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Accurate prediction of water level fluctuation is important in lake management due to its significant impacts in various aspects.
This study utilizes four model approaches to predict water levels in the Yuan-Yang Lake (YYL) in Taiwan: a three-dimensional
hydrodynamic model, an artificial neural network (ANN) model (back propagation neural network, BPNN), a time series
forecasting (autoregressive moving average with exogenous inputs, ARMAX) model, and a combined hydrodynamic and ANN
model. Particularly, the black-box ANN model and physically based hydrodynamic model are coupled to more accurately predict
water level fluctuation. Hourly water level data (a total of 7296 observations) was collected for model calibration (training) and
validation.Three statistical indicators (mean absolute error, root mean square error, and coefficient of correlation) were adopted to
evaluatemodel performances. Overall, the results demonstrate that the hydrodynamicmodel can satisfactorily predict hourly water
level changes during the calibration stage but not for the validation stage. The ANN and ARMAX models better predict the water
level than the hydrodynamic model does. Meanwhile, the results from an ANNmodel are superior to those by the ARMAXmodel
in both training and validation phases.The novel proposed concept using a three-dimensional hydrodynamicmodel in conjunction
with an ANNmodel has clearly shown the improved prediction accuracy for the water level fluctuation.

1. Introduction

Accurate predictions of water level fluctuation that results
from hydrometeorological variations and anthropogenic dis-
turbances [1] are needed for sustainable development and
management of lake water usage [2–8]. As a complicated
mathematical problem in water resources planning and engi-
neering, water level variations in a lake represent the balance
of water components such as direct precipitation or evapora-
tion at a lake’s surface, groundwater exchange, and incoming
or outgoing river flows. Besides, water level can be influenced
by the near surface wind field [9]. Particularly, during severe
rain storms (or floods), thewater level of a thermally stratified
lake can rise sharply with vertical mixing, leaving significant
socioeconomic and ecological impacts [10].

To date, lake level variations at various time intervals have
drawn more and more research attentions. In general, lake
water level changes seasonally (e.g., high in the wet summer
and low in the dry winter) with sharp rising/falling limbs
during typhoon events, but not in a simple periodic mode
(except for the seiche oscillation that occurs mainly in large
lakes). Effective prediction tools play an important role in the
studies of lakes. They can be used to simulate the lake water
level variations based upon the available measured data and
predict the possible responses under different scenarios, sup-
porting management decisions of valuable water resources.
In the past decades, several types of methodology have been
developed. For example, physically based numerical models
are constructed using a set of governing equations that
address conservation laws of mass/momentum and transport
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Figure 1: (a) Location of Yuan-Yang Lake in Taiwan, bathymetry (contours in m), and gauge location and (b) horizontal grid of Yuan-Yang
Lake for three-dimensional hydrodynamic model.

processes. In contrast to a simple zero-dimensional mass-
balance computation for elevation and storage, these models
can provide more detailed spatial-temporal patterns of water
level, circulation, vertical stratification/mixing, and other
aspects of lake physics [10–14].

Time series forecasting methods that define the trend
or stochastic processes of variables have also been applied
to predict water level fluctuation in lakes. One of the most
commonly used approaches is the autoregressive integrated
moving average (ARIMA) model, where the autoregressive
and moving average filters account for systematic effects and
internal shock effects in the endogenous variable, respec-
tively. ARIMA models require a stationary time series with-
out data missing [15]. Based on the observations time series,
an identified underlying process can be constructed under the
assumptions of linearity, normality, and homoscedasticity.
For better prediction accuracy and variability in endogenous
variables, an autoregressive moving average with exogenous
(ARMAX) model [16] further includes the explanatory vari-
ables in the cause-effect technique.

Alternatively, artificial neural networks (ANNs) provide
a novel computational approach for one-step-ahead fore-
casting. ANNs are widely accepted by cross disciplines and
suitable for the application of hydrological processes due
to their informative processing characteristics, for example,
nonlinearity, parallelism, and noise tolerance, as well as learn-
ing and generalization capabilities [17–23]. Altunkaynak [19]
used an artificial neural network model to accurately predict
dynamic changes of surface water level in the lake. Van. Yarar
et al. [20] estimated level changes of Lake Beysehir in Turkey
using the adaptive neurofuzzy inference system (ANFIS),
ANN, and seasonal autoregressive integratedmoving average
approaches. Kisi et al. [22] forecasted daily lake levels by
artificial intelligence approaches. However, detailed compar-
ison of the time series forecasting and ANN models with the
physically based models has not yet been studied in lakes.

