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This paper presents a stability analysis for LNDS (Lagrangian nonlinear dynamical systems) with dynamic uncertain using a PID
controller with external disturbances rejection based on attractive ellipsoid methods, since the PID-CT (proportional integral
derivative computed torque) compensator has been used for the nonlinear trajectory tracking of an LNDS, when there are external
perturbations and system uncertainties. The global system convergence of the trivial solution has not been proved. In this sense,
we propose an approach to find the gains of the nonlinear PID-CT controller to guarantee the boundedness of the trivial solution
by means of the concept of the UUB (uniform-ultimately bounded) stability. In order to show the effectiveness of the methodology
proposed, we applied it in a real 2-DoF robot system.

1. Introduction

Themathematical model for many physical (mechanical and
electrical) systems is described by a set of nonlinear ordi-
nary differential equations. Commonly, these mathematical
models are described by a trajectory optimization procedure
or by Lagrangian (Euler-Lagrange) dynamic equations [1,
2]. The main control problem for these systems involves
some concepts of stability such as asymptotic, exponential,
and uniform stability, among many others (see, e.g., [3–5]).
Moreover, the high precision position and velocity control in
Lagrangian systems are a fundamental and important control
problem. In practice, the problem of tracking a reference tra-
jectorywhere external disturbances, parameter uncertainties,
or dynamical uncertainties are present has received relatively
less attention in the literature. Traditionally, the methods to

stabilize the Lagrangian systems are based on conventional
PD (proportional derivative), PD+ (PD with gravity com-
pensation), PID (proportional integral derivative), and PID-
CT compensators. It is well known that a PD controller can
guarantee only asymptotic stability of Lagrangian systems in
the regulation case. For the control theory viewpoint, it is
well known that the steady-state error can be dissipated by
introducing an integral compensator to the PD control or
PID compensator. Nevertheless, in order to remove steady-
state error caused by external disturbances, uncertainties, and
noise, the integrator gain has to be increased. Nowadays, in
industrial applications industrial linear PIDs are still used;
however under certain circumstances, the stability of the
closed-loop system with traditional PID is not guaranteed
(from theoretical viewpoint).Thus, a high number of authors
have been studying the global asymptotic stability around
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the origin of conventional compensators using the LNDS
and the LaSalle’s invariant principle theorem [3, 4, 6, 7].
However, when the LNDS has unknown bounded external
perturbations, the traditional analysis does not have a good
efficiency. Besides, the transient performance and stability
problems in the integrator theory analysis are also difficult
to deal with for industrial linear PID controller. In order to
ensure asymptotic stability of the PID controller, a traditional
method is to modify the linear PID into a nonlinear one.

Nonetheless, it is well known that inmany theoretical and
practical applications the PID compensator, under satisfac-
tory gain tuning, provides a workable trajectory enforcement.
Moreover, from a certain point of view, the PID compensator,
without full system description, achieves some robustness
properties [6, 8–10]. Based on the above assumptions and
after an exhaustive research in the area of classical closed-
loop controllers for LNDS we are inevitability addressed
to the next question: under which conditions the classical
PID is workable? Unfortunately, this is an open question
because the classical PID compensator in presence of strong
nonlinearities (like LNDS, tribology effects, external per-
turbations, or dynamic uncertainties) involves difficulties
in dynamical analysis (see, e.g., [11, 12]). Even more, the
qualitative operation of PID closed-loop solution of LNDS
plays an important role in many engineering practical appli-
cations such as mechanical and power systems [7, 12, 13].
Although, for the classical linear PID, it is easy to prove
asymptotic stability [11], it is not the case for the nonlinear
system (this is the case for control analysis of LNDS or the
Geometrical viewpoint (see [14, chapters 10-11] and [15])).
So, in [14, 15] the authors established exponential stability
only for the velocity error and feedforward compensator for
LNDS, but this analysis does not tell us what happend with
the external perturbations. In this work, we intend to define
UUB-stability (for all system states) on the class of perturbed
LNDS. Although PID control has been used in industrial
robots for a long time, there is few explicit stability analysis
on it. A wide variety of authors ensure asymptotic stability,
but they do not take into account a robust analysis.

Nowadays, the development of high-performance robust
control as well as its physical implementation is one of
the main problems in the control theory, because in the
experimental applications, we require a workable instrument
to design compensators, which are able to operate suc-
cessfully under consideration of external perturbations (see,
e.g., [16–18]). This paper deals with the trajectory tracking
control problem for LNDS, applied for a two-degree-of-
freedom (DoF) benchmark robotic manipulator. Here, we
consider the PID-CT for LNDS with unknown but bounded
external perturbations. This kind of perturbation belongs
to the class of nonlinear functions so called quasi-Lipschitz
functions. This class of functions permits to consider strong
nonlinearities, like tribology effects and relay effects (such
as the case when a robot task is to take an object from one
point to another, which induces a switch on the parameters,
e.g., mass and length to the center of mass). Even more, we
suggest a robust analysis for a class of LNDS with bounded
disturbances. Thus, in this paper we give an analysis of

UUB-stability for LNDSwith unknownbut bounded external
perturbations from a class of quasi-Lipschitz functions.

