

co
st

0
15 30 45 60 75 90 105 130 145 1600

Generation

PSO
GA

(a)

1

2

3

4

5

St
an

da
rd

 d
ev

ia
tio

n 

15 30 45 60 75 90 105 130 145 1600
Generation

PSO
GA

0

(b)

Figure 7: Tendency of convergence of (a) mean value of cost function, (b) standard deviation of cost function.

Table 4: Best results of the cascade IT2FL-PDC for RIP system obtained by GA and PSO in 60 runs.

Optimization method 𝛼
𝑟
(deg) Condition for disturbances 𝑀

𝑝
(%) 𝐸ss 𝑡

𝑠
(s) 𝑡

𝑟
(s) 𝐸

𝑢
(J) Cost

GA
0 No disturbances 27.7 0.0009 1.46 0.0089 18.375 18.210

With disturbances 30.8 0.0021 1.69 0.0086 18.973 19.531

180 No disturbances 28.4 0.0018 1.52 0.0086 21.485 19.997
With disturbances 32.8 0.0028 2.83 0.0089 22.032 21.903

PSO
0 No disturbances 21.4 0.0029 1.31 0.0088 17.094 15.551

With disturbances 24.6 0.0035 1.52 0.0090 19.759 17.934

180 No disturbances 22.1 0.0081 1.39 0.0086 18.981 16.732
With disturbances 26.9 0.0099 2.34 0.0089 20.995 19.431

5. Problem Formulation

In this research, the performance index which consists of
control energy (𝐸

𝑢
), steady state error (𝐸ss), settling time

(𝑡
𝑠
), rise time (𝑡

𝑟
), and overshoot (𝑀

𝑝
) was considered.

The appropriate IT2FL-PDC parameters that minimize the
performance index were searched, and the cost function
proposed is given in

cost = 1
2
(𝑀
𝑝
+𝐸ss +𝐸𝑢) −

𝑒−𝛾

2
(𝑡
𝑟
− 𝑡
𝑠
+𝐸ss +𝑀𝑝) . (19)

In this study, the weighing factor (𝛾) was considered to be
equal to 1. The standard deviation (𝜎) and the mean value
(𝜆) of cost value of each individual were examined in order
to measure the dynamic and convergence characteristic of
the proposed methods. The standard deviation is used to
measure the convergence speed while the mean value is used
to measure the accuracy of the algorithm. Equations (20) and
(21) show the formula for calculating 𝜎 and 𝜆, respectively
[53]. Consider

𝜎 = √
1
𝑛

𝑛

∑
𝑖=1
(cost
𝑝
𝑖

− 𝜆)
2
, (20)

𝜆 =
∑
𝑛

𝑖=1 cost𝑝𝑖
𝑛

, (21)

where 𝑛 is the population size and cost
𝑝
𝑖

is the individual cost
value.

6. Results and Discussion

For us to see the convergence characteristics of the con-
trollers, two simulations are performed (mean and standard
deviation). Figure 7(a) shows that both controllers (GA-
based and PSO-based) secure stable mean cost value, using
the same simulation conditions and cost function. However,
PSO-based controller has best mean value and cost value,
which indicate that it can achieve better accuracy than GA-
based. Similarly, Figure 7(b) shows that in the tendency of
convergence of standard deviation of cost values PSO-based
controller is faster than GA-based controller. This indicates
that PSO method has the best convergence efficiency. The
run time in 150 iterations for PSO is 6,768.39 sec and for
GA is 14,496.19 sec. The summary of the best simulation
results in 60 runs under different operating condition is
shown in Table 4. It can be observed that the percentage
overshoot is lower for PSO-based method compared to
each correspondent GA-basedmethod.The improvements in
overshoot are 22.75% (for 𝛼

𝑟
= 0, no disturbances), 20.1%

(for 𝛼
𝑟
= 0, with disturbances), 22.2% (for 𝛼

𝑟
= 180, no

disturbances), and 18.0% (for 𝛼
𝑟
= 0, with disturbances).

The settling time is smaller in GA-based method in all the
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Figure 8: Simulated results for 𝛼
𝑟
equal to zero: (a) pendulum angle, (b) arm angle, (c) output of the outer controller, and (d) output of inner

controller (control voltage to the servomotor).

simulations, but the rise time is almost the same for both PSO
and GA in all simulations.

6.1. Reference Tracking. In this section, the servo behaviour
(reference tracking) has been analysed by using two different
values of reference pendulum angle (𝛼

𝑟
). First 𝛼

𝑟
was set

to be equal to zero; that is, the pendulum is at equilibrium
upright unstable position and we want to control it to go
to a stable position, Figures 8(a), 8(b), 8(c), and 8(d) show
the best results of the pendulum angle, arm angle, output of
outer controller, and the control voltage to the servomotor,
respectively.