The purpose of this study is to establish a physically
based three-dimensional hydrodynamic model to simulate
the water level fluctuation in the Yuan-Yang Lake (YYL) in
Taiwan. An artificial neural network model is adopted to
predict the lake water level and to improve the calculations

by the hydrodynamic model. Compared with increasingly
applied data assimilation methodologies [24, 25], the novelty
in our proposed concept shows another way for accuracy
improvement in lake water level prediction. A time series
forecasting (ARMAX) model has also been developed. Four
quantitative statistical indices including mean absolute error,
root mean square error, correlation coefficient, andNash Sut-
cliffe efficiency/skill score are used to evaluate the prediction
performance. Model accuracy is investigated and carefully
discussed.

2. Description of Study Site and
Data Collection

Yuan-Yang Lake (YYL, 24∘3460.00N, 121∘240.00E, area
= 3.7 × 104m2, and maximum depth = 4.5m), located
in north-central Taiwan, is a subtropical, subalpine, humic
lake in the Cilan National Forest Preserve (Figure 1(a)). The
lake is located 1670m above mean sea level. The geography
of the drainage basin allows large quantities of terrestrial
runoff from the surrounding mountains to enter YYL. The
mean annual air temperature is approximately 13∘C (monthly
averages range from −5 to 15∘C), and annual precipitation
can exceed 4000mm. The depth of the euphotic layer is
approximately 1.5m [26]. The lake experiences three to
seven typhoons annually during the summer and fall; more
than 40% of all annual precipitation can occur during the
typhoons. Wind speeds over the lake are relatively weak. The
dominant wind directions are from the east and southwest
because the V-shaped valley faces east to west. Kimura et
al. [10] developed a nowcasting system to predict the spatial
distributions and temporal variations in the dynamics of YYL
when subjected to severe rainstorms.They found that the lake
water temperature dynamics were subject to meteorological
conditions during normal conditions, while the strong winds
and high inflows caused highwater levels and affected vertical
mixing during the typhoon events.

A gauge station was established in April 2004 to collect
the water level data hourly; these data are accessible from
the Global Ecological Lakes Observatory Network (GLEON)
website. All data from the gauge station (Figure 1(a)) and
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inflow and outflow rates were downloaded from the GLEON
publicly accessible database (https://lter.limnology.wisc.edu/
project/global-lakes-ecological-observatory-network-gleon).
The hourly water level data collected from August 1 to
December 31, 2009, and from January 1 to May 31, 2010, were
utilized to calibrate/train and validate the hydrodynamic,
ANN, and time series foresting models, respectively. The
measured time-series data of inflow discharge, outflow
discharge, precipitation, and water level in the YYL for
the model calibration and validation phases are shown in
Figure 3. It can be observed that there are two water level
peaks (Figure 3(d)) during the periods of August 5 to 10
and October 3 to 6 in 2009, corresponding to Typhoon
Morakot and Typhoon Parma, respectively. Note that the
calibration samples including both smooth variations and
typhoon-induced peaks ensure the prediction/generalization
capabilities of these models in the validation phase.

3. Methodology

3.1. Hydrodynamic Model Description and Model Setup. In
this study, we adopted the well-known three-dimensional
hydrodynamic model EFDC (Environmental Fluid Dynam-
ics Code) [27, 28] which has been widely used for describing
flow and transport processes in surface water systems, for
example, rivers, lakes, estuaries, reservoirs, wetlands, and
coastal regions [29–33]. This model solves the 3D equations
of motion and continuity equation with the Mellor-Yamada
level 2.5 turbulence closure scheme [34–36] under the
stretched (or sigma) vertical coordinates and Cartesian (or
curvilinear) orthogonal horizontal coordinates. For numer-
ical aspect, it employs a second-order accurate, three-time-
level finite difference scheme with an internal-external mode
splitting procedure to separate internal baroclinicmode from
the external free surface gravity wave [37]. Further details of
the EFDC model are given in Hamrick [27, 28].