The outline of this paper is as follows. In Section 2, we
present a basic definitions and the problem formulation. Next
section presents the main contribution of this work, based on
the robust analysis of PID-CT compensator for Lagrangian
systems. In Section 4, we obtain numerical results which
define a two-link manipulator trajectory track. Finally, we
present the conclusions.

2. Basic Definitions and Problem Formulation

In this section, we introduce the mathematical and LNDS
mechanical tools needed for the remainder of this work.

2.1. Lagrangian Dynamics

2.1.1. Lagrangian Classical Model. The dynamic equation for
mechanical or electrical systems can be obtained via the
Newton’s or Kirchhoff ’s laws approach, for 𝑁-DoF system
or like in this case from the Lagrangian. These equations
are obtained by the Lagrangian equation (for mechanical
viewpoint). The general equation for the robot manipulator
is given as

D (𝑞) ̈𝑞 + C (𝑞, ̇𝑞) ̇𝑞 + 𝐺 (𝑞) = 𝜏, (1)

where the position coordinates 𝑞 ∈ R𝑛 with their associated
velocities ̇𝑞 and accelerations ̈𝑞 are controlled by the vector
𝜏 ∈ R𝑛 of driving forces. The Coriolis (centripetal) forces
are C(𝑞, ̇𝑞) ̇𝑞 ∈ R𝑛, and the gravitational forces are denoted
by 𝐺(𝑞) ∈ R𝑛. The dynamics (1) presents some interesting
properties which will be useful in establishing the stability
control analysis (see the Appendix).

2.1.2. Lagrangian Equations in First ODE Form. Observe that
the general Lagrangian equation (1) can be represented in the
first-order extended system as follows:

�̇� = 𝑓
0
(𝑥) + 𝑔 (𝑥) 𝑢,

𝑥 (0) = 𝑥
0
,

(2)

where 𝑥 ∈ 𝑀 ⊆ R2𝑛, 𝑢 ∈ R𝑚 is the control input, and 𝑥
0
⊆

𝑀 are the initial conditions. From Lagrangian formulation
under basic change of variables 𝑥

1
:= 𝑞 ∈ R𝑛, 𝑥

2
:= ̇𝑞 ∈ R𝑛,

𝑢 := 𝜏 ∈ R𝑛, and 𝑥 = [𝑥
⊺

1
, 𝑥
⊺

2
]
⊺, one has the mathematical

model as

𝑓
0
(𝑥) = [

[

𝑥
2

−D−1 (𝑥
1
) {C (𝑥) 𝑥

2
+ 𝐺 (𝑥

1
)}
]

]

,

𝑔 (𝑥) = [

[

0
𝑛×𝑛

D−1 (𝑥
1
)
]

]

.

(3)

2.1.3. The Uncertain External Perturbation. The external per-
turbations, affecting the system dynamics, are supposed to be
bounded. By including this expression on the LNDS, we have

D (𝑥
1
) �̇�
2
+ C (𝑥) 𝑥

2
+ 𝐺 (𝑥

1
) = 𝜏 + 𝜁 (𝑥, 𝑡) , (4)
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where the external perturbations have the following property:

𝜁 (𝑥, 𝑡) := 𝜁 (𝑞, ̇𝑞, 𝑡) ,
𝜁(𝑥, 𝑡)



2

≤ 𝑐
1
+ 𝑐
2
‖𝑥‖
2 (5)

for positive scalars 0 < 𝑐
1
, 𝑐
2
< ∞. Even more, it is admitted

to have an unknown nonlinearity from a given class so-called
quasi-Lipschitz functions [19]. Then, the nonlinearities 𝜁 :

R𝑛 → R𝑛 are from theC class of quasi-Lipschitz functions.

Definition 1 (the class C of quasi-Lipschitz functions [19]).
A vector function 𝑓

1
: R𝑝 → R𝑝 is said to be from the

class C(A, 𝛿
1
, 𝛿
2
) (A ∈ R𝑝×𝑝; 𝛿

1
, 𝛿
2
≥ 0) of quasi-Lipschitz-

functions if for any 𝑧 ∈ R𝑝, it satisfies the inequality

C (A, 𝛿
1
, 𝛿
2
)

:= {𝑓
1
: R
𝑝

→ R
𝑝

|
𝑓1 (𝑧, 𝑡) − A𝑧

2

≤ 𝛿
1
+ 𝛿
2
‖𝑧‖
2

}

0 < 𝛿
1
, 𝛿
2
< ∞.

(6)

Notice that

(i) the growth rate of 𝑓
1
(𝑧, 𝑡) as ‖𝑧‖ → ∞ is not faster

than linear;
(ii) if 𝛿

1
= 0, the class C(A, 0, 𝛿

2
) is the class of Lipschitz

functions.

