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It is clear that transactional behavior consistency is a prerequisite and basis for construction of a reliable services-based
business application. However, in previous works, maintaining transactional consistency during exception handling was ignored.
Maintaining transactional consistency requires functionality for rolling back some operations and revoking uploaded data.
Replacing only the failed service will eventually lead to overall business application failure. In this study, we take fully into
account the behavioral consistency of transactional services and propose two effective self-healing mechanisms for service-based
applications. If a service enters into potential failure condition, a rescheduling mechanism is triggered to maintain consistent
transactional behavior and to ensure reliable execution; if a service fails during execution, the compensation operation is triggered
and the system will take action to ensure transactional behavior consistency. Meanwhile, cost-benefit analysis with compensation
support is proposed to minimize the dynamic reselection cost. Finally, the experimental analysis shows that the proposed strategies
can effectively guarantee the reliability of Web-based applications system.

1. Introduction

In the prevalence of cloud computing and service computing,
with more increasing of complexity of software and software
environments, service-based business applications are facing
many challenges. This is especially true when one is run-
ning composite services, where reliability is an important
research topic. This paper focuses on reliable execution
on transactional Web services while maintaining consistent
transactional behavior to accomplish dynamic self-healing
for composite service [1, 2].

A service-based business application system mainly
focuses on two goals: reliability and profitability. In service-
based business applications, when a customer requests a
service from a provider, the Server Level Agreement (SLA) is
negotiated and a contract is drawn up. The SLA stipulates the
quality requirements, such as Quality of Service (QoS) and
the transactional behavior relating to service to be provided
and how much the customer should pay to the service
for the usage of this service. Thus, as a service-based Web
application, it needs to use other services (i.e., partners) to
complete its advertised functionality. If the QoS is stipulated

in the SLA, both customer and provider will obtain the largest
profits.

However, it is well known that composite services live
in a highly dynamic and failure prone Internet environment
[3, 4]. Under the conditions, successful execution of a service
cannot be guaranteed. There are many potential points of
failure such as the deviation from normal of the quality of
a single service or other exceptions that may suddenly occur
in an unreliable Web service. Even seemingly small changes
may undermine allowable compensation time andmay there-
fore disrupt normal transactional behavior [5–8]; in these
situations, however, operations may have been submitted
partially while others may not have been submitted at all.
Such exceptions can seriously disrupt data consistency of the
transactional service. Partially failed transactions will lead
to the overall failure of the business application. The correct
handling of any exception includes not only rolling back the
earlier successful operations of the composite Web service
but also reexecuting a series of operations as a whole on the
reselected component services.

Based on the above, it is obvious that several problems
emerge during execution of a transaction. How to quickly
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respond to any raised exception in an appropriate manner
and with minimal expenses is the most important thing
for maintaining transactional behavior consistency between
services, and further guaranteeing the reliability of these ser-
vices. Therefore, maintaining consistent transactional behav-
ior is a key problem, which cannot be ignored. This poses a
challenging problem in service-based business applications.

Composite service self-healing in this paper refers to (1)
rescheduling a business how to ensure consistent transac-
tional behavior by dynamically adjusting service execution
sequences; (2) replacing failed service(s) with other(s) to
ensure the quality of composite service without affecting
the transactional behavior. Specifically, we propose two self-
healing mechanisms, which guarantee the consistency of
transactional behavior by rescheduling the service execution
sequence to remove potential dangers or replacing a failed
subpath with new services to ensure execution reliability.

Our contributions are given below: Firstly, we propose
a rescheduling algorithm which ensures composite service
to enter into a safe status while avoiding potential risks.
Secondly, a probability model is proposed, by which the
services with minimum replace cost can be chosen in
reselection. Finally, a series of experiments show that the
model not only guarantees business process integrality and
consistency, but also results in an enhanced system reliability.
The rest of this paper is organized as follows. In Section 2, two
examples on maintaining transactional behavior consistency
are introduced. Section 3 provides a model for reliability
evaluation, and presents two effective self-healing meth-
ods. Experimental analysis is given in Section 4. Section 5
describes some related work. Finally, Section 6 concludes the
paper.

2. Transactional Business Process

In this section, we introduce related concepts and properties
of transactional Web service. Furthermore, we show two
scenarios and the corresponding challenges. Finally, we give
the problem definition.

2.1. Basic Definition

Definition 1 (component service). A component service can
be described by four tuples: 𝑠 = ⟨𝐹,ET,CT, 𝐶(𝑡)⟩, where 𝐹
denotes the function of the Web service 𝑠, denoted as 𝐹 =
{op
1
, op
2
, . . . , op

𝑛
}. In this description, op

𝑖
denotes the 𝑖th

operation of function 𝐹. ET denotes the expected execution
time of Web service 𝑠, CT denotes the compensation time of
Web service 𝑠, and 𝐶(𝑡) denote the cost of compensation of
Web service 𝑠 at time point 𝑡.

Definition 2 (atomic). A component service is called atomic if
its elements can be treated as a unit of work.That is, it can use
compensationmechanisms to ensure that all of its component
services complete successfully or none of them do.

For example, given a 𝑠 = {op
1
, op
2
, . . . , op

𝑛
}, all the

elements of 𝑠 only perform one action; either all of its
components are completed successfully or do nothing by

compensating tomaintain the atomic properties.We sayWeb
service 𝑠 is a transactional Web service if 𝑠 has one of the
following transactional properties. Tws is an abbreviation of
transactional Web service.

Property 1. The main transactional properties of a Web ser-
vice are as follows.

(1) Retriable: a service 𝑠 is said to be retriable if it is sure
to be completed after several finite activations.

(2) Compensatable: a service 𝑠 is said to be compensat-
able if it offers compensation policies to semantically
undo its effects.

(3) Pivot: a service 𝑠 is said to be pivot if once it suc-
cessfully completes, its effects remain permanent and
cannot be semantically undone.

These properties show compensation is the basic property
for transactionalWeb service. A composite service or service-
based business application takes advantage of transactional
Web service behavior properties to specify mechanisms for
recovery or failure handling.The goal of this paper is ensuring
composite service reliable execution based on the above
properties of transactional Web services. Based on the above
transactional Web service definition and related properties,
we can introduce a business process model.