In this study, EFDC for lake water level prediction was
driven by freshwater flow and atmospheric forcing (wind-
shear stress, precipitation/evaporation, and heat flux). An
orthogonal boundary-fitted computational grid (containing
700 horizontal cells and five vertical layers) was developed to
represent the irregular shorelines and bottoms in YYL study
area (Figure 1(b)) based on the topography data measured in
August 2007. The nonuniform grid sizes are approximately
6m × 7m along the horizontal directions. The simulations
were carried out using Δ𝑡 = 1 second without the sign of
numerical instability.

3.2. Artificial Neural Networks (ANNs). An ANNmodel uses
amultilayered technique to approximate complexmathemat-
ical functions or data. In this study, the back propagation
neural network (BPNN), a learning algorithm based on back
propagation of error gradient, was utilized to amend thewater
level results from hydrodynamic model for better prediction
accuracy.

The BPNN proposed by Rumelhart et al. [38] is a
multiple-layer network (see an input layer, a hidden layer, and
an output layer in Figure 2). Each layer contains a number
of neurons with nonlinear differentiable transfer functions.

Input layer (m) Hidden layer (n) Output layer (l)
Qnet(t)

Y(t)
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Y(t − 2)
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Figure 2: Architecture of back propagation neural network
(BPNN).

Each neuron receives inputs from neurons in the previous
layers or external inputs, and input is converted to either an
output signal or another input signal to be used by neurons
in the next layers. Weighted connections between neurons
in successive layers represent their relative importance in the
network. The neurons execute a weighted summation of all
inputs and further assess the weighted sum by activation
function 𝑓:

𝐻
𝑛
= 𝑓 (𝑤

𝐼
𝑚,𝑛

𝐼
𝑚
) , (1a)

𝑂
𝑙
= 𝑓 (𝑤

𝐻
𝑛,𝑙

𝐻
𝑛
) , (1b)

where𝐻
𝑛
is the hidden layer with neuron 𝑛, 𝑂

𝑙
is the output

of neuron 𝑙, 𝐼
𝑚
is the input to the neuron 𝑚, and 𝑤

𝐼
𝑚,𝑛

and
𝑤
𝐻
𝑛,𝑙

are the synaptic weights.
A hyperbolic tangential sigmoid transfer function in (2)

is used in the hidden layer:

𝑓 (𝑥) =

2

(1 + 𝑒
−2𝑥

) − 1

. (2)

A linear transfer function in (3) is applied in the output
layer:

𝑓 (𝑥) = 𝑥. (3)

To scale the inputs and the targets, normalized equation
(4) is often used, thus forcing the data to fall within a specified
range:

𝑌
𝑁
= (𝑦max − 𝑦min) × (

𝑥
𝑖
− 𝑥min

𝑥max − 𝑥min
) + 𝑦min, (4)

where 𝑌
𝑁
is the value after normalization, 𝑥min and 𝑥max are

the minimum and maximum data values, respectively, and
𝑦min and 𝑦max are −1 and 1, respectively.

The training process of a neural network involves tuning
the network weight and bias values through minimization of
the cost function 𝐶:

𝐶 =

1

𝑃

𝑃

∑

𝑝=1

𝐿

∑

𝑙=1

𝑒
2

𝑙

(𝑝) , (5)
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Figure 3: Hydrological conditions for three-dimensional hydrodynamic, BPNN, and time series forecasting models: (a) inflow discharge, (b)
outflow discharge, (c) precipitation, and (d) water level in the lake from August 1, 2009, to May 31, 2010.

where𝑃 is the number of input-output training patterns, 𝑒
𝑙
(𝑝)

is the difference between the output and target of neuron 𝑙 for
the 𝑝th input-output pattern, and 𝐿 is the number of neurons
in the output layer.

The back propagation method was accomplished using
the Levenberg-Marquardt (LM) algorithm [39] that opti-
mizes the network parameters with a nonlinear least squares
error minimization technique. The LM algorithm combines
the capability of the gradient descent method and Gauss-
Newton method in terms of converge and speed. The ANN
model together with the LM technique was implemented in
the Neural Network Toolbox in Matlab (e.g., 2009 or latest
version).