This class of nonlinear functions may include discontinuous
and hysteresis functions as well. Here, the perturbation 𝜁(𝑥, 𝑡)
under dynamics �̇�

2
has the following property:

𝑓
1
(𝑥, 𝑡) := D−1 (𝑥

1
) 𝜁 (𝑥, 𝑡) ,

D−1 (𝑥) ≤ 𝛿
1
I
𝑛×𝑛

(7)

which implies that 𝑓
1
(𝑥, 𝑡) ≤ 𝛿

1
𝑐
1
+ 𝛿
1
𝑐
2
‖𝑥‖
2. The scalar, 𝛿

1
,

is given by the bounded property of the inertia matrix (see
the Appendix). Finally, the Lagrangian equations in Cauchy
form (2) in presence of external perturbations (4) have the
following form:

�̇� = 𝑓
0
(𝑥) + 𝑓

1
(𝑥, 𝑡) + 𝑔 (𝑥) 𝑢. (8)

In this work, we allow the external perturbations 𝑓
1
(⋅) from

a C class of quasi-Lipschitz functions. Now, our control
objective is to stabilize (8) by using the PID-CT compensator.

2.1.4. PID-CT Configuration. In this work, the structure of
the proposed control action 𝜏 is as follows:

𝑢 = D (𝑥
1
) �̇�
𝑑

2
+ C (𝑥) 𝑥𝑑

2
+ 𝐺 (𝑥

1
) − K
𝐼
𝜉 (𝑥
1
)

− K
𝑃
𝑥
1
− K
𝐷
𝑥
2

(9)

with the gain matrices 0 < K
𝐼
= K⊺
𝐼
, K
𝐷
= K⊺
𝐷
, K
𝑃
= K⊺
𝑃
∈

R𝑛×𝑛 and𝑥
1
:= 𝑥
1
−𝑥
𝑑

1
, 𝑥
2
:= 𝑥
2
−𝑥
𝑑

2
as dynamics error, where

𝑥
𝑑

1
and𝑥𝑑
2
are the deviation position and velocity, respectively,

and 𝜉(⋅) := ∫⊺
𝑡0

(⋅)𝑑𝜏. In the classical robotics control strategies,
the control action (9) is known as PID-CT compensator and
it is well known that it has robustness properties.

2.2. Problem Formulation. In this section, we explain the
problem formulation, which states that all system trajectories
arrive to a neighborhood of a desired trajectory. This is by
the following facts: When it is present noise in the position
measurements (e.g., where the velocity and acceleration
are estimated, by definition, from position measurement);
possible change or switch in the system parameters, the time
varying or like relay change on the parameters; external
disturbances, the link contact with the external environment;
dynamic uncertainties, Maxwell-slip friction model, Stribeck
effect in sliding, frictional lag, varying break-away forces,
stick-slip behavior, and among others tribology effects. For
this reason, in this work, we approximate the error tracking
path of the nonlinear system (8) to an AE (attractive ellip-
soid).

Definition 2 (attractive ellipsoid). One says that the ellipsoid

E (0,P) = {𝑥 ∈ R
𝑛

: 𝑥
⊺P𝑥 ≤ 1, P = P⊺ > 0} (10)

(with the center in the origin and with the corresponding
ellipsoidal matrix P) is attractive for some dynamic system if
for any of its trajectories {𝑥}

𝑡≥0
the following property holds:

lim sup
𝑡→∞

𝑥
⊺

(𝑡)P𝑥 (𝑡) ≤ 1. (11)

Remark that all trajectories {𝑥}
𝑡≥0

of a dynamic system remain
bounded, if for this system there exists an attractive ellipsoid
E(0,P). The existence of an AE is the generalization of the
UUB-property (uniform-ultimately boundedness) discussed
in [5]. Our main goal is to design a robust feedback based
on PID compensator; moreover, the compensator rejects
disturbances without loss of tracking trajectories paths.

3. On the UUB-Stability of the PID-CT
for LNDS

The robustness of the PID compensators on dynamical
systems is a classical topic in control theory. Here, we present
a stability sketch fromLNDS in closed-loopwith PID-CT. It is
well known that the kinetic energy plays an important role for
stability analysis for LNDS. In this paper, we use the energy
function based on kinetic energy as follows:

𝑉 (𝑦) = ⟨𝑦,P𝑦⟩ , 𝑦 := [𝜉 (𝑥
1
)
⊺

, 𝑥
⊺

1
, 𝑥
⊺

2
]
⊺

, (12)

where thematrixP = P⊺ ∈ R3𝑛×3𝑛 is a positive definitematrix
and its structure is defined by 𝑛 × 𝑛 matrix subblocks as
follows:

P :=
[
[

[

P
11

P
12

0
𝑛×𝑛

P⊺
12

P
22

0
𝑛×𝑛

0
𝑛×𝑛

0
𝑛×𝑛

D (𝑥
1
)

]
]

]

, where P
11
,P
12
,P
22
∈ R
𝑛×𝑛

.

