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Fault prediction is an effective and important approach to improve the reliability and reduce the risk of accidents for complex
electromechanical systems. In order to use the quantitative information and qualitative knowledge efficiently to predict the fault,
a new model is proposed on the basis of belief rule base (BRB). Moreover, an evidential reasoning (ER) based optimal algorithm
is developed to train the fault prediction model. The screw failure in computer numerical control (CNC) milling machine servo
system is taken as an example and the fault prediction results show that the proposedmethod can predict the behavior of the system
accurately with combining qualitative knowledge and some quantitative information.

1. Introduction

Modern complex electromechanical systems are usually com-
posed of the multiphysical processes such as machinery,
electricity, and hydromantic [1]. A long period is needed
to design and manufacture a complex electromechanical
system. Moreover, the cost for maintenance of these systems
is high.Therefore, it is important to predict the different kinds
of faults of the complex electromechanical systems [2].

A complex electromechanical system has the following
characteristics. Firstly, it is composed of some subsystems.
Because of the coupling, the behaviors of the system cannot
be determined independently by analyzing the behaviors of
each part. Secondly, it is difficult to establish the analytical
model. Thirdly, the fault processes of a complex electrome-
chanical systemmay be reflected by some states or parameters
at the same time. Finally, the complex electromechanical
system is a dynamic system. Thus, if the fault of a complex
electromechanical system is predicted, some characteristic
variables should be chosen and the fault prediction algorithm
should be online which can ensure that the fault can be
predicted in real-time.

The current fault prediction methods can be divided into
the method based on quantitative information, the method
based on qualitative information, and the method based
on hybrid information. The quantitative information based
method includes Kalman filter, grey theory [3], neural net-
work [4–6], time series [7], and data fusion based methods.
This kind of methods needs the analytical models of the
systems. In this method, the structures of the systems and
the mechanism information are used. But it is difficult to
analyze and interpret the forecasting results. The qualitative
knowledge based method [8] includes the expert system and
time sequence logic based methods. But the combination
explosion may happen and the forecasting result is not
accurate.The hybrid information basedmethod such as fuzzy
mathematics, neural network, Kalman filter, and wavelet
plays the advantages of various kinds of a single method
effectively. However, most existing methods are two kinds
of fusion method based on quantitative information without
qualitative knowledge application, which may restrict the use
of various types of knowledge comprehensively to improve
the accuracy of the fault prediction.Thebelief rule base (BRB)
could make full use of the prior knowledge of expert and
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Figure 1: Servo feed system of CNC milling machine.

quantitative information. Moreover the evidential reasoning
(ER) is used to update the characteristics online [9, 10].These
guaranteed the accurate prediction of the fault [11–13].

In this paper, BRB is used to establish the fault pre-
diction model of a complex electromechanical system. BRB
overcomes the shortcomings of a single method based on
quantitative or qualitative knowledge [14, 15]. This method
realizes the layered and comprehensive fault prediction of a
complex electromechanical system through combining BRB
with the model of a complex electromechanical system.
Taking the CNC machine tool that is a typical complex
electromechanical system as an example [16], this paper
describes the detailed process of layering and comprehensive
fault prediction about the servo system.The results show that
this method can predict the fault behaviors of a complex
electromechanical system accurately and may be applied in
the engineering practice.

2. The System Modeling
Based on the Characteristics

A complex electromechanical system is composed of some
subsystems with strong coupling, time-varying, and strong
nonlinear characteristics. As temperature, blood pressure,
and other indicators can reflect the health of the human body
system, there are also some characteristics that can reflect
the running condition of a complex electromechanical system
[17]. According to these characteristics, the fault prediction
model of a complex electromechanical system can be built.

Firstly, it is assumed that a complex electromechanical
system is composed of 𝑛 parts, and the running condition
of 𝑗th part can be represented by the available feature N𝑗,
which is a multiparameter and where 𝑗 = 1, 2, . . . , 𝑛. The
running condition of the entire electromechanical system can
be described by the following model:

𝑦 = 𝑔 (N1,N2, . . . ,N𝑛) , (1)

where 𝑦 denotes the running condition of the whole complex
electromechanical system. 𝑔 denotes a nonlinear mapping.

In addition, the running condition of each componentN𝑗
can be represented by some characteristic variables and it is

assumed that the 𝑗th component can be represented by the𝑀
characteristic variables, recorded as ℎ1, ℎ2, . . . , ℎ𝑀:

𝑓 = 𝑙 (ℎ1, ℎ2, . . . , ℎ𝑀) , (2)

where 𝑓 denotes the running condition of 𝑗th component. 𝑙
denotes a nonlinear mapping.

