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The design and application of state estimator for a class of time-delay systemswith state saturation nonlinearities are firstly explored.
Based on the Lyapunov-Razumikhin functions, delay-dependent sufficient conditions are established to guarantee the asymptotic
stability of the error between the state estimate and the true state. Besides, an upper bound of arbitrary time-varying delays is
derived to assure that the resulting error can converge asymptotically to zero. Finally, applications to the secure communication
and simulation results are given to demonstrate the feasibility and effectiveness of the main results.

1. Introduction

It is well known that time delays are frequently encoun-
tered in various physical dynamic systems and may lead to
instability or oscillation. Recently, time-delay systems have
been extensively studied; see, for instance, [1–8], and they
are often encountered in various areas, such as chemical
engineering systems, electrical system, mechanical system,
biological system, transportation system, the nuclear reac-
tor, AIDS epidemic, and systems with lossless transmission
lines. However, time-delay systems are, in general, infinite
dimensional systems, which make the analysis and synthesis
complicated. As is well known, there have been two key
approaches to deal with the problems of time-delay systems,
namely, Lyapunov-Razumikhin function approach [1, 3, 6]
and Lyapunov-Krasovskii functional approach [4, 5, 8]. In
general, the Lyapunov-Krasovskii approach controller design
and stability analysis are more complex than the Lyapunov-
Razumikhin approach. Besides, the Lyapunov-Krasovskii
approach frequently requires the time-varying delay ℎ

𝑖
(𝑡)

to meet some conservational conditions such that ℎ
𝑖
(𝑡) is

bounded and ℎ̇
𝑖
(𝑡) ≤ 1 but the Lyapunov-Razumikhin

approach only requires the time-varying delay to be bounded.
To the author’s knowledge, there have not been any reported
results on the use of the Lyapunov-Razumikhin method for
state estimator of time-delay systems with state saturation
nonlinearities. Therefore it is important to develop a novel

state estimate for a class of time-delay systems with state
saturation nonlinearities and time-varying delays via the
Lyapunov-Razumikhin technique.

On the other hand, saturation nonlinearities frequently
appear inmost physical systems and have drawn the attention
of several researchers; reader is referred to [2, 7, 9, 10] and the
references therein; for example, the states are constrained to
stay within a bounded set due to physical limitations of the
devices or by protection equipment. For nonlinear systems
with state saturation nonlinearities, it is of great difficulty and
challenge to design state estimator, in that such nonlinearities
will generate a complex nonlinear system.

Since not all of internal states can be measured directly,
some observing structure should be used to reconstruct the
state-variables. Nevertheless, the state estimator design of
dynamic systems with saturation nonlinearities is in general
not as easy as that without saturation nonlinearities. Due
to above-mentioned reasons, the estimator design of time-
delay systems employing saturation nonlinearities is indeed
an important and challenging task.

The main contributions of this paper are summarized as
follows: (I) searching a suitable state estimator for a class
of time-delay systems with state saturation nonlinearities to
achieve the asymptotic stability of the error between the
state estimate and the true state; (II) establishing delay-
dependent sufficient conditions to guarantee the existence
of state estimator for a class of time-delay systems with
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state saturation nonlinearities and time-varying delays; (III)
calculating an upper bound of arbitrary time-varying delays
without destroying the state estimator; (IV) constructing
an observer-based secure communication architecture to
demonstrate the practicability and effectiveness of the main
results.

2. Problem Formulation and Main Results

Nomenclature

R𝑚×𝑛 := the set of all real 𝑚 by 𝑛 matrices,

𝐴
𝑇

:= the transpose of the matrix 𝐴,

𝐼 := the unit matrix,

‖𝐴‖ := the induced Euclidean norm of the matrix 𝐴,

𝜆max(𝑄) (resp., 𝜆min(𝑄)) := the maximum (resp.,
minimum) eigenvalue of the symmetric matrix 𝑄,

𝑄 > 0 := the symmetric matrix 𝑄 is positive and
definite,

𝑝 := {1, 2, . . . , 𝑝},

𝑝 := {0, 1, 2, . . . , 𝑝}.