(13)

The following theorem presents the analysis for global stabil-
ity of the PID-CT of system (8) under the specific energetic
function (12).
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Theorem 3 (on the energy function of the PID-CT). If the
tuning of the control gain matrices K

𝑃
, K
𝐷
, and K

𝐼
of the

control action (9), under given matrix P and positive scalars
𝛼, 𝜀, is such that the following LMI constraint holds:

0 ≤

[
[
[
[

[

𝛼P
11
− 𝜀𝑐
1
I
𝑛×𝑛

𝛼P
12
+ P⊺
11

P
12
− K⊺
𝐼

𝛼P⊺
12
+ P
11

𝛼P
22
+ P
12
+ P⊺
12

P⊺
22
− K⊺
𝑃

P⊺
12
− K
𝐼

P
22
− K
𝑃

𝛼A − K
𝐷

]
]
]
]

]

(14)

then the energy function (12) has the following property:

lim
𝑡→∞

⟨𝑦,P𝑦⟩ ≤ 1,

P :=
𝛼

𝛽

[
[
[
[

[

P
11

P
12

0
𝑛×𝑛

P⊺
12

P
22

0
𝑛×𝑛

0
𝑛×𝑛

0
𝑛×𝑛

A

]
]
]
]

]

, 𝛽 := 𝜀𝑐
0
.

(15)

The proof of all statements is given in the Appendix.

Remark 4. From Schur’s complement it is easy to see that a
necessary condition for the linear matrix inequality solution
(14) provides positive definite matrix P for some P

12
+ P
12
<

−𝛼P
22
, P
11
< 𝜀𝑐
1
/𝛼, and 𝛼A < K

𝐷
.

Notice that the extended trajectories 𝑦(𝑡) converge to
an invariant ellipsoid E(0,P) centered on the origin with
ellipsoidal matrix P. In other words, 𝑦(𝑡) → E(0,P) as
𝑡 → ∞. This ellipsoid is approached with the exponential
rate exp(−𝛼𝑡) fulfilling with

⟨𝑦 (𝑡) ,P𝑦 (𝑡)⟩ − 1 ≤ (𝑉 (0) − 𝜀

𝛼
𝑐
0
) exp (−𝛼𝑡) . (16)

Moreover, notice that the selection of matrix P implies a
family of possible ellipsoidal matrix configurations and may
be selected in order to minimize the energy function (12). In
further works, we will study this case from an optimization
point of view [19].

Remark 5. It is well-known that the concept of an energetic
functionwas rigorously formalized bymeans of the Lyapunov
stability theory as well as the notion of a positive invariant
set. Here, we just notice that the set of solutions (K

𝑃
,K
𝐷
,K
𝐼
,

and W) is given by Theorem 3, such that (15) holds, and
the storage function (12) is not obligatory monotonically
nonincreasing. That means that 𝑉(𝑧) is not a Lyapunov
function for the considered system at least for this time-
interval.

Below, we suggest the construction of a Lyapunov-
Like function whose derivative on the trajectories of the
considered controlled system is strictly negative outside of
an ellipsoid. Which implies that any trajectory that begins
outside the ellipsoid (15), this returns asymptotically within
the ellipsoid. In other words, UUB-stability is guaranteed if
the ellipsoid is an attractive region. The above is set to the
next result.

y
l2, m2

l1, m1

q1

q2

x

g

Figure 1: 2-DOF manipulator system.

Theorem 6 (on the attractively of the ellipsoid). Under the
assumption of Theorem 3, the function

𝐺 (𝑉 (𝑦)) := ([

[

√𝑉 (𝑦) − √
𝛽

𝛼

]

]+

)

2

,

[𝑦]
+
:= {

𝑦, if 𝑦 ≥ 0,
0, if 𝑦 < 0

(17)

is a Lyapunov function, and then the following property

𝑑

𝑑𝑡
𝐺 (𝑉 (𝑦)) ≤ 0 (18)

is globally satisfied, which exactly means that the set {𝑦 ∈ R3𝑛 :

𝐺(𝑉(𝑦)) = 0} is a positive invariant region.

Notice that the results ofTheorem 6 involve the so-called
UUB-property on the solution of the system trajectories
(see [5]), satisfying the problem statement (15), so we may
conclude that the PID-CT compensator, for a nonlinear
system (8), is robust under external perturbations.

4. Experimental Validation

In order to show the contribution of the results obtained in
this paper, we obtain the PID-CT gain matrices under two
approaches.The first one is given by classical Ziegler-Nichols
method (popular technique for tuning controllers that use
PID actions [11, 12]), while the second one is given by LMI
solution (14) introduced in this paper (see Theorem 3). The
system to be controlled is a benchmark classical system (the
second-link vertical planar robot shown in Figure 1, whose
dynamics are given in the literature; see [7]).Themodel of the
motion dynamics is a set of 2 rigid bodies connected and
described by a set of generalized coordinates 𝑞 ∈ R2. The
derivation of the motion equations is given by (1) and by
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Figure 2: Error signals 𝑥
𝑖,𝑗
for 𝑖, 𝑗 = 1, 2 of the trajectory tracking. The subindexes 𝑖 and 𝑗 are the position and velocity.

applying the methods of the Lagrange theory, involving
explicit expressions of kinetic energy and potential energy,
where we obtained the standard general equation (1). For this
robot study case the position, velocity, acceleration, and
control input (𝑞, ̇𝑞, ̈𝑞, and 𝜏, resp.) belong in R2. Under the
change of variable (𝑞