Then the following model that can denote the running
condition of a complex electromechanical system can be
obtained by putting (2) into (1):

𝑦 = 𝑔 (𝑓) . (3)

3. Modeling the CNC Machine
Tool Servo System

3.1. Composition of CNCMachine Tool Servo System. In order
to establish the fault prediction model of the CNC milling
machine servo feed system, its structure should be analyzed
firstly. As shown in Figure 1, the CNC milling machine servo
feed system is mainly composed of the drive unit, driving
element, mechanical driving mechanism, actuator, detection,
and feedback part.

3.2. Fault Mechanism Analysis of the CNC Milling Machine
Servo Feed System. The fault of the driving mechanism
mainly includes that the motor drive power cannot be passed
to the executive element. This kind of fault often occurs in
machine tool guide, coupling screw, bearing parts, and so
on. Overload and other problems often occurred in these
parts when they have faults such as clearance being too large,
vibration, or wear. In drive system, servo motor is the main
part wheremalfunction happens easier. Faults of drive system
mainly include drive control unit fault and servo motor fault.
Detection component often become large errors of feedback
data or no feedback [18, 19].

In servo feed transmission, bearing and screw feed
transmission mechanism are the most prone to failure, so the
fault mechanism of bearing and lead screw nut pair parts are
analyzed.Under normalworking conditions, too large load or
poor lubrication can lead to different forms of damage which
would cause machine tool state degradation [20]. The types
of rolling bearing fault mainly include surface knit crack,
surface spelling, and bearing burning. Typical failure damage
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Figure 2: BRB fault prediction model.

of ball screw drive system consists of surface damage, serious
deformation, and failure.The surface damagemainly includes
removing fatigue failure, wear, and corrosion failure.

The motor fault is one of the main faults in the drive
system. Finding the motor fault timely and accurately can
avoid economic loss and serious safety accidents. According
to the main part of motor, the fault can be divided into the
failure of the stator, the rotor fault, and bearing failure.

Detection device plays an important role in the whole
control system, and its performance directly determines
the precision of the detection system, which affects the
machining accuracy of CNC machine tools. Encoder failure
is a typical failure in detection device. Encoder as a detecting
element of closed-loop system or semi-closed loop system, its
feedback signal directly affects the adjustment of the motor
speed. Generally, the faults are divided into the encoder to
throw code and complete failure.

3.3. The Model of CNC Milling Machine Servo Feed System.
According to the structure and the fault mechanism analysis
of the CNC milling machine servo feed system, the model of
CNC milling machine servo feed system is built as follows,
referencing model of complex electromechanical system.

CNC milling machine servo feed system is composed of
four parts; the model of CNC machine tool servo system is
built as follows by (1):

𝑦 = 𝑔 (N1,N2,N3,N4) . (4)

In (4), 𝑦 denotes the running condition of CNCmachine
tool servo system. 𝑔 denotes the nonlinearity mapping.

By the same token, themodel of mechanical transmission
system is as follows:

𝑦

= 𝑔

(N1,N2,N3) . (5)

In (5), 𝑦 is the running condition of CNC machine tool
servo system. 𝑔 denotes the nonlinearity mapping.

4. A BRB Based Fault Prediction Model

On the basis of analyzing the fault mechanism, a series of
available features are chosen to reflect the running condition

of each part, so, ℎ𝑚 is confirmed. Then, the belief rule base
(BRB) is used to establish the fault prediction [11]. A belief
rule in BRB is described as follows:

𝑅𝑘 : If ℎ1 is 𝐻
𝑘
1 ∧ ℎ2 is 𝐻

𝑘
2 ⋅ ⋅ ⋅ ∧ ℎ𝑀 is 𝐻

𝑘
𝑀,

Then {(𝐷1, 𝛽1,𝑘) , . . . , (𝐷𝑁, 𝛽𝑁,𝑘)}

with a rule weight 𝜃𝑘 and attribute

weight 𝛿1,𝑘, 𝛿2,𝑘, . . . , 𝛿𝑀𝑘 ,𝑘,

(6)

where 𝑅𝑘 denotes the 𝑘th rule belief rule. h = [ℎ1, ℎ2, . . . , ℎ𝑀]

is antecedent attributes in the 𝑘th rule, and ℎ𝑀 is an element
of 𝑁𝑖 in (4), same as 𝑎𝑖 in (1). H𝑘 = {𝐻

𝑘
1 , 𝐻
𝑘
2 , . . . , 𝐻

𝑘
𝑀}

is a collection of input reference values in the 𝑘th rule.
𝐷 = [𝐷1, 𝐷2, . . . , 𝐷𝑁] is a set of referential values for the
antecedent attribute.𝛽𝑘 = [𝛽1,𝑘, 𝛽2,𝑘, . . . , 𝛽𝑁,𝑘] is a set of belief
degrees assessed to𝐷.