Nonlinear time-delay systems with state saturation non-
linearities considered in this paper are described by the
following state-space representation:

�̇� (𝑡) = 𝐵0𝑥 (𝑡) +

𝑝

∑

𝑖=1
𝐵
𝑖
𝑥 (𝑡 − ℎ

𝑖 (𝑡))

+

𝑞

∑

𝑖=1
[𝐸
𝑖
𝑓
𝜆1 ,𝜆2 ,...,𝜆𝑛

(𝑥 (𝑡 − 𝜏
𝑖 (𝑡)))]

+𝐷𝑢 (𝑡) , 𝑡 ≥ 0,

(1a)

𝑦 (𝑡) = 𝐶0𝑥 (𝑡) +

𝑝

∑

𝑖=1
𝐶
𝑖
𝑥 (𝑡 − ℎ

𝑖 (𝑡))

+

𝑞

∑

𝑖=1
[𝐻
𝑖
𝑓
𝜆1,𝜆2 ,...,𝜆𝑛

(𝑥 (𝑡 − 𝜏
𝑖 (𝑡)))] ,

𝑡 ≥ 0,

(1b)

𝑥 (𝑡) = 𝜃 (𝑡) , 𝑡 ∈ [−𝐻, 0] , (1c)

where 𝑥 ∈ R𝑛×1 is the state vector, 𝑦 ∈ R𝑟×1 is the output
vector,𝑢 ∈ R𝑑×1 is the chaotic input vector, ℎ

𝑖
(𝑡)

𝑠, for all 𝑖 ∈

𝑝, and 𝜏
𝑖
(𝑡)

𝑠, for all 𝑖 ∈ 𝑞, are arbitrary delay arguments

with 0 ≤ ℎ
𝑖
(𝑡) ≤ 𝐻 and 0 ≤ 𝜏

𝑖
(𝑡) ≤ 𝐻 for some constant

𝐻, 𝐵
𝑖
, 𝐶
𝑖
, 𝐸
𝑖
, 𝐻
𝑖
, and 𝐷 are matrices of appropriate dimen-

sions, and 𝜃(𝑡) is a given continuous vector-valued initial
function. As we know, saturation nonlinearities may result
in the instability or complexity of the designed system.
Saturation overflow arithmetic is still one of the well-known
nonlinear phenomena observed in the real world [9]. In this

paper, the saturation nonlinearity 𝑓
𝜆1 ,𝜆2 ,...,𝜆𝑛

(𝑥) : R𝑛×1 →

R𝑛×1, with 𝜆
𝑖
> 0, for all 𝑖 ∈ 𝑛, is defined as follows [2, 7, 10]:

𝑓
𝜆1,𝜆2 ,...,𝜆𝑛

(𝑥) :=

[
[
[
[
[
[
[

[

sat
𝜆1

(𝑥1)

sat
𝜆2

(𝑥2)

.

.

.

sat
𝜆
𝑛

(𝑥
𝑛
)

]
]
]
]
]
]
]

]

, (2)

with 𝑥 := [𝑥1 𝑥
2

⋅ ⋅ ⋅ 𝑥
𝑛]
𝑇and

sat
𝜆 (𝑧) :=

{{{{

{{{{

{

𝜆, 𝑧 ≥ 𝜆

𝑧, −𝜆 < 𝑧 < 𝜆

−𝜆, 𝑧 ≤ −𝜆.

(3)

Throughout this paper, the following assumption is made
on systems (1a), (1b), and (1c).

(A1) There exists a matrix 𝐾 ∈ R𝑑×𝑟 such that

𝐴 := (

𝑝

∑

𝑖=0
𝐵
𝑖
)+𝐷𝐾(

𝑝

∑

𝑖=0
𝐶
𝑖
) is a Hurwitz matrix;

√
𝜆min (𝑃)

𝜆3
max (𝑃)

> (

𝑝

∑

𝑖=1
ℎ
𝑖 (𝑡) ⋅

𝐵𝑖 +𝐷𝐾𝐶
𝑖

)

⋅(

𝑝

∑

𝑖=0

𝐵𝑖 +𝐷𝐾𝐶