A transactional business process or a transactional com-
posite Web service can be modelled in the form of TBP =
⟨TCS, 𝐸, 𝑠, ΣCR, ΣDR, ΣBR⟩, where

(1) transactional composite service, TCS = {tws
1
, tws
2
,

. . . , tws
𝑖
, . . . , tws

𝑛
}, tws
𝑖
∈ TCS (𝑖 = 1, 2, . . . , 𝑛) repre-

sents a task (transactional Web service) in the busi-
ness process; a task is implemented by a series of
transactional Web service operations;

(2) 𝐸 is a set of directed edges; 𝐸
𝑖𝑗
= (𝐸
𝑖
, 𝐸
𝑗
) ∈ 𝐸 cor-

responds to the control dependency relation between
tws
𝑖
and tws

𝑗
, where {tws

𝑖
, tws
𝑗
} ∈ TCS;

(3) ΣCR is a set of control relations for the tasks, ΣCR =
{Sequential, And-Join, And-Split, Or-Join, Or-Split},
where Sequence denotes the sequence relation
between tasks, And-Join denotes the parallel and
unite relation between tasks, And-Split denotes the
parallel and separate relation between tasks, Or-Join
denotes the selective and unite relation between
tasks, and Or-Split denotes the selective and separate
relation between tasks;

(4) ΣDR is set of data relations (DR) between the tasks,
ΣDR = {0, 1}, where 0 and 1 represent the absence
and presence, respectively, of data relations between
tasks;

(5) ΣBR is the set of business relations (BR) between
tasks, ΣBR = {0, 1}, where 0 and 1 represent the
absence and presence of business relations between
tasks;

(6) 𝑠 : 𝑡 → state is a mapping function, where state =
{initial, active, failed, completed, aborted, canceled}. It
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is easy to see that the starting state of all tasks is set to
initial before execution.

2.2. Transactional Dependency Relationship. Given a business
process, we need to identify the border of transactional
service once the business process bands the concrete services.
Due to the autonomyof services, the transactional granularity
of a composite service is hidden. Most of the previous
works on obtaining the transactional granularity in exception
handling are determined during the design stage. However,
the obtainedmethod is incomplete, it is different to obtain the
granularity of composite interservices and nested business
granularity. In addition, relying on designers to specify the
business granularity is not reliable. Because Web services
depend on the Internet environment which is inherently
unstable, the business processes may need to run for a very
long time to perform the complex business logic. Based on
the multirelations, such as data dependence relation, control
dependence relation, and business dependence relation in
services, which make the transactional dependence, relation
was not dominated by designer in advance. In order to realize
the composite services dynamic adaptation and to support
the transactions better, we need to identify the transactional
boundary and composite service granularity dynamically.

From the structural aspect, we can classify the execution
scenarios into five types, namely, “Sequential” tasks, “And-
Join” tasks, “And-Split” tasks, “Or-Join” tasks, and “Or-Split”
tasks. According to these scenarios, if task tws

𝑖
and tws

𝑗

satisfy the following conditions, we can obtain the direct
compensation dependency between tasks as defined below.

Definition 3 (direct compensation dependency). If one task
tws
𝑖
has failed and needs to be compensated, based on the

state of that task andmultirelation in tasks, the compensation
of one task may lead to the compensation of each participant
partial task. From the structural aspect, we can classify the
compensation scenarios into five types, namely, Sequential
tasks, And-Join tasks, And-Split tasks, Or-Join tasks, and Or-
Split tasks. According to these scenarios, if task tws

𝑖
and tws

𝑗

satisfy the following conditions, we can export the direct
compensation dependency (DCD) between tasks as follows:

(1) when tws
𝑗

is the direct preceding task of tws
𝑖
,

that is, CR(tws
𝑖
, tws
𝑗
) = “sequential”, if they satisfy

BR(tws
𝑖
, tws
𝑗
) = 1 or DR(tws

𝑖
, tws
𝑗
) = 1, we say

there exists a compensation dependency relation,
tws
𝑖
≺compensationtws

𝑗
; that is, DCD(tws

𝑖
, tws
𝑗
) = 1;

(2) when two services (tws
𝑖
and tws

𝑗
) both completed

before activating another service, that is, CR(tws
𝑖
,

tws
𝑗
) = “And-Joint”, if they satisfy BR(tws

𝑖
, tws
𝑗
) =

1, we say there exists a compensation dependency
relation, tws

𝑖
≺compensationtws

𝑗
; that is, DCD(tws

𝑖
, tws
𝑗
)

= 1;

(3) when a Web service is activated only when both of
its predecessor Web services (tws

𝑖
and tws

𝑗
) have

completed, that is, CR(tws
𝑖
, tws
𝑗
) = “And-Split”, if they

satisfy BR(tws
𝑖
, tws
𝑗
) = 1 and 𝑠(tws

𝑗
) = “completed”,

we say there exists a compensation dependency rela-
tion, tws

𝑖
≺compensationtws

𝑗
; that is, DCD(tws

𝑖
, tws
𝑗
) =

1;
(4) when only one task will be selected from an Or-

Joint multitasks or an Or-Split multitasks, that is,
CR(tws

𝑖
, tws
𝑗
) = “Or-joint or Or-Split”, we say there

exists no compensation dependency relation; that is,
DCD(tws

𝑖
, tws
𝑗
) = 0.

However, in a dynamic composite environment where
several component transactionalWeb services interact, unex-
pected behavior from a component Web service may not
only lead to its failure, but also may bring cascade failure on
the partial participants to the composition. So, determining
the affected range of the cascade failure services is the first
and most important step for replacement correctly. Based on
the cascade range we can then select a replacement service
withminimal cost. However, the affected ranges by the failure
service are those services that have an indirect compensation
dependency relationship with the failure service node. Indi-
rect compensation dependency relation can be discovered by
direct compensation dependencies among services.

According to different scenarios from structural analysis,
we induce the indirect compensation dependency (ICD) as
follows in Figure 1.