Figure 2 shows a BRB based fault prediction model [21],
where 𝑝 denotes the forecasting step and 𝐵 denotes the
preset threshold. ̂

ℎ𝑚(𝑡 + 𝑝) (𝑚 = 1, . . . ,𝑀) denotes the
estimates in (𝑡 + 𝑝) moment of ℎ𝑚. In Figure 2, the first
M BRBs, that is, BRB 1, . . . ,BRB M, which are given in (6)
belong to the traditional rules in which the consequents are
either 100% normal or 100% failure. When the system is in
a defective but still operational stage, such rules which are
abovementioned have a limited capacity. In order to solve
this problem, BRB (𝑀 + 1) is used to determine the system
running condition by extending the (6) [21]. Consider

𝑅1 : If ℎ1 ≤ ℎ
𝑑
1 ∧ ⋅ ⋅ ⋅ ∧ ℎ𝑀 ≤ ℎ

𝑑
𝑀,

Then {(𝐷1, 0) , (𝐷2, 1)} ,

with a rule weight 𝜃1

and attribute weight 𝛿1,1, . . . , 𝛿𝑀,1

.

.

.
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Figure 3: Prediction model of ball screw based on BRB.

𝑅𝐺 : If ℎ1 ∈ [ℎ
𝑑𝑛
1 , ℎ
𝑢𝑛
1 ] ∧ ⋅ ⋅ ⋅ ∧ [ℎ

𝑑𝑛
𝑀 , ℎ
𝑢𝑛
𝑀] ,

Then {(𝐷1, 0) , (𝐷2, 0)} ,

with a rule weight 𝜃𝐺

and attribute weight 𝛿1,𝐺, . . . , 𝛿𝑀,𝐺

.

.

.

𝑅3𝑀 : If ℎ1 ≥ ℎ
𝑢
1 ∧ ⋅ ⋅ ⋅ ∧ ℎ𝑀 ≥ ℎ

𝑢
𝑀,

Then {(𝐷1, 0) , (𝐷2, 1)} ,

with a rule weight 𝜃3𝑀

and attribute weight 𝛿1,3𝑀 , . . . , 𝛿𝑀,3𝑀 ,
(7)

where 𝛿1,3𝑀 , . . . , 𝛿𝑀,3𝑀 are the relative weights of the 𝑀

antecedent attributes used in the 𝑘th rule. For each charac-
teristic variable ℎ𝑚 (𝑚 = 1, . . . ,𝑀), there are three referential
values which include ℎ

𝑑
𝑚, ℎ
𝑢
𝑚, and [ℎ

𝑑𝑛
𝑚 , ℎ
𝑢𝑛
𝑚 ], so there are 3

𝑀

belief rules in BRB (𝑀 + 1). 𝜃𝑘 (𝑘 = 1, . . . , 3
𝑀
) is the relative

weight of the 𝑘th rule. It is assumed that 𝜃𝑘 = 1 and 𝛿𝑚,𝑘 = 1.
In practical engineering problems, the ER algorithm is

used to update the parameters. The result of update is shown
in [21]

Q𝑚 (𝑡 + 1)

= ∏

𝐸𝑚

{Q𝑚 (𝑡) +
1

𝑡

[Ξ𝑚 (Q𝑚 (𝑡))]
−1

Γ𝑚 (Q𝑚 (𝑡))} ,

(8)

where Q𝑚 consists of the rule weights, attribute weights, and
belief degrees satisfying the constraints. 𝐸𝑚 is a constraint set
composed of the constraints. ∏𝐻𝑚{⋅} is the projection onto
the constraint set 𝐸𝑚, ensuring that the estimation ofQ𝑚 can
satisfy the given constraints.

𝐵𝐹(𝑡+𝑝) can be got through themodel. If it is less than𝐵th,
the system can work normally. On the contrary, the system is
in fault condition, where 𝐵th denotes a preset threshold.
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Figure 4: Test data of ℎ1.