1
, 𝑞
2
, ̇𝑞
1
, ̇𝑞
2
) := (𝑥

⊺

1
, 𝑥
⊺

2
) = 𝑥
⊺, 𝑥⊺
1
= (𝑥
1,1
,

𝑥
1,2
), and 𝑥⊺

2
= (𝑥
2,1
, 𝑥
2,2
), the nonlinear system described in

the first-order Cauchy form (2) is given as follows:

D (𝑥
1
) = (

𝜃
1
+ 𝜃
2
+ 𝜃
3
cos (𝑥

1,2
) 𝜃
2
+ 𝜃
3
cos (𝑥

1,2
)

𝜃
2
+ 𝜃
3
cos (𝑥

1,2
) 𝜃

2

) ,

C (𝑥) = −𝜃
3
sin (𝑥

1,2
) (
𝑥
2,2

𝑥
2,1
+ 𝑥
2,2

𝑥
2,1

0
) ,

𝐺 (𝑥
1
) = (

𝜃
4
𝑔 cos (𝑥

1,1
) + 𝜃
5
𝑔 cos (𝑥

1,1
+ 𝑥
1,2
)

𝜃
5
𝑔 cos (𝑥

1,1
+ 𝑥
1,2
)

) ,

𝑢 = (
𝑢
1

𝑢
2

) .

(19)

Now the parameters of thismanipulator (given in the interna-
tional systemof units) are 𝜃

1
= 𝑚
1
𝑙
2

𝑐1
+𝑚
2
𝑙
2

1
+I
1
, 𝜃
2
= 𝑚
2
𝑙
2

𝑐2
+I
2
,

𝜃
3
= 𝑚
2
𝑙
1
𝑙
𝑐2
, 𝜃
4
= 𝑚
1
𝑙
𝑐1
+ 𝑚
2
𝑙
1
, and 𝜃

5
= 𝑚
2
𝑙
𝑐2
, with the

total mass of link-1𝑚
1
= 0.5 kg, the total mass of link-2𝑚

2
=

0.25 kg, themoment of inertia of link-1 I
1
= 0.004Kg ⋅m2, the

moment of inertia of link-2 I
2
= 0.005Kg ⋅m2, the distance to

center of mass of link-1 𝑙
𝑐1
= 0.275m, the distance to center

of mass of link-2 𝑙
𝑐2
= 0.1m, the length of link-1 𝑙

1
= 0.4m,

the length of link-2 𝑙
2
= 0.2m, and the acceleration of gravity

constant 𝑔 = 9.81m/seg2. The distance to center of mass is
defined by 𝑙

𝑐1
and 𝑙
𝑐2
, respectively. Here, we consider that the

dynamics are given by

D (𝑥
1
) + C (𝑥) 𝑥

2
+ 𝐺 (𝑥

1
) + F
𝑟
(𝑥) = 𝜏 + 𝜉 (𝑡) , (20)
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Figure 3: Control signals, for first and second link (two algorithms).

Ziegler-Nichols method
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Figure 4: Trajectory on work space, comparison between the Ziegler-Nichols method and the Robust PID method.

where the friction vector forces include a low (the term low
friction is defined when the friction coefficients belongs in
the set (0, 1)) Coulomb and Viscose friction, F

𝑟
(𝑥) ∈ R𝑛.

The initial condition and the control objective are the same
as those we present in the previous control shape. Notice
that the dissipative vector forces F

𝑟
(𝑥) belong in the class of

quasi-Lipschitz functions; see Definition 1. For the external

disturbances rejection, we introduce a disturbance at time 𝑡 =
10 seconds. The perturbation structure is as follows:

𝜘 (𝑡) = [−0.3𝜒
𝑡
, −0.3𝜒

𝑡
]
⊺

,

𝜒
𝑡
:= 1 (𝑡 − 𝑡P1) − 1 (𝑡 − 𝑡P2) ,

(21)
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where the function 𝑢(𝑡 − 𝑡
𝑘
) is the characteristic function at

time 𝑡
𝑘
[20]. This considered disturbance is because, from

the experimental point of view, it introduces a significant
deviation than the switched parameter value. For example, if
there exist a change of some link mass, it implies a change
on the center of mass of each link. Then, the LNDS with
dissipative forces (20) can be rewrite as the perturbed form
(8). Here 𝑓

1
(𝑥, 𝑡) belongs in the quasi-Lipscitz nonlinear

functions (6) with

𝜁 (𝑥, 𝑡) = 𝜘 (𝑡) − F
𝑟
(𝑥) (22)

and the constants 𝛿
1
= 0.023 and 𝛿

2
= 0.26. The control

process is given by regulation of the desired reference, and
this one is given by the Heaviside step function given by the
following equation:

𝐻(𝑡) := {
1 if 𝑡 ≥ 0
0 if 𝑡 < 0;

(23)

moreover, for the control point of view, we implement a
regulation point-to-point at the work space. The first point
to go is at P

𝑥1
= 0.34 and P

𝑦1
= 0.3 meters at time interval

𝑡 ∈ [0, 𝑡P1) seconds, the second follows a trajectory P
𝑥2

=

0.3 + .04 cos(𝜔𝑡), P
𝑦2

= 0.3 + .04 sin(𝜔𝑡) with 𝜔 = 4𝜋 for
time interval 𝑡 ∈ [𝑡P1 , 50), P𝑥3 = 0.3, respectively, and in the
time 𝑡 = 25 seconds, we induce an external perturbation 𝜉(𝑡)
with a duration of 0.5 s. The initial conditions of the system
for both control examples are

𝑥
0
= [−

𝜋

2
,
𝜋

4
, 0, 0]

⊺

. (24)

The gain matrices given by method of Zingler-Nichols (to
obtain the control gain via Zingler-Nichols method, we take
into account the linearization of the first-order mathematical
model (2) around the center of the area of the desired
trajectory tracking) are

K
𝑃
= (

24.56 0

0 32.77
) , K

𝐷
= (

28.76 0

0 29.07
) ,

K
𝐼
= (

10.98 0

0 14.76
) .