Second 𝛼
𝑟
was set to be equal to 𝜋 (180∘); that is, the

pendulum is at stable position and we want to control it to
go equilibrium upright unstable position. Figures 9(a), 9(b),
9(c), and 9(d) show the best results of the pendulum angle,
arm angle, output of outer controller, and the control voltage
to the servomotor, respectively.

6.2. Disturbances Rejection Analysis. The internal noise and
external disturbance was added to the system in order to test
for the robustness of the proposed controllers as follows: A
load of 0.052m height and 0.045 kg mass was added to the
end of the pendulum, also, the white noise of 0.00634 power
and 5% parameter value changes was added to the process
output as shown in Figure 10. The simulation results shown
in Figure 11 indicate the effectiveness and robustness of the
proposed controllers.

7. Validation and Comparison

The experiments were performed on Quanser SRV02 RIP
setup. The US Digital S1 single-ended optical shaft encoder
that can offer a high resolution of 1024 lines per revolution
(4096 counts per revolution in quadrature mode) was used
for measuring the pendulum angle and arm angle.The power
amplifier used was VoltPAQ-X1. The data acquisition device
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Figure 9: Simulated results for 𝛼
𝑟
equal to 𝜋: (a) pendulum angle, (b) arm angle, (c) output of the outer controller, and (d) output of inner

controller (control voltage to the servomotor).

used was Quanser Q2-USB. The experimental results that
compared the proposed controllers and the conventional
energy based controller for pendulum angle, arm angle, and
control voltage to the servomotor are shown in Figures 12(a),
12(b), and 12(c), respectively. The time starts from zero in
order to show the performances from the swing-up to the
balance mode. Looking at the real plant’s results, some initial
oscillations were noticed due to the swing motion needed
to bring the pendulum from stable position to the vertical
unstable position. Also the two controllers (PSO-based and
GA-based) manifest the considerable level of robustness. On
the other hand, the conventional energy based controller
manifests a lot of oscillations before it becomes stable. The
time taken to reach the steady state is higher for conventional
energy based compared to type 2 fuzzy (for both PSO- and
GA-based) controllers. The experimental results agreed with
the simulation results as shown in Figures 8, 9, and 10 which
justifies the availability of the system models and conforms

the performance of the proposed methods. Experimental
and simulation results indicated that the effectiveness and
robustness of the proposed controllers with respect to load
disturbances, parameter variation, and noise effects have
been improved over state-of-the-art method. In summary, it
can be concluded based on the evidence emanated from the
experiment results that the GA- and PSO-based controllers
have advanced the performance of the conventional energy
based controller on the RIP.

8. Conclusions

In this study, a cascade type 2 fuzzy logic PD controller was
designed with the aid of optimization methods realised by
GA and PSO. The application of the proposed controller was
tested for controlling the pendulum angle and arm angle
of RIP system which is highly nonlinear and unstable. The
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Figure 11: Simulated results for systemwith disturbances: (a) pendulum angle, (b) arm angle, (c) output of the outer controller, and (d) output
of inner controller (control voltage to the servomotor).

model of the RIP was also realised in two different ways, and
the architecture of type 2 fuzzy PD controller was discussed.

The comparative analysis was done in order to test the
performance of the proposed controllers in terms of reference
tracking and the disturbances rejection. Both the simulations

and experimental results show that both PSO and GA can
be used effectively for optimization of parameters of the
proposed controller. Moreover, based on this study, PSO and
GA optimized cascade type 2 fuzzy PD controllers show
some certain level of robustness when subjected to noise
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Figure 12: Experimental results comparing the conventional energy based controller and IT2F-PD controller (PSO-based and GA-based):
(a) pendulum angle, (b) arm angle, and (c) control voltage to the servomotor.

and disturbances; also they outperformed the conventional
energy based controller in terms of the performance criteria
such as steady state error, settling time, rise time, and max-
imum overshoot. However, in case of GA and PSO in some
performance criteria PSO is better than GA, for example,
maximum overshoot (PSO has some improvement over GA,
which is between 18.0% and 22.75%), settling time (PSO
has lower settling time between 1.31 sec and 2.34 sec), and
control energy (PSO requires a low control energy between
17.094 J and 20.995 J). For other performance criteria, GA
is better than PSO, for example, steady state error (GA has
steady state error between 0.0009 and 0.0028 while PSO
has steady state error between 0.0029 and 0.0099). In case

of rise time both GA and PSO have almost the same rise
time of 0.0089 sec in all the simulation. In summary, it can
be concluded based on the evidence emanated from the
experiment results that the GA- and PSO-based controllers
have advanced the performance of the conventional energy
based controller on the RIP.

The proposed control strategy can be regarded as a
promising strategy for controlling different complex systems
which are unstable and nonlinear.

General type 2 fuzzy logic controller which has more
degree of freedom than interval type 2 fuzzy logic controller
is recommended for future work on RIP control. Also, more
powerful evolutionary optimization algorithms like hybrid
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optimization method are recommended for adjusting the
parameters associated with type 2 fuzzy logic controller for
RIP.
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