3.3. Time Series Forecasting Model. ARMAX models have
been used extensively to represent the relationship of system
output and input in the presence of noise in many linear
dynamic systems [16]. In the case of lake water balance, a
simple ARMAX (𝑝, 𝑞, 𝑟)model can be expressed as

𝑌 (𝑡 + 1) + 𝑎
1
𝑌 (𝑡) + ⋅ ⋅ ⋅ + 𝑎

𝑝
𝑌 (𝑡 − 𝑝)

= 𝑏
1
𝑄net (𝑡) + ⋅ ⋅ ⋅ + 𝑏𝑞𝑄net (𝑡 − 𝑞) + 𝑒 (𝑡) + ⋅ ⋅ ⋅ + 𝑐𝑟𝑒 (𝑡 − 𝑟) ,

(6)

where 𝑄net(𝑡) = 𝐼𝑝(𝑡) ⋅ 𝐴 + 𝑄in(𝑡) − 𝑄out(𝑡), 𝑄net(𝑡) is the
net volume flux in hour 𝑡 (m3/hr), 𝑄in(𝑡) and 𝑄out(𝑡) are the
discharge rates of inflow and outflow, respectively, 𝐼𝑝(𝑡) is the
rainfall intensity (mm/hr), 𝐴 is the surface area of the YYL,

𝑌(𝑡 + 1) is the water level in hour 𝑡 + 1, 𝑌(𝑡) is the water level
in hour 𝑡, 𝑎

𝑝
, 𝑏
𝑞
, and 𝑐

𝑟
are the weights of the autoregressive

and moving average processes and the weight noise, and 𝑒 is
normally distributed with zero mean and unit variance.

3.4. Indices of Simulation Performance. To evaluate the per-
formances of the three-dimensional hydrodynamic model,
the BPNNmodel, and the time series forecastingmodel, three
different criteria were used to compare the predicted results
with the observed data: mean absolute error (MAE), root
mean square error (RMSE), coefficient of correlation (𝑅), and
the skill score (SS), as based on the following equations:

MAE = 1

𝑁

𝑁

∑

𝑖=1





(𝑌
𝑚
)
𝑖

− (𝑌
𝑜
)
𝑖





,

RMSE = √ 1

𝑁

𝑁

∑

𝑖=1

[(𝑌
𝑚
)
𝑖

− (𝑌
𝑜
)
𝑖

]
2

,

𝑅 =

(1/𝑁)∑
𝑁

𝑖=1

[(𝑌
𝑚
)
𝑖

− 𝑌
𝑚
] [(𝑌
𝑜
)
𝑖

− 𝑌
𝑜
]
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𝑁
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[(𝑌
𝑚
)
𝑖

− 𝑌
𝑚
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2
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[(𝑌
𝑜
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𝑖

− 𝑌
𝑜
]

2

,

SS = 1 −
∑
𝑁

𝑖=1

[(𝑌
𝑜
)
𝑖

− (𝑌
𝑚
)
𝑖

]
2

∑
𝑁

𝑖=1

[(𝑌
𝑜
)
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Figure 4: Comparison of predicted hourly water levels with three-dimensional hydrodynamic model and measured data for (a) model
calibration and (b) model validation.

where𝑁 is the total number of data,𝑌
𝑚
is the predicted water

level,𝑌
𝑜
is the observed water level,𝑌

𝑚
= (∑
𝑁

𝑖=1

(𝑌
𝑚
)
𝑖
)/𝑁, and

𝑌
𝑜
= (∑
𝑁

𝑖=1

(𝑌
𝑜
)
𝑖
)/𝑁.

4. Results

4.1. Calibration and Validation of the Three-Dimensional
Hydrodynamic Model. Figure 4 shows the calibration and
validation results for the three-dimensional hydrodynamic
model. In the calibration phase, the model captures the
observed water level fluctuation with satisfactory predictions
of peak water levels associated with the two typhoon events.
Interestingly, both the observation and simulation results
show high-frequency oscillation, which might be attributed
to the diurnal cycles from the atmospheric forcing. Fur-
ther studies are required to clarify the mechanisms for the
temporal variability of water level fluctuations at different
scales and will be reported separately in the future. For
the validation phase, however, it somewhat fails to mimic
the observed water levels (see Figure 4(b) with a zoom-in
vertical axis). Table 1 presents the performance assessment
of the three-dimensional hydrodynamic model. The MAE,
RMSE,𝑅, and SS values are 2.56 cm, 3.70 cm, 0.990, and 0.974
(or 2.75 cm, 3.53 cm, 0.923, and 0.769) for model calibration
(or validation) phase, respectively. The results indicate that
the model calibration performance is better than the model
validation performance.