(25)

In order to obtain the PID-CT gain matrices, we used
the MATLAB Toolbox SeDuMi to solve the corresponding
constrained LMI problem (14); see for example [21]. Finally,
we obtain the gain matrices as follows:

K
𝑃
= 1.5 × (

39.56 2.34

2.34 28.37
) , K

𝐷
= 2 × (

34.63 3.3

3.3 43.71
) ,

K
𝐼
= 2 × (

1.97 0.1

0.1 1.96
) .

(26)

Figure 2 depicts the evolution of steady-state errors 𝑥.
Figure 4 depicts the control signals 𝜏

1
and 𝜏

2
for both

actuators. Finally, Figure 3 shows how after the induced per-
turbation the conventional linear PID (red solid line) cannot

reject the perturbation, while on the other hand, for the case
where the gains were tuned by the proposed methodology
(blue solid line), the controller is able to reject the perturba-
tion and to track the desired trajectory.

Clearly, the robust PID control can successfully com-
pensate the uncertainties such as friction, gravity, and other
uncertainties of the robot.

5. Concluding Remarks

An analysis of global UUB-stability for Lagrangian systems
has been presented in this paper. In order to perform the
robust stability analysis, we used like-passivity injection
based on the dynamical properties of the system and in the
characteristics of the quasi-Lipschitz functions. Theoretical
robust analysis stability of PID-CT compensator under exter-
nal but bounded perturbations has been done successfully.
Experimental validation was conducted by perturbations
between the robotic arm positions 𝑥

1
and 𝑥

2
. Here, we have

defined a methodology to obtain the K
𝑃
, K
𝐷
, and K

𝐼
gains

matrices of the PID-CT compensator. Even more, we used
an storage function based on the trajectory error in order
to guarantee the asymptotic convergence. A comparison
between the Ziegler Nichols algorithm and the algorithm
proposed showed that it has a better performance in order
to reject external disturbances and dynamic uncertainties.
Additionally, themaximal overshot of the closed-loop system
is given by the ultimate bound of the stability analysis; this
is because once the trajectory arrives to the ellipsoid, this
remains there. Thus, the main result of this contribution
opens the door for the study of output feedback compensators
for LNDS. Even more with this result, we will study the case
when the dynamical system has not external perturbation
and dynamic uncertain, waiting to probe exponential stability
(see expression (16)).

Appendix

Properties of Lagrangian Mechanical Systems

The dynamic equation for Lagrangian mechanical systems
(1) has the following interesting properties. Inertial matrix
D(𝑞) is positive and definite, and D(𝑞) and C(𝑞, ̇𝑞) have the
following properties [7, 13, 14].

(i) There exist some positive constants (𝛿
0
, 𝛿
1
< ∞) such

that

𝛿
0
𝐼
𝑛×𝑛

≤ D (𝑞) ≤ 𝛿
1
𝐼
𝑛×𝑛

∀𝑞 ∈ R
𝑛

, (A.1)

where 𝐼
𝑛×𝑛

denotes the 𝑛 by 𝑛 identity matrix. So, matrix
D−1(𝑞) exists and it is positive definite.

(ii) Matrix C(𝑞, ̇𝑞) has a relationship with the inertial
matrix as follows:

Ḋ (𝑞) = C (𝑞, ̇𝑞) + C (𝑞, ̇𝑞)
⊺

. (A.2)

In fact, (1/2)Ḋ(𝑞) − C(𝑞, ̇𝑞) is the skew-symmetric property,
where C(𝑞, ̇𝑞) is a matrix, univocally defined by D(𝑞).
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Proof of Theorem 3. The time derivative of the energy func-
tion ((𝑑/𝑑𝑡)𝑉(𝑦) := �̇�(𝑦)) is given as follows:

�̇� (𝑦) = 2 ⟨𝑦,P ̇𝑦⟩ + ⟨𝑥
2
, Ḋ (𝑥

1
) 𝑥
2
⟩ (A.3)

or in extended form

�̇� (𝑦) = ⟨𝑦,
[
[

[

0
𝑛×𝑛

P⊺
11

P
12

P
11

P
12
+ P⊺
12

P⊺
22

P⊺
12

P
22

0
𝑛×𝑛

]
]

]

𝑦⟩

+ 2⟨𝑥
2
,D (𝑥

1
) ̇̃𝑥
2
⟩ + ⟨𝑥

2
, Ḋ (𝑥

1
) 𝑥
2
⟩ ;