(1) Sequential as case 1 in Figure 1(a) shows if
DCD(tws

𝑖
, tws
𝑗
) = 1 and DCD(tws

𝑗
, tws
𝑘
) = 1, when

a Sequential task, tws
𝑘
, is aborted or compensated,

for (tws
𝑖
≺compensationtws

𝑗
) ∧ (tws

𝑗
≺compensationtws

𝑘
) ⇒

tws
𝑖
≺compensationtws

𝑗
, tws
𝑖

should be compensated;
that is, ICD(tws

𝑖
, tws
𝑘
) = 1.

(2) And-Joint as case 2 in Figure 1(b) shows if DCD(tws
𝑖
,

tws
𝑗
) = 1 and DCD(tws

𝑗
, tws
𝑘
) = 1, when task tws

𝑘

is aborted or compensated, for (tws
𝑖
≺compensationtws

𝑗
)

∧ (tws
𝑗
≺compensationtws

𝑘
) ⇒ tws

𝑖
≺compensationtws

𝑗
, its

And-Joint task, tws
𝑖
, should be compensated; that is,

ICD(tws
𝑖
, tws
𝑘
) = 1.

(3) And-Split as case 3 in Figure 1(c) shows if DCD(tws
𝑖
,

tws
𝑗
) = 1 and DCD(tws

𝑗
, tws
𝑘
) = 1, when task tws

𝑘
is

aborted or compensated,

(a) when 𝑠(tws
𝑖
) = “completed”, for (tws

𝑘
≺

compensationtws
𝑗
) ∧ (tws

𝑗
≺compensationtws

𝑖
) ⇒

tws
𝑘
≺compensationtws

𝑖
, the task, tws

𝑖
, should be

compensated; that is, ICD(tws
𝑖
, tws
𝑘
) = 1;

(b) when 𝑠(tws
𝑖
) = initial, no compensation is

needed.

(4) Or-Joint and Or-Split as case 4 in Figures 1(d) and
1(e) shows, for Or-Joint tasks and Or-Split tasks, their
preceding tasks and succeeding tasks will be specific.
As case 4 in Figures 1(d) and 1(e) shows, task tws

𝑘
and

one of the preceding (succeeding) taskswere executed
while others are not. Therefore, we can treat them as
sequential tasks.

2.3. Scenarios and Challenges. In this subsection, we begin
by using a simple example to show the execution process of
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Figure 1: Indirect compensation dependency.
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Figure 2: Business process logic model.

a service-based business application. The scenario as given
in Figure 2 shows a service-based business process; each task
can be implemented by invoking a set of services which
span over a single or multiple Web service operations. For
simplicity, we assume that one task (tws

𝑖
) corresponds to one

transactionalWeb servicemodeled inWeb ServiceDefinition
Language (WDSL) format. In one WSDL document, several
port types are defined, each of which acts as a static interface
of this Web service. A port type is composed of multiple
operations, which are described in the form of the input or
the output of messages. The execution of a business process
task can be turned into WSDL operation invocations.

The composite service starts when it receives a request
from a customer. It searches for favorite attractions first
and the attraction service will recommend some popular

touristic cities according to the customer’s preferences. After
the destination city has been determined, the composite
service invokes two Web services simultaneously: a Ticket
Booking service reserves an appropriate flight while theHotel
Booking service reserves an appropriate hotel. After the
flight reservation and hotel reservation have been done, the
composite service sends a request to the hotel service and
waits for a confirmation. Upon receiving the responses from
both the flight service and the hotel service, the composite
service will invoke the computation service to compute the
distance between the hotel and the attraction. According to
the result, either the bike service or the car service with
motel service is started to make the appropriate reservation.
Finally, the composite service will send to the customer an
arrangement in detail.The execution process of these services
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(a) Initial scheduling

· · ·

· · ·

· · ·

DT: delay starting time
CT: compensable time

ET: executing time

(b) tws1 ’s delay destroys the compensational time constraint

(c) Rescheduling service execution sequence

tws1
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ET(tws1) = 8 s CT(tws1) = 5 s

ET(tws2) = 5 s CT(tws2) = 5 s

ET(tws1) = 12 s CT(tws1) = 5 s

ET(tws2) = 5 s CT(tws2) = 5 s DT(tws1) = 4 s

ET(tws1) = 12 s CT(tws1) = 5 s

DT(tws2) = 7 s ET(tws2) = 5 s CT(tws2) = 5 s

0

Figure 3: An example of service scheduling.
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Figure 4: Cascading failure initiated by a failed operation.

may lead to a number of possible outcomes; two of these
scenarios are discussed below.

Scenario 1 (composite service falls into potential failure). In
a service-based business application, a transactional Web
service has its compensational time constraint; that is, a Web
service can be compensated within a specified time period. If
the execution time is longer than the allotted time, there will
be no compensation.

At first, we introduce a potential failure scenario as shown
in Figure 3. Given two parallel executing tasks 𝑠

1
and 𝑠
2
which

belong to one transactional service and are encircled by a
circle as shown in Figure 3(a). They both start at the same
time and execute concurrently. The execution times of them
are 8 seconds (ET(𝑠

1
) = 8 s) and 5 seconds (ET(𝑠

2
) =

5 s), respectively, while their compensation times are both
5 seconds (CT(𝑠

1
) = CT(𝑠

2
) = 5 s) which are shown in

Figure 3(a). During execution, if the service 𝑠
1
encounters

an exception, such as traffic congestion, which causes service
quality to deviate from normal values and beyond a specified
threshold, it falls into risk. In this circumstance, after 4-
second delay, 𝑠

1
will spend 12 seconds to finish the work.

Task 𝑠
2
on the other hand has been executed and submitted

successfully. However, due to the concurrent execution of
𝑠
1
and 𝑠
2
, only when both of them are completed, the next

component (𝑠
3
) can be executed. Due to the transactional

Web service ACID properties, component 𝑠
2
has missed the

compensable time period when 𝑠
1
is completed, as shown

in Figure 3(b); that is, the detention of 𝑠
1

destroys the
compensation of 𝑠

2
and, furthermore, destroys the whole

business process compensability and deduces the composite
service into potential risk. However, the composite service
can avoid potential risk if we execute service 𝑠

2
for 7 seconds

delay. The process is shown in Figure 3(c).