5. Fault Prediction of Screw in CNC Milling
Machine Servo Feed System

The running condition of the screw is one of the most
characteristicswhich can represent the condition of thewhole
CNC system. In this section, the screw is chosen as an
example to demonstrate the effectiveness of the proposed
method.

Through the analysis of fault mechanism, two variables
that are the vibration of screw and the surface roughness of
the processing pieces are chosen to reflect the performance
of screw. These two variables are denoted by ℎ1 and ℎ2,
respectively.

The system model of screw can be got according to (4) as
follows:

𝑓 = 𝑔

(ℎ1, ℎ2) , (9)

where 𝑓 denotes the running condition of screw. ℎ denotes a
nonlinearity mapping.

So, the fault prediction model of screw is established as
shown in Figure 3.

Figures 4 and 5 display the testing data of ℎ1 and ℎ2,
respectively. The testing data are collected in the processing
cast-iron at a low speed by the B&K and laser interferometer,
and themotor speed is 1000 r/min and the feed is 40mm/min.
The test rig is shown in Figure 6.
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Figure 6: The test rig.

Table 1: The reference of ℎ1 (𝜇m).

Linguistic terms S M L
Numerical values 0.5 1.5 2

Table 2: The reference of ℎ2 (𝜇m).

Linguistic terms S M L
Numerical values 5 10 15

In order to construct the BRB based forecastingmodels of
the above two characteristics variables, the references of the
characteristics variables are chosen at first. For both ℎ1 and
ℎ2, three referential points are used and they are small (S),
medium (M), and large (L), which are given as follows:

𝐻
𝑘1
𝑖 ∈ {𝑆,𝑀, 𝐿} , 𝐻

𝑘2
𝑗 ∈ {𝑆,𝑀, 𝐿} ,

𝑖 = 1, 2, 𝑗 = 1, 2,

{𝐷
1
1, 𝐷
1
2, 𝐷
1
3} ∈ {𝑆,𝑀, 𝐿} ,

{𝐷
2
1, 𝐷
2
2, 𝐷
2
3} ∈ {𝑆,𝑀, 𝐿} .

(10)

The above reference values are semantic which need to
be quantified.The quantitative results of the two variables are
listed in Tables 1 and 2.

Table 3: Initial belief degrees of BRB 1.

Rule number ℎ1(𝑡 − 1) and
ℎ1(𝑡 − 2)

ℎ1(𝑡) distribution {𝐷
1
1, 𝐷
1
2, 𝐷
1
3}

1 S and S {(𝐷
1
1, 0.65) , (𝐷

1
2, 0.25) , (𝐷

1
3, 0.1)}

2 S and M {(𝐷
1
1, 0.3) , (𝐷

1
2, 0.6) , (𝐷

1
3, 0.1)}

3 S and L {(𝐷
1
1, 0.9) , (𝐷

1
2, 0.05) , (𝐷

1
3, 0.05)}

4 M and S {(𝐷
1
1, 0.9) , (𝐷

1
2, 0.05) , (𝐷

1
3, 0.05)}

5 M and M {(𝐷
1
1, 0.2) , (𝐷

1
2, 0.6) , (𝐷

1
3, 0.2)}

6 M and L {(𝐷
1
1, 0) , (𝐷

1
2, 0.4) , (𝐷

1
3, 0.6)}

7 L and S {(𝐷
1
1, 1) , (𝐷

1
2, 0) , (𝐷

1
3, 0)}

8 L and M {(𝐷
1
1, 0.1) , (𝐷

1
2, 0.45) , (𝐷

1
3, 0.45)}

9 L and L {(𝐷
1
1, 0) , (𝐷

1
2, 0.1) , (𝐷

1
3, 0.9)}

Table 4: Initial belief degrees of BRB 2.

Rule number ℎ2(𝑡 − 1) and
ℎ2(𝑡 − 2)