(A.4)

notice that, from Lagrangian formulation (3) and from
dynamical error, we have

�̇�
2
= D−1 (𝑥

1
) {𝑢 + 𝜁 (𝑥, 𝑡) − C (𝑥) 𝑥

2
− 𝐺 (𝑥

1
)} ,

̇̃𝑥
2
:= �̇�
2
− �̇�
𝑑

2
;

(A.5)

using the kinetic-Corolis matrices properties (A.2) on the
right hand side of (A.3), we have that

⟨𝑥
2
,D (𝑥

1
) ̇̃𝑥
2
⟩

= ⟨𝑥
2
,D (𝑥

1
) (�̇�
2
− �̇�
𝑑

2
)⟩

= ⟨𝑥
2
, 𝑢 + 𝜁 (𝑥, 𝑡) − C (𝑥) 𝑥

2
− 𝐺 (𝑥

1
) −D (𝑥

1
) �̇�
𝑑

2
⟩

= ⟨𝑥
2
, 𝑢 + 𝜁 (𝑥, 𝑡) − C (𝑥) 𝑥

2
− C (𝑥) 𝑥𝑑

2
− 𝐺 (𝑥

1
)

−D (𝑥
1
) �̇�
𝑑

2
⟩ ,

(A.6)

and using the control law (9)

𝑢 = D (𝑥
1
) �̇�
𝑑

2
+ C (𝑥) 𝑥𝑑

2
+ 𝐺 (𝑥

1
) − K
𝐼
𝜉 (𝑥
1
)

− K
𝑃
𝑥
1
− K
𝐷
𝑥
2

(A.7)

we obtain the following:

⟨𝑥
2
,D (𝑥

1
) ̇̃𝑥
2
⟩

= ⟨𝑥
2
, −K
𝐼
𝜉 (𝑥
1
) − K
𝑃
𝑥
1
− K
𝐷
𝑥
2
− C (𝑥

1
, 𝑥
2
) 𝑥
2
⟩

= ⟨𝑥
2
, −K
𝐼
𝜉 (𝑥
1
) − K
𝑃
𝑥
1
− K
𝐷
𝑥
2
⟩ − ⟨𝑥

2
,C (𝑥) 𝑥

2
⟩ ;

(A.8)

then the time derivative yields as

�̇� (𝑦) = ⟨𝑦,
[
[

[

0
𝑛×𝑛

P⊺
11

P
12

P
11

P
12
+ P⊺
12

P⊺
22

P⊺
12

P
22

0
𝑛×𝑛

]
]

]

𝑦⟩

+ ⟨𝑥
2
, Ḋ (𝑥

1
) 𝑥
2
⟩ − 2 ⟨𝑥

2
,C (𝑥) 𝑥

2
⟩

+ 2 ⟨𝑥
2
, −K
𝐼
𝜉 (𝑥
1
) − K
𝑃
𝑥
1
− K
𝐷
𝑥
2
⟩ .

(A.9)

This expression contains the skew-symmetric property, and it
reduces the expression as follows:

�̇� (𝑦) =⟨𝑦,

[
[
[
[

[

0
𝑛×𝑛

P⊺
11

P
12
− K⊺
𝐼

P
11

P
12
+ P⊺
12

P⊺
22
− K⊺
𝑃

P⊺
12
− K
𝐼

P
22
− K
𝑃

−K
𝐷

]
]
]
]

]

𝑦⟩;

(A.10)

adding and subtracting the energetic function on (A.10), we
obtain

�̇� (𝑦) =⟨𝑦,

[
[
[
[

[

𝛼P
11

𝛼P
12
+ P⊺
11

P
12
− K⊺
𝐼

𝛼P⊺
12
+ P
11

𝛼P
22
+ P
12
+ P⊺
12

P⊺
22
− K⊺
𝑃

P⊺
12
− K
𝐼

P
22
− K
𝑃

−K
𝐷
+ 𝛼D (𝑥

1
)

]
]
]
]

]

𝑦⟩− 𝛼𝑉 (𝑦) ; (A.11)

and realizing the same procedure over 𝜀‖𝜉(𝑥
1
)‖
2

K𝐼 , with 0 < 𝜀
in the last equation under assumption that

𝜉(𝑥1)


2

K𝐼
:= 𝜉 (𝑥

1
)
⊺ K
𝐼
𝜉 (𝑥
1
) ≤ 𝑐
0
+ 𝑐
1

𝜉 (𝑥1)


2

, (A.12)

then we have the following expression:

�̇� (𝑦) ≤ − ⟨𝑦,W (𝑦) 𝑦⟩ − 𝛼𝑉 (𝑦) + 𝜀𝑐
0
, (A.13)

where the matrix W(𝑦) has the following nonlinear-matrix
format:

W (𝑦)

=

[
[
[
[

[

−𝜀𝑐
1
I
𝑛×𝑛

+ 𝛼P
11

𝛼P
12
+ P⊺
11

P
12
− K⊺
𝐼

𝛼P⊺
12
+ P
11

𝛼P
22
+ P
12
+ P⊺
12

P⊺
22
− K⊺
𝑃

P⊺
12
− K
𝐼

P
22
− K
𝑃

−K
𝐷
+ 𝛼D (𝑥

1
)

]
]
]
]

]

.