Scenario 2 (composite service falls into failure completely).
Figure 4 will introduce another scenario: the composite
service falls into complete fail phase. For example, a service
operation in one task is unavailable when it is carried out
half. As shown in Figure 4, payment operation (op

3
) of the

Booking Ticket process (tws
1
), that is, the red dots, fails when

it is carried out half.
One solution is to replace the failed service tws

1
with

another. However, at the same time, query operation (op
1
)
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Figure 5: Self-healing model for transactional business process.

and booking operation (op
2
) in tws

1
have been executed and

submitted successfully. That is, the result (i.e., the ticket has
been selected by a specific user and other customers will
not be able to inquire this ticket information) of booking
operation (op

2
) remains resident in memory and will not be

released. Meanwhile, the user has paid for the reservation in
tws
2
with a certain discount due to prior agreements between

the hotel and the airlines (since the hotel bookingwill provide
20% discount due to business relationship).

tws
2
and tws

3
belong to one transactional service. Then,

according to the transactional Web service ACID properties,
tws
2

needs to be compensated when tws
1

needs to be
replaced. That is, the failure of one Web service (tws

1
) will

induce another cascading service (tws
2
) to fail. However,

replacement and compensation are costly and a long time
may be required. Eventually, this will lead to a cascading com-
pensation and replacement issue. For this reason, adopting
the traditional replacement model directly, which will lead to
cascading inconsistencies in the client server data, may not
be the best solution in this case.

Problem Statement. Given an initial executing service
sequence (SS) and SLA, the task at hand is to analyze the
implementation status of services, to adapt an appropriate
strategy to satisfy the SLA requirement and guarantee the
system is always in safe areas or reselect candidate services
to replace failed sets with minimal cost.

3. Two-Phase Framework for
Self-Healing Mechanism

3.1. Basic Two-Phase Framework. The two-phase self-healing
framework consists of two stages: the early prediction stage
[9] and the adaptive self-healing stage. Moreover, in the self-
healing stage, we propose two self-healing strategies to deal

with the potential failure and complete failure, respectively.
Figure 5 gives an illustration of the two-phase framework.

Stage 1 (the early prediction stage). In Figure 5, the early
prediction process is illustrated by the flowchart in the left
dashed-box. In this process, execution engine first invokes the
services in service resource to complete a specific business
process. Then, the corresponding execution information is
recorded in Execution Log or Fault Log. Meanwhile, the sta-
tus of the compositeweb service ismonitored.Once the status
matches a fault pattern, which is a web execution sequence
mined from Execution Log and Fault Log by the early pattern
mining [9], the self-healing mechanism is triggered. Note:
the early pattern refers to a pattern, which (1) is frequent in
the failed web execution sequences; and (2) is as short as
possible and is of high prediction accuracy. The properties
of the early pattern are very important for the online QoS
prediction. (1) means the pattern is statistically significant in
the failedweb execution sequences, and (2)means the pattern
is of low prediction cost but high prediction accuracy. Thus,
the timeliness of the early pattern based prediction of QoS is
guaranteed.

Stage 2 (the self-healing stage). The self-healing process is
illustrated by the flowchart in the right dashed-box. In this
stage, by fault type analysis, we first decide that it is the
running failure or the compensable failure. If it is the running
failure, the self-healing mechanism invokes the reselection
algorithm. Otherwise, if the compensable fails, we invoke the
rescheduling algorithm. As soon as the adaptive strategy is
conducted, the system configurates the web service resources
according to the new strategy, repairs the faults, and saves the
newly generated service sequence to the Execution Log.

The main advantages of this model are as follows. First,
trigger based on the early prediction by thismethod is robust.
Because the early patterns mined were based on previously
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Input: A business process scheduling BPS, time point 𝑡
𝑖

Output: An optimal business schedule for current BPS
(1) construct an original composite service scheduling with time constraint;
(2) mine all transactional service granularities;
(3) For 𝑠

𝑖
, determining its own transactional boundary (tws

𝑖
);

(4) Predict running time of each component service 𝑠
𝑖
in tws

𝑖
at time point 𝑡

𝑖+1

(5) If (PT(tws
𝑖
) > ET(tws

𝑖
) + 𝛿)

(6) if (𝑠
𝑖
is not the first composite service in tws

𝑖
)

(7) record the prefix component service set 𝑠
𝑘
of 𝑠
𝑖
;

(8) compensate 𝑠
𝑘
;

(9) select a new similar replace tws
𝑗
to tws

𝑖
;

(10) end if
(11) end if
(12) Else if (there exists a paralleled composite 𝑠

𝑝
for 𝑠
𝑖
)

(13) if (PT(𝑠
𝑖
) + CT(𝑠

𝑖
)) > (PT(𝑠

𝑝
) + CT(𝑠

𝑝
))

(14) 𝑠𝑡(𝑠
𝑝
) = 𝑠𝑡(𝑠

𝑝
) + (PT(𝑠

𝑖
) + CT(𝑠

𝑖
)) − (PT(𝑠

𝑝
) + CT(𝑠

𝑝
))

(15) 𝑠𝑡(𝑠
𝑖
) = 𝑠𝑡(𝑠

𝑖
) + (PT(𝑠

𝑝
) + CT(𝑠

𝑝
)) − (PT(𝑠

𝑖
) + CT(𝑠

𝑖
))

(16) end if
(17) reconstruct a new scheduling of BPS
(18) end if

Algorithm 1: Self-healing algorithm with scheduling (SA1).

executed service sequences, the self-healing mechanism will
be triggered once the service statusmonitored onlinematches
an exception service sequence. Secondly, this method can
deal with different failure scenarios, such as potential failure
and complete failure, which is correct and efficient.

3.2. Self-Healing Mechanism for the Problem on the Potential
Fail by Scheduling. A business process specifies the order in
which component services are invoked and the conditions
under which service tws

𝑖
may be invoked.