ℎ2(𝑡) distribution {𝐷
2
1, 𝐷
2
2, 𝐷
2
3}

1 S and S {(𝐷
2
1, 0.5) , (𝐷

2
2, 0.4) , (𝐷

2
3, 0.1)}

2 S and M {(𝐷
2
1, 0.3) , (𝐷

2
2, 0.5) , (𝐷

2
3, 0.2)}

3 S and L {(𝐷
2
1, 0.8) , (𝐷

2
2, 0.15) , (𝐷

2
3, 0.05)}

4 M and S {(𝐷
2
1, 0.45) , (𝐷

2
2, 0.45) , (𝐷

2
3, 0.1)}

5 M and M {(𝐷
2
1, 0.2) , (𝐷

2
2, 0.5) , (𝐷

2
3, 0.3)}

6 M and L {(𝐷
2
1, 0) , (𝐷

2
2, 0.4) , (𝐷

2
3, 0.6)}

7 L and S {(𝐷
2
1, 1) , (𝐷

2
2, 0) , (𝐷

2
3, 0)}

8 L and M {(𝐷
2
1, 0.1) , (𝐷

2
2, 0.45) , (𝐷

2
3, 0.45)}

9 L and L {(𝐷
2
1, 0) , (𝐷

2
2, 0.1) , (𝐷

2
3, 0.9)}

Table 5: Belief degrees of BRB 3.

Rule number ℎ1 and ℎ2 {𝐷1, 𝐷2} = {𝑁, 𝐹}

1 ℎ
𝑑
1 and ℎ

𝑑
2 {(𝐷1, 0) , (𝐷2, 1)}

2 ℎ
𝑑
1 and ℎ

𝑛
2 {(𝐷1, 0) , (𝐷2, 1)}

3 ℎ
𝑑
1 and ℎ

𝑢
2 {(𝐷1, 0) , (𝐷2, 1)}

4 ℎ
𝑛
1 and ℎ

𝑑
2 {(𝐷1, 0) , (𝐷2, 1)}

5 ℎ
𝑛
1 and ℎ

𝑛
2 {(𝐷1, 1) , (𝐷2, 0)}

6 ℎ
𝑛
1 and ℎ

𝑢
2 {(𝐷1, 0) , (𝐷2, 1)}

7 ℎ
𝑢
1 and ℎ

𝑑
2 {(𝐷1, 0) , (𝐷2, 1)}

8 ℎ
𝑢
1 and ℎ

𝑛
2 {(𝐷1, 0) , (𝐷2, 1)}

9 ℎ
𝑢
1 and ℎ

𝑢
2 {(𝐷1, 0) , (𝐷2, 1)}

According to (6), the models of ℎ1 and ℎ2 are established.
Then, experts give the initial belief degrees according to
the historical information and the analysis of the running
patterns of the screw, which are shown in Tables 3 and 4. At
the same time, the initial values of 𝜃1𝑘1 , 𝜃

2
𝑘2
, 𝛿10,𝑘1 , 𝛿

1
1,𝑘1

, 𝛿20,𝑘2 ,
and 𝛿

2
1,𝑘2

are all set to 1. In addition, 𝑘1 = 𝑘2 = 9. So, the
initial BRB 1 and BRB 2 are constructed.

According to the requirement of the processing of the
screw, ℎ1 and ℎ2 should change in the range [−3; 3] and
[−30; 30], respectively; that is, ℎ𝑑1 = −3, ℎ𝑢1 = 3, ℎ𝑑2 = −30,
and ℎ

𝑢
2 = 30. At the same time, the normal working ranges

of the two characteristic variables are [−2; 2] and [−20; 20].
According to (7), the BRB for determining the running
condition of the screw, that is, BRB 3, can be constructed.
There are 9 belief rules in BRB 3, shown in Table 5. In
addition, 𝑝 = 6, 𝐵th = 0.8.
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Table 6: Updated belief degrees of BRB 1.

Rule number Updated rule weight ℎ1(𝑡 − 1) and ℎ2(𝑡 − 2) {𝐷
1
1, 𝐷
1
2, 𝐷
1
3}

1 0.9976 S and S {(𝐷
1
1, 0.7299) , (𝐷

1
2, 0.27) , (𝐷

1
3, 0.0001)}

2 0.9677 S and M {(𝐷
1
1, 0.3) , (𝐷

1
2, 0.7) , (𝐷

1
3, 0)}

3 1 S and L {(𝐷
1
1, 1) , (𝐷

1
2, 0) , (𝐷

1
3, 0)}

4 1 M and S {(𝐷
1
1, 1) , (𝐷

1
2, 0) , (𝐷

1
3, 0)}

5 1 M and M {(𝐷
1
1, 0) , (𝐷

1
2, 1) , (𝐷

1
3, 0)}

6 1 M and L {(𝐷
1
1, 0) , (𝐷

1
2, 0.2) , (𝐷

1
3, 0.8)}

7 0.8982 L and S {(𝐷
1
1, 1) , (𝐷

1
2, 0) , (𝐷

1
3, 0)}

8 0.6272 L and M {(𝐷
1
1, 0) , (𝐷

1
2, 0.5) , (𝐷

1
3, 0.5)}

9 1 L and L {(𝐷
1
1, 0) , (𝐷

1
2, 0.0998) , (𝐷

1
3, 0.0002)}

Table 7: Updated belief degrees of BRB 2.