4.2. ANNTraining andValidation. To forecast thewater level,
three cases were established using two to four input nodes,
that is, the net volume flux 𝑄net(𝑡) with the measured water
levels at 1 to 3 hr lag time 𝑌(𝑡), 𝑌(𝑡 − 1), 𝑌(𝑡 − 2) for cases
1, 2, and 3, respectively. The output of these three cases is
the predicted water level 𝑌(𝑡 + 1). For the hidden layer,
the selection of an appropriate number of nodes is quite
important because an excessively large number of nodes may

result in overfitting, while an insufficient number of nodes
may not capture the information adequately [17–23]. The
best network architecture (number of hidden nodes, number
of iterations, learning rate, and momentum coefficient) was
obtained by trial and error based on RMSE in the training
and validation phases. Figure 5 shows the RMSE trend with
the increasing number of hidden nodes in the training and
validation phases. In this study, twenty hidden nodes in the
BPNNwere selected to yield the optimal performance. Other
ANN training parameters include a learning rate of 0.01, a
momentum coefficient of 0.3, and maximum iterations of
400.

A comparison of water level between the observation
data and simulated results from ANN case 3 is shown in
Figure 6. In contrast to the hydrodynamic model, ANN is
able of forecast the measured water levels in both training
and validation phases. Based on Table 1, case 3 gives the best
performance among these three model settings with MAE,
RMSE, 𝑅, and SS equal to 0.77 cm, 1.17 cm, 0.999, and 0.997
(or 0.77 cm, 1.12 cm, 0.988, and 0.977) in the training (or
validation) phase, respectively.

4.3. Training and Validation of the Time Series Forecast-
ing Model. For time series forecasting, ARMAX (1, 1, 1),
ARMAX (2, 1, 1), and ARMAX (3, 1, 1) were used in cases 4,
5, and, 6 to predict the water level 𝑌(𝑡 + 1), respectively.

A comparison of water level between the measured data
and predicted results from case 5 is shown in Figure 7.
According to the performance assessment in Table 1, it can
be found that ARMAX (2, 1, 1) yields the best water level
prediction with MAE, RMSE, 𝑅, and SS equal to 0.96 cm,
1.64 cm, 0.997, and 0.995 (or 0.83 cm, 1.18 cm, 0.987, and
0.974) in the training (or validation) phase, respectively.

4.4. Water Level Predictions Using the Combination of Hydro-
dynamic and ANN Models. To improve the water level
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Table 1: Assessment of water level prediction performance for three-dimensional hydrodynamic model (EFDC), artificial neural network
model (ANN), time series forecasting model (ARMAX), and the combination model (EFDC + ANN).

Statistical parameter MAE (cm) RMSE (cm) 𝑅 SS

Calibration

EFDC model 2.56 3.70 0.990 0.974
ANN case 1 0.87 1.41 0.998 0.996
ANN case 2 0.81 1.21 0.999 0.997
ANN case 3 0.77 1.17 0.999 0.997

ARMAX case 4 0.98 1.71 0.997 0.994
ARMAX case 5 0.96 1.64 0.997 0.995
ARMAX case 6 0.96 1.64 0.997 0.995

EFDC + ANN case 7 0.81 1.26 0.998 0.997
EFDC + ANN case 8 0.74 1.08 0.999 0.998
EFDC + ANN case 9 0.72 1.05 0.999 0.998

Validation

EFDC model 2.75 3.53 0.923 0.769
ANN case 1 0.84 1.27 0.985 0.970
ANN case 2 0.78 1.15 0.988 0.976
ANN case 3 0.77 1.12 0.988 0.977

ARMAX case 4 0.83 1.18 0.987 0.974
ARMAX case 5 0.83 1.18 0.987 0.974
ARMAX case 6 0.83 1.18 0.987 0.974

EFDC + ANN case 7 0.85 1.29 0.986 0.970
EFDC + ANN case 8 0.82 1.19 0.988 0.974
EFDC + ANN case 9 0.80 1.17 0.989 0.975