Definition 4 (transactional business process (TBP)). A
transactional business process (TBP) can be viewed as an
execution sequence with time constraint, such as TBP =
{⟨tws
1
, 𝑡
1
⟩, ⟨tws

2
, 𝑡
2
⟩, . . . , ⟨tws

𝑖
, 𝑡
𝑖
⟩}, where tws

𝑖
demotes

component service and 𝑡
𝑖
denotes the scheduled starting

point of the execution of service tws
𝑖
.

We say tws
𝑖
is atomic if the elements of the service tws

𝑖
can

be treated as a unit of work. That is, it can use compensation
mechanism to ensure that all of its component services are
completed successfully or none of themdo;we say it is Atomic
Transactional Service (ATS).

Definition 5. Given two parallel component services tws
1
and

tws
2
which belong to one transactional service, we say they

are in a safe region if and only if PT(tws
𝑖
)−CT(tws

𝑖
) > 𝛿 (𝛿 is

a given threshold by user); we say they are in critical region if
and only if 0< PT(tws

𝑖
)−CT(tws

𝑗
)< 𝛿; we say they are in risk

region if and only if PT(tws
𝑖
)−CT(tws

𝑖
) < 0. In this equation,

PT(tws
𝑖
) is the prediction time of service tws

𝑖
; CT(tws

𝑖
) is the

compensation time period of service tws
𝑖
.

Definition 6 (optimal business process scheduling (OBPS)).
We say a business process scheduling (BPS) is an optimal

composite service scheduling sequence if BPS satisfies the
following conditions: (1) all the component services can be
allowed to compensate during the entire life period and (2)
its total compensation cost is minimal at the moment.

If given the following conditions: (1) BPS, a business
process scheduling, (2) 𝑡

𝑖
, time point. Our goal is monitoring

and finding an optimal composite service scheduling which
satisfies Definition 5.

We present our optimal self-healing algorithm by
scheduling, called SA1 (see Algorithm 1). The SA1 algorithm
has two main steps: (1) First, we mine all multirelationships
between Web services and identify transactional service
granularity based on the business process. As such, we
can construct the initial composite service scheduling. (2)
Secondly, monitor and predict the composite service quality
(using the method in [10]) and determine the transactional
service compensability. Once one of the component services
will go into the critical region, the composite service schedule
is adjusted and the compensability state is returned with the
most optimal scheduling.

3.3. Self-HealingMechanism for the Problem on the Completed
Fail by Dynamic Reselection. In order to maintain data
consistency of transactionalWeb service, a composite service
needs compensation when a failure occurs. Furthermore, in
order to guarantee the reliable execution, the system needs to
reselect new service(s) to replace the affected service(s). To
analyze the expected reselection cost with compensation, we
define the snapshot and analyze different compensation costs
furthermore as follows.

Definition 7 (snapshot). A snapshot of the execution of a
composite service at time 𝑡

𝑖
is a 5-tuple {𝑆𝐶

1
, 𝑆𝐶
2
, 𝑆EXE, 𝑆𝑆,

𝑆
𝑈
}, where 𝑡

𝑖
refers to the current time point and 𝑆𝐶

1
is a set of
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SC1: compensable completed service
SC2: completed service at time t
SEXE : being executed service

SS: start service at time t
SU: no executed services

SC1
SC2 SEXE SS SU

+ + + +

t

Figure 6: An execution snapshot of time point 𝑡
𝑖
.

compensable component services that have been completed
before time 𝑡

𝑖
. 𝑆𝐶
2
is a set of component services that have

been completed at time 𝑡
𝑖
. 𝑆EXE is a set of component services

that are being executed at time 𝑡
𝑖
. 𝑆
𝑆
is a set of component

services that start at time 𝑡
𝑖
; 𝑆
𝑈
is a set of component services

that have not yet started at time 𝑡
𝑖
.

Because compensation operation only occurs on those
services which have finished before or will finish at time 𝑡

𝑖
,

there is no compensation cost for services that have not yet
started or will start at this point in time (see Figure 6).

Based on the above equations, we compute compensation
cost as follows.

(1) During the execution, for a composite service, if a
failure does not fail before time 𝑡

𝑖
, compute the successful

probability 𝑝𝑡𝑖
𝑠
. The expected compensation cost depends on

the finished services and those services which will finish at
time 𝑡

𝑖
. In this case, business process (BP) runs successfully

before time 𝑡
𝑖
; that means, service in 𝑆𝐶

1
has been completed

successfully, service in 𝑆𝐶
2
will be complete at time 𝑡

𝑖
, and

𝑆EXE have started successfully. So, the compensation cost can
be computed by the following:

𝑄ct =

𝑆𝐶1+𝑆𝐶2

∑

𝑖=1

𝑃
𝑡𝑖

𝑠𝑖
𝐶
𝑡𝑖

𝑠𝑖
+

EXE
∑

𝑗=1

𝑃
𝑡𝑖

(1−𝑠𝑗)
𝐶
𝑡𝑖

𝑠𝑗
. (1)

(2) During the execution, for a composite service, if a
failure occurs at time 𝑡

𝑖
, compute the failure probability 𝑝𝑡𝑖

𝑓

that business process (BP) fails at time 𝑡
𝑖
. In this case, failures

can only occur when component services in 𝑆𝐶
2
start or are

running 𝑆EXE. The expected compensation cost depends on
the finished services (𝑆𝐶

1
), those services (𝑆𝐶

2
) which will

finish at time 𝑡
𝑖
, and those ongoing services (𝑆EXE). So, the

compensation cost can be computed by the following:

𝑄ct =

𝑆𝐶1

∑

𝑖=1

𝑃
𝑡𝑖

𝑠𝑖
𝐶
𝑡𝑖

𝑠𝑖
+

EXE+𝑆𝐶2
∑

𝑗=1

𝑃
𝑡𝑖

(1−𝑠𝑗)
𝐶
𝑡𝑖

𝑠𝑗
. (2)

Given Web service with compensation support, 𝑠
𝑖
, its

compensation cost denoted by𝐶(𝑠
𝑖
, 𝑡
𝑖
),𝐶(𝑠
𝑖
, 𝑡
𝑖
) = 𝛼×𝑄

𝑡𝑖

𝑝
(𝑠
𝑖
)+

𝛽 × 𝑄ct(𝑠𝑖), where 𝑄𝑡𝑖
𝑝
(𝑠
𝑖
) denotes the cost by executing ctws

𝑖

at time point 𝑡
𝑖
and𝑄ct(𝑠𝑖) denotes the time cost by executing

ctws
𝑖
.