Rule number Updated rule weight ℎ1(𝑡 − 1) and ℎ2(𝑡 − 2) {𝐷
2
1, 𝐷
2
2, 𝐷
2
3}

1 1 S and S {(𝐷
2
1, 0.7499) , (𝐷

2
2, 0.25) , (𝐷

2
3, 0.0001)}

2 1 S and M {(𝐷
2
1, 0.2999) , (𝐷

2
2, 0.7) , (𝐷

2
3, 0.0001)}

3 1 S and L {(𝐷
2
1, 1) , (𝐷

2
2, 0) , (𝐷

2
3, 0)}

4 0.9999 M and S {(𝐷
2
1, 1) , (𝐷

2
2, 0) , (𝐷

2
3, 0)}

5 1 M and M {(𝐷
2
1, 0.0998) , (𝐷

2
2, 0.9) , (𝐷

2
3, 0.0002)}

6 1 M and L {(𝐷
2
1, 0) , (𝐷

2
2, 0.2) , (𝐷

2
3, 0.8)}

7 1 L and S {(𝐷
2
1, 1) , (𝐷

2
2, 0) , (𝐷

2
3, 0)}

8 1 L and M {(𝐷
2
1, 0) , (𝐷

2
2, 0.5) , (𝐷

2
3, 0.5)}

9 0.9999 L and L {(𝐷
2
1, 0) , (𝐷

2
2, 0.0998) , (𝐷

2
3, 0.0002)}

Table 8: The MAPE between testing data and prediction values
under different model of ℎ1.

Initial forecasting
model

Updated
forecasting model

MAPE (%) 18.85 1.49

Table 9: The MAPE between testing data and prediction values
under different model of ℎ2.

Initial forecasting
model

Updated
forecasting model

MAPE (%) 6.31 5.03

According to the initial models and ER approach, the
initial predictionmodels of ℎ1 and ℎ2 are calculated in Figures
7 and 8, respectively. It can be seen that the initial prediction
values cannot match the testing data very well. It means that
the initial prediction models are not accurate. It is necessary
to update the parameters by using the effective information.
The rules weights and belief rules of update BRBs are listed in
Tables 6 and 7. The updated forecasting values generated by
the updated prediction models are shown in Figures 7 and 8.
From the two figures, it can be seen that the updated models
can predict the characteristic variables accurately compared
with the initial prediction models. Using the BRB 3, the
prediction failure probability, in other words, the forecast
results are obtained in Figure 9. Among them, data beyond
the threshold show that the system is in a fault condition.

In order to further demonstrate the accuracy of the
updated model, mean absolute percentage error (MAPE) is
selected as a measure. Tables 8 and 9 list the MAPEs between
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Figure 7: Testing data and the estimation generated by the initial
and updated model based on BRB of ℎ1.

the testing data and the values generated by the initial and
the update predicting models of ℎ1 and ℎ2, respectively.
Therefore, the updated models can predict characteristic
variables accurately.

The above statement is the process of fault prediction of
screw. According to this method, the whole CNC machine
tool servo system fault prediction can be finished. Figure 9
shows the result of the screw fault prediction. Through the
forecast value, not only failures can be seen, but also the
failure process.

6. Conclusion

In this paper, the characteristics of the complex electrome-
chanical systems are analyzed deeply.Then the systemsmodel
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Figure 8: Testing data and the estimation generated by the initial
and updated model based on BRB of ℎ2.
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Figure 9: Fault prediction results by the initial and updated model
based on BRB.

is established. BRB is applied to the fault prediction of
complex electromechanical systems. BRB fault prediction
model does not need analytical models of the systems that
are suitable for the nonlinear characteristics of complex elec-
tromechanical system. BRB can effectively make use of prior
knowledge and semiquantitative information. Combined
with ER algorithm, the fault prediction canmeet the real-time
requirements of practical engineering. In forecasting results,
BRB can give forecast values of the fault state directly which
have the visual interpretation of the results. Characteristic
variables prediction models established in this paper are
independent of each other. In a practical engineering system,
feature variables are not completely independent. In the
further study, the algorithm will be improved to change the
forecast results more closely to the actual ones.
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