(A.14)
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Now, if we apply the upper bounds properties from the
Lagrangian formulation (A.1), this nonlinearmatrix becomes
a bilinear one W (see the expression (14)). Then, the energy
function time’s derivative can be defined as follows:

�̇� (𝑦) ≤ − ⟨𝑦,W𝑦⟩ − 𝛼𝑉 (𝑦) + 𝛽, 𝛽 := 𝜀𝑐
0
; (A.15)

note that if the matrix W is positive and definite, then the
energetic function time’s derivative (A.3) holds the following
inequality:

�̇� (𝑦) ≤ −𝛼𝑉 (𝑦) + 𝛽 (A.16)

and its solution on the time interval 𝑡 ∈ [𝑡
0
, t) defines the next

inequality (the variable tdefines a funny change of variable on
time, and 𝑉(0) defines the initial condition of the energetic
function):

�̇� (𝑦) ≤ −𝛼𝑉 (𝑦) + 𝛽

⇒ 𝑉(𝑦) ≤ 𝑉 (0) exp [−𝛼 (𝑡 − 𝑡
0
)]

+
𝛽

𝛼
(1 − exp [−𝛼 (𝑡 − 𝑡

0
)])

(A.17)

and its final value comes to the expression (15), which means
that all trajectories of the extended vector {𝑦} converge to an
attractive ellipsoid. The proof is complete.

Proof of the Theorem 6. Notice that the function [𝑦]
+
is not

differentiable in the point 𝑦 = 0, but the function ([𝑦]
+
)
2 is

differentiable everywhere. Based on this fact and following
[22], we may conclude that the function

𝐺 (𝑉 (𝑦)) := ([

[

√𝑉(𝑦) − √
𝛽

𝛼

]

]+

)

2

(A.18)

is also differentiable everywhere. That is because

𝑑

𝑑𝑡
𝐺 (𝑉 (𝑦)) =

𝑑

𝑑𝑉
𝐺 (𝑉 (𝑦)) �̇� (𝑦)

= [

[

√𝑉 (𝑦) − √
𝛽

𝛼

]

]+

�̇� (𝑦)

√𝑉 (𝑦)

.

(A.19)

Using the inequality (A.16), we obtain

𝑑

𝑑𝑡
𝐺 (𝑉 (𝑦)) ≤ [

[

√𝑉(𝑦) − √
𝛽

𝛼

]

]+

−𝛼𝑉 (𝑦) + 𝛽

√𝑉 (𝑦)

= − 𝛼[

[

√𝑉(𝑦) − √
𝛽

𝛼

]

]+

𝑉 (𝑦) − 𝛽/𝛼

√𝑉 (𝑦)

= − 𝛼([

[

√𝑉 (𝑦) − √
𝛽

𝛼

]

]+

)

2

⋅

√𝑉 (𝑦) + √𝛽/𝛼

√𝑉 (𝑦)

≤ 0

(A.20)

which proves (18). Since the nonnegative function𝐺(𝑉(𝑦)) is
monotonically nonincreasing, by the Weierstrass theorem, it
has a limit; that is, there exists

0 ≤ 𝐺
∗

= lim
𝑡→∞

𝐺 (𝑉 (𝑦)) . (A.21)

Integrating (A.20) implies that

𝐺 (𝑉 (𝑦)) − 𝐺 (𝑉 (𝑦)) ≤ −𝛼∫

⊺

=0

([

[

√𝑉 (𝑦 (t)) − √
𝛽

𝛼

]

]+

)

2

⋅

√𝑉 (𝑦 (t)) + √𝛽/𝛼

√𝑉 (𝑦 (t))
𝑑t

(A.22)

or equivalently that

𝛼∫

⊺

t=0
([

[

√𝑉 (𝑦 (t)) − √
𝛽

𝛼

]

]+

)

2

(1 +
√𝛽/𝛼

√𝑉 (𝑦 (t))
)𝑑t

≤ 𝐺 (𝑉 (𝑦 (0))) − 𝐺 (𝑉 (𝑦 (𝑡))) ≤ 𝐺 (𝑉 (𝑦 (0)))

= const
(A.23)

which, for 𝑡 → ∞ and in view of (A.18), leads to the
following conclusion:

∫

∞

𝑡=0

𝐺 (𝑉 (𝑦 (t))) (1 +
√𝛽/𝛼

√𝑉 (𝑡 (t))
) 𝑑t < ∞. (A.24)

The convergence of the last integral permits to state that there
exists a subsequence {𝑡

𝑘
}
𝑘=1,2,...

such that 𝐺(𝑉(𝑦(𝑡
𝑘
))) →
𝑘→∞

0. But the sequence 𝐺(𝑉(𝑦(𝑡))) converges (see (A.21)), and
hence all its subsequences have the same limit point, which
proves that 𝐺∗ = 0, and, as a result, we have that {𝑥 ∈ R𝑛 :

𝐺(𝑉(𝑦)) = 0} is a positive invariant ellipsoid, and then the
proof is complete.
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