Therefore, the compensation cost of a finished service
equals the probability of successful implementation of service
at time 𝑡

𝑖
multiplied by the compensation cost.

3.3.1. Benefit-Cost Analysis (BC-A) for Adaptive Service Res-
election. As opposed to previous pure replacement algo-
rithms, we proposed a comprehensive, objective, and effective
self-healing model. Our self-healing model not only provides
transaction support but also ensures the optimization of
reselected service QoS and flexible compensation cost:

Score𝑡
𝑘
(𝑠
𝑖
) = UF𝑡𝑖 (cs

𝑖
) + UF (𝑠

𝑖
)

= ∑𝑄
𝑡𝑖

𝑚
(cs
𝑖
) +∑𝑄

𝑘

𝑛
(𝑠
𝑖
) ,

(3)

where UF(cs
𝑖
) denotes the utility function of compensation

service 𝑠
𝑖
andUF(𝑠

𝑖
) denotes the utility function of reselective

service cost.∑𝑄𝑡𝑖
𝑚
(cs
𝑖
) denotes the total of quality description

of compensation service at time point 𝑡
𝑖
and∑𝑄𝑘

𝑛
(𝑠
𝑖
) denotes

quality description of selection by picking up 𝑘th path. 𝑚, 𝑛
represent number of compensation service parameters and
replacement service parameters, respectively. 𝑟 denotes the
length of rollback. 𝑟 + 𝑥 denotes the length of reselection
service sequence. Further, based on the QoS criteria, we
obtain the detailed formula as shown below:

UF𝑡 (ctws
𝑖
) = ∑𝑄

𝑡

𝑚
(CTWS)

= ∑𝑊
𝛼
QoS𝑡
𝛼
, (𝛼 ∈ price, time, 𝑚 = 2) ,

(4)

UF (tws
𝑖
) = ∑𝑄

𝑚
(TWS)

= ∑(𝑊
𝛽
QoS
𝛽
+𝑊
𝛾
QoS
𝛾
) ,

(𝛽 ∈ {price, time} ,

𝛾 ∈ {available, prefer, successful, . . .}) ,
(5)

where theQoS criteria of compensation service includes price
and time; therefore, the detailed compute process is shown
in formula (2) and (3). However, for general services, its
QoS criteria are different; some of the criteria used could be
negative; that is, the higher the value is, the lower the quality
is.This includes criteria such as execution time and execution
price. Other criteria are positive criteria; that is, the higher
the value is, the higher the quality is. In this paper, 𝑊

𝛼
and

𝑊
𝛽
are the weight assigned to negative quality criteria and

positive quality criteria, respectively. In order to balance or
normalize the criteria, values are scaled according to (4) for
negative criteria; values are scaled according to (5) for positive
criteria:

𝑉
𝑥
(tws) =

{
{

{
{

{

QoS𝑥 (tws
𝑖
) −QoS𝑥min (tws

𝑖
)

QoS𝑥max (tws
𝑖
) −QoS𝑥min (tws

𝑖
)

QoS𝑥max (tws
𝑖
) −QoS𝑥min (tws

𝑖
) ̸= 0,

𝑉
𝑥
(tws) =

{
{

{
{

{

QoS𝑥max (tws
𝑖
) −QoS𝑥 (tws

𝑖
)

QoS𝑥max (tws
𝑖
) −QoS𝑥min (tws

𝑖
)

QoS𝑥max (tws
𝑖
) −QoS𝑥min (tws

𝑖
) ̸= 0.

(6)
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In (6), QoS𝑥max is maximum value of a quality criterion for
𝑥; that is, QoS𝑥max = Max(QoS

𝑥,𝑗
). QoS𝑥min is minimum value

of a quality criterion for 𝑥; that is, QoS𝑥min = Min(QoS
𝑥,𝑗
).

Further, we got the detailed replacement cost at time point 𝑡
for selecting the 𝑘th path as shown

Score
𝑘
(tws
𝑖
)

= Max
{

{

{

𝑚

∑

𝛼=1

𝑊
𝛼
𝑉
𝑡

𝛼
(CTWS) +

𝑛

∑

𝛽=1

𝑊
𝛽
𝑉
𝛽
(TWS)

}

}

}

=

{
{
{
{
{
{

{
{
{
{
{
{

{

∑
𝑚

𝛼=1
𝑊
𝛼
× ∑
𝑟𝑙

𝑖=1
𝑉
𝑡

𝛼
(ctws
𝑖
) + ∑
𝑛

𝛽=1
(𝑊
𝛽
× ∑
𝑟𝑙+𝑓𝑙

𝑗=1
𝑉
𝛽
(tws
𝑗
))

𝑘

∑
𝑚

𝛼=1
𝑊
𝑎
+ ∑
𝑛

𝛽=1
𝑊
𝛽

𝑟𝑙

∑

𝑖=1

𝑉
𝑡

𝛼
(ctws
𝑖
) ≤ SLA𝛼;

𝑟𝑙+𝑓𝑙

∑

𝑗=1

𝑉
𝛽
(tws
𝑗
) ≤ SLA𝛽,

(7)

where SLA𝛼 is the max compensation cost for attribute 𝑊
𝛼

and SLA
𝛽
is the max reselection cost for attribute𝑊

𝛽
.

3.3.2. Optimal Service Reselection Algorithm. The self-healing
ability is an important feature in adaptive systems. Good self-
healing mechanism includes not only repairing by itself but
also executing withminimal cost andminimal interrupt time
delay. Based on the idea, unlike the previous purely direct
replacement strategies, this paper fully considers transaction
properties and proposes a self-healing algorithm with com-
pensation support and reselection support. Furthermore, we
give an optimal service reselection algorithmwhich considers
cost profit analysis.