Case 1: the input nodes include𝑌(𝑡) and𝑄net(𝑡); case 2: the input nodes include 𝑌(𝑡 − 1),𝑌(𝑡), and𝑄net(𝑡); and case 3: the input nodes include𝑌(𝑡 − 2),𝑌(𝑡 −
1), 𝑌(𝑡), and𝑄net(𝑡). Case 4: ARMAX (1, 1, 1); case 5: ARMAX (2, 1, 1); case 6: ARMAX (3, 1, 1). Case 7: the input nodes include 𝑌(𝑡),𝑄net(𝑡), and 𝑌EFDC(𝑡 +
1); case 8: the input nodes include 𝑌(𝑡 − 1), 𝑌(𝑡),𝑄net(𝑡), and 𝑌EFDC(𝑡 + 1); case 9: the input nodes include 𝑌(𝑡 − 2), 𝑌(𝑡 − 1), 𝑌(𝑡),𝑄net(𝑡), and 𝑌EFDC(𝑡 +
1).
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Figure 5: The effect of number of nodes in the hidden layer on the root mean square error (RMSE) for the (a) ANN training phase and (b)
ANN validation phase. Note that the triangle, square, and circle marks represent case 1, case 2, and case 3, respectively, for the ANN model.

prediction quality, an ANN model was utilized to amend
the prediction results from the three-dimensional hydrody-
namic model. The proposed approach offers another way
for accuracy improvement, in comparison to widely used
data assimilation [24, 25]. Besides the original inputs, we
similarly constructed cases 7, 8, and 9with an additional input
𝑌EFDC(𝑡 + 1) that represents the water level predicted by the
EFDC hydrodynamic model in hour 𝑡 + 1. Exactly the same
learning parameters (i.e., a learning rate of 0.01, a momentum
coefficient of 0.3, andmaximum iterations of 400) and twenty
hidden nodes were chosen for the optimal performance (see
the RMSE trend in Figure 8).

Figure 9 presents a comparison of water level between the
measured data and case 9 results obtained by the combination
model for training and validation phases. Table 1 shows that
case 9 gives the best performance assessment with MAE,
RMSE, 𝑅, and SS equal to 0.72 cm, 1.05 cm, 0.999, and 0.998
(or 0.80 cm, 1.17 cm, 0.989, and 0.975) in the training (or
validation) phase, respectively.

4.5. Comparison of the PredictedWater Levels fromAllModels.
To evaluate the model performance of predicting hourly
water levels, the statistical indices for the three-dimensional
hydrodynamic model, ANN model, ARMAX model, and



Mathematical Problems in Engineering 7

3.5

4

4.5

5

5.5

6

6.5
W

at
er

 le
ve

l (
m

)

Observation
ANN model

Date

01
-0

8-
20

09

01
-0

9-
20

09

01
-1

0-
20

09

01
-1

1-
20

09

01
-1

2-
20

09

01
-0

1-
20

10

(a)

3.6

3.8

4

4.2

4.4

4.6

Date

W
at

er
 le

ve
l (

m
)

Observation
ANN model

01
-0

1-
20

10

01
-0

2-
20

10

01
-0

3-
20

10

01
-0

4-
20

10

01
-0

5-
20

10

01
-0

6-
20

10

(b)

Figure 6: Comparison of predicted hourly water levels with the ANN model and measured data for (a) training phase and (b) validation
phase.
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Figure 7: Comparison of predicted hourly water levels with the ARMAXmodel and measured data for (a) training phase and (b) validation
phase.
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Figure 8: The effect of number of nodes in the hidden layer on the root mean square error (RMSE) for the (a) ANN training phase and (b)
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of the three-dimensional hydrodynamic model and ANNmodel.
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Figure 9: Comparison of predicted hourly water levels with the combination of the three-dimensional hydrodynamic and ANNmodels and
measured data for the (a) training phase and (b) validation phase.
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Figure 10: Scatter plots of predicted andmeasured water levels with (a) three-dimensional hydrodynamic model calibration, (b) ANNmodel
training, (c) ARMAX model training, and (d) combination of three-dimensional hydrodynamic and ANN models training. The solid lines
represent the parity lines.