The running failure oriented self-healing algorithm (SA2)
includes three main steps: (1) Find the unavailable node
and judge whether or not it should be compensated; (2)
if the node needs to be compensated, mine the minimal
compensation scope affected by the unavailable node based
on multirelations, such as control relation, data relation, and
business relation; (3) finally, induce the minimal scope of
replacement by matching behavior interface [11] and reselect
the optimal replacement services by benefit-cost analysis;
finally, we show the SA2 algorithm (see Algorithm 2).

We give the outline of the algorithm followed by the
discussions on every main step. First, label the nodes and
edges connected to the failure node tws

𝑖
(lines 2-3); if the

node needs to be compensated, automatically search the
minimal compensation scope affected by the unavailable
node based on existing multirelations (lines 4–9) such as
control relation, data relation, and business relation; secondly,
mine the matching behavior interface with minimal length
and replace it (lines 10–13); the detailed process refers to [11].
Limited by space, we do not explain the function in detail.
Finally, reselect the optimal replacement services by benefit-
cost analysis (lines 14-15).

4. Experiments

The following experiments mainly analyze the efficiency and
the success rate of the proposed self-healing composite ser-
vice model. For brevity, we refer to the self-healing algorithm
with scheduling as SA1 and the self-healing algorithmwithout
scheduling as NSA1. We simulate the network environment

and generate the network topology graph by BRITE tool. The
number of web services varies from 40 to 240. Specifically,
these services are divided into 3 to 10 classes. The execution
period is 10 weeks. The system selects the composite services
by frequency.

The first series of experiments aim to compare the
performance of SA1 and NSA1. Figure 7 shows the average
success rate of SA1 and NSA1 under different periods (from
one week to six weeks), where 100 different services make
up 15655 distinct service execution sequences. Figure 8 shows
the average success rate of SA1 andNSA1 under different tasks
(from 3 tasks to 8 tasks), while the fault rate is 5% and the
running period is 6 weeks. Figure 9 shows the average success
rate of SA1 and NSA1 under different fault rates (from 1%
to 6%), where 100 different services make up 15000 distinct
service execution sequences. As we can see, the success rate
of SA1 is better than that of NSA1. This illustrates that self-
healing algorithm with compensational scheduling is more
robust and reliable. When rescheduling the potential failure
service, the system will escape from risk and be in security.

The second series of experiments aim to compare the
performance of SA2 and Yu’s method [12]. Figure 10 shows
the average success rate of the two algorithms for SA2 and
Yu under different periods (from one week to six weeks),
when the number of services is 100 and consists of about
15655 tuples. Figure 11 shows the average success rate of the
two algorithms for SA2 and Yu under different datasets (from
40 components to 240 components), when the number of
services is 100 and consists of about 15655 tuples. Figure 12
shows the average success rate of the two algorithms for SA2
and Yu under different fault rates (from 1% to 6%), when
the number of services is 100 and consists of about 15655
tuples. As we can see that the success of SA2 is better than
the pure replacement algorithm, it illustrates that self-healing
algorithm with compensation support is more robust and
reliable. When the failure service needs to be compensated,
the applicability of existing pure replacement algorithm is
poor.

The third series of experiments are conducted to evaluate
the scalability of the proposed method. Figure 13 shows the
scalability for SA2 under different lengths of rollback, when
the number of services is fixed to 50 and 100.That is, when the
value of the parameter (represented by the 𝑥-axis) increases,
the run times of SA2 (represented by the 𝑦-axis) go up.
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Input: Composite Service Graph CSG, Failure node tws
𝑖

Output: Selective replacement services
(1) Cset← 𝜙; Kpath← 𝜙;
(2) for unavailable node tws

𝑖

(3) label the node and edge connected with it;
(4) if the tws

𝑖
need to be compensate then

(5) find prefix TWS set (preTWS) corresponding to tws
𝑖
;

(6) identify DCD from preTWS; //Definition 3
(7) mining ICD based on DCD;
(8) determining the affected compensate services;
(9) confirm the minimal CTWS set (Cset);
(10) if Cset is not NULL
(11) determining the length of cascade rollback;
(12) construct MSubGraph [11] starting as interface matching;
(13) end if
(14) compute cost-effect function Scorek(tws

𝑖
); //(7)

(15) return 𝑘th path (Kpath)
(16) end if
(17) end for

Algorithm 2: Self-healing algorithm with compensation (SA2).
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Figure 7: Success rate versus period.

The shorter the rollback length, the lower the run times
showing an approximately linear relation. Figures 14 and 15
show the average running times of SA2 and Yu’s method
under different running periods anddifferent tasks. Aswe can
see, Yu’s method is better than our method when the amount
of data is small. However, when the data or the number of
tasks is accumulated to a certain time, proposed algorithm
(SA2) performs better than Yu’s method. We can see that
the success rate of SA2 is higher than the existing purely
replacement algorithm, it illustrates that the self-healing
algorithm with compensation support is more robust and
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Figure 8: Success rate versus task.

reliable.When the failed service needs to be compensated, the
applicability of existing pure replacement algorithm is poor.

The fourth series of experiments aim to analyze the
overhead of the proposed two-phase framework, including
time taken in the early detection (TD) and in the self-
healing (TS) for SA1 and SA2, respectively. The experiments
conducted for SA1 are shown in Figures 16∼18. Figure 16
shows the overhead of SA1 under task = 6 and task = 8 while
period varies from 1 to 6 and fault rate is fixed to 3%. Figure 17
shows the overhead of SA1 under period = 3 and period = 5
while fault rate varies from 1% to 6% and task is fixed to 6.
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Figure 10: Success rate versus period.