the combination model were compared. Figures 10 and 11
further present scatter plots for the measurement-prediction
pairs of the hourly water level in the calibration (training)
and validation phases.The three-dimensional hydrodynamic
model did not show good predictions for lake water level,
compared to other prediction approaches (Figures 10(a) and
11(a)). The ANN model better predicts water level variations
than the ARMAX model. Overall, the combination model
provides further accuracy for hourly water level predictions.
The five input nodes consisting of 𝑌(𝑡 − 2), 𝑌(𝑡 − 1), 𝑌(𝑡),
𝑄net(𝑡), and 𝑌EFDC(𝑡 + 1) are the best model setting to predict
hourly water levels 𝑌(𝑡 + 1) in this study.

5. Discussions

In terms of the computational expense for one-month sim-
ulation, a three-dimensional hydrodynamic model requires
about 3.5 hours of CPU time on an Intel Core I5 PC, while
the ANN and ARMAXmodels only need 1.5 and 1.2 minutes,
respectively. The hydrodynamic model takes much longer
computational time, compared with the ANN and ARMAX
models. For the simulation aspect, the ARMAX model uses
a linear stochastic approach to represent the relationship
between the system input and output. Consequently, the non-
linear ANNmodel is better than theARMAXmodel. Besides,
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Figure 11: Scatter plots of predicted and measured water levels with (a) three-dimensional hydrodynamic model validation, (b) ANNmodel
validation, (c) ARMAX model validation, and (d) combination of three-dimensional hydrodynamic and ANN models validation. The solid
lines represent the parity lines.

the predictability of the data-driven ANN model could be
increased by providing a large number of appropriate input-
output data sets during the training and validation phases
[40]. Nevertheless, the black-box features would hinder the
understanding of physical processes in a lake, for example,
conservation of mass/momentum. Simulation of physical
processes is of critical importance for lake management. The
hydrodynamic model can be used to physically describe the
water level fluctuation in response to the high inflow dis-
charge during the typhoon events with certain accuracy. For
lake water level prediction, this study proposed a novel and
accurate approach which combines the three-dimensional
hydrodynamicmodel (i.e., a physically basedmodel) with the
ANN model (i.e., a black-box data-driven model), providing
an alternative way for accuracy improvement in addition to
the data assimilation methodology [24, 25]. The comparison
between the present hybrid approach and the data assim-
ilation method deserves further discussion and leaves an
interesting topic for future research.

6. Conclusions

Fourmodelling approaches (the three-dimensional hydrody-
namic model, ANN model, ARMAX model, and the combi-
nation model) have been implemented to predict water level
fluctuation of YYL in north-central Taiwan. The measured
data from August 1 to December 31, 2009 (a total of 3672
data sets), was used for calibration (training), while the data
from January 1 to May 31, 2010 (a total of 3624 data sets), was
adopted for validation.The performance of these models was

comprehensively evaluated by various statistical indices (i.e.,
MAE, RMSE, 𝑅, and SS).

The three-dimensional hydrodynamic model satisfacto-
rily presents the temporal variability of water level fluctuation
in the calibration phase but somewhat fails tomimic thewater
level in the validation phase. The ANN model preserving
nonlinear characteristics between input and output variables
can predict water level fluctuation in both training and vali-
dation phases. The ARMAX model predicts the water levels
using linear stochastic characteristics. Overall, the accuracy
of the three-dimensional hydrodynamic model and ARMAX
model is less than that of the ANN model. The development
of an ANN model simply requires the time-series of field
measurement data, and the implementation of an ANN
model does not require iterative computation. Therefore, the
ANN model can be accomplished with much less effort in
comparison to the three-dimensional hydrodynamic model
for a lake. However, the ANN is a black-box model, while the
hydrodynamic model is a physically based model. One novel
idea is proposed to combine the three-dimensional hydro-
dynamic and ANN models to predict water level fluctuation
in the lake. The water level results predicted by the three-
dimensional hydrodynamic model were amended using the
ANNmodel for further accuracy (rather than thewidely used
data assimilation methods [24, 25]). The overall results show
that the combination model yields better prediction results
for water level fluctuation. Currently, a systematic study
for more detailed internal physics (circulation and vertical
mixing/stratification), water quality, and ecological processes
in YYL is ongoing based upon this modelling methodology
and will be reported soon in the near future.
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