Figure 18 shows the overhead of SA1 under fault rate = 3%
and fault rate = 5% while task varies from 4 to 9 and period
is fixed to 3. As seen from the figures, time taken in the early
detection is much shorter than that taken in the self-healing.
This is because the early patterns are guaranteed to be the
sequences of as short as possible size but as high as possible
prediction accuracy [9]. Thus, the early detection time is
short. Note: we do not count time taken for mining the early
patterns since they can be mined offline before triggering the
prediction of QoS. The experiments conducted for SA2 are
shown in Figures 19∼21, where different number of services
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Figure 12: Success rate versus fault rate.

corresponds to different cases. Specifically, the cases of 50 and
100 services are, respectively, referred to as case 1 and case 2.
Figure 19 shows the overhead of SA2 under case 1 and case 2
while length of rollback varies from 2 to 7 and task is fixed
to 8. Figure 20 shows the overhead of SA2 under task = 6
and task = 8 while case varies from 30 to 180 and length of
rollback is fixed to 4. Figure 21 shows the overhead of SA2
under length of rollback = 3 and length of rollback = 5 while
task varies from 4 to 9 and case is fixed to case 1. Similar to
the figures for SA1, time taken in the early detection for SA2
is also much shorter than that taken in the self-healing. This
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Figure 13: The scalability for SA2.
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is also because the small sizes of the early patterns lead to the
short time of the early detection.

Further, we give the compensation cost analysis in Table 1.
Totally, 10 datasets are used, where the number of services
(column 2) range from 20 to 200, and the maximum length
of the behavior interface matching (column 3) ranges from
5 to 10. For each row in column 3, we further define the
corresponding maximum compensation length (column 4).
With the compensation cost randomly set between 0 and 1,
columns 5 and 6 are, respectively, the average compensation
time and the average compensation cost. As seen from
Table 1, the values in columns 5 and 6 hardly vary with the
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number of rollback compensation services increasing. This
indicates that our method is of nice scalability.

5. Related Work

With the rapidly increasing complexity of systems, how to
ensure the composite web services reliably executed without
interrupted by exceptions is one of the most challenging
problems. Reliability execution refers to composite services
that can identify unavailable services and reselect new
services to replace the unavailable web services with the
dynamically changing environment. This kind of adaptive
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Table 1: The compensation cost analysis.

Case #Service The maximum length The maximum
compensation length

The average compensation
time (ms)

The average compensation
cost

1 20 5 3 5.2 1.2
2 40 6 4 8.3 1.1
3 60 6 4 9.8 1.5
4 80 6 4 12.6 1.3
5 100 8 5 15 1.62
6 120 8 5 18.2 1.57
7 140 8 5 20.3 1.82
8 160 9 6 21.4 1.68
9 180 9 6 23.1 1.89
10 200 10 7 25.5 2.01
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Figure 17: TD and TS versus fault rate.

mechanisms guarantees the business process will not be
interrupted and can be executed reliability and therefore
attracts much attention from academics and industry.

Substitution is one of the most important mechanisms
that guarantee the system reliability. There are two classes
of substitution mechanisms at present. The first substitution
strategy is replacement oriented service function [13–15]. For
example, based on the idea of the replacement composite
service, in [15], the authors mention services with the same
parameters can provide similar functions; they discover ser-
vices by matching similar parameters and semantic function.
Reference [14] proposes a service replication approach, in
order to substitute the original component service when
it is not available due to the traffic congestion. Based on
the idea of replication, [13] proposes a service composition
approach based on redundancy mechanisms. The key to this
approach is to establish a set of redundant services for each
component service. Then, if one component service fails,
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Figure 18: TD and TS versus task.

the service can be replaced with an alternative member of
the same redundancy group. Another substitution strategy
is replacement oriented quality (i.e., QoS) [12, 16–18]. For
example, based on the idea of the replacement composite
service, some researchers [12] propose approaches of backing
up a composite service for each component service. Then,
when a component service failure occurs, the composite
service can easily switch to a replacement one and such
self-healing process will not cause an extra delay. In [12,
17], all the replacement composite services are backed up
before the execution of the composite service. Such two
approaches do not consider the QoS in the execution of
the composite service. Because of the dynamic nature of
Web services, the replacement service may not be available
at all times. The approaches in [16, 18] are two studies on
reselection in the execution of the composite service. In
[16], the author proposed composite service replacement
algorithm for global optimization. The method focuses on
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reselecting the unexecuted services when the failure was
triggered and ensuring the global QoS as soon as possible.
In [18], the reselection will be triggered as soon as the
actual QoS deviates from the initial estimates. When the
failure is found, the execution of the composite service will
be stopped until the reselection is completed. All in all,
they only analyze the QoS requirement for replacement,
without ensuring the overall system consistency due to lack
of transactional support. Moreover, transactional properties
can guarantee the composite service execution reliability [19].
Those replacement algorithms ignoring transaction support
will fail even satisfying the requirements from function or
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semantical point of view. Under these circumstances, the
system will be interrupted and the application was limited.
Note: in one of our previous works [20], a simple replacement
model of QoS was proposed, where we proposed that both
the transactional replacement cost and the compensation
cost should be considered. Compared with the work in
[20], this paper is of two different contributions: (1) a
novel rescheduling algorithm is presented, which ensures
composite service to enter into a safe status while avoiding
potential risks, and (2) a replacement model of QoS with
probability consideration is proposed, by which the services
withminimumreplacement cost can be chosen in reselection.

6. Conclusion

We proposed a self-healing framework in order to make
service-based application reliable execution. Firstly, we pro-
pose a rescheduling algorithm which ensures composite
service enters into safe status from potential risk. Secondly,
a probability model is proposed, which reselects services
with minimal cost. Such an approach is an integration of
flexible compensation service in rescheduling and reselecting
in execution. In order to make the composite service healing
itself as quickly as possible and minimize the number of
reselections, a way of mining cascading scope of replacement
in advance by considering fully multirelation between trans-
actionalWeb services is proposed in this paper. On this basis,
a new comprehensive, objective QoS-driven services rese-
lection model with compensation supporting was described;
further, the self-healing algorithm is presented including
triggering compensation service and replacement services
reselection. Finally, A series of experiments show that the
model not only guarantees business process completion
and consistency, but also enhances system’s reliability and
credibility.
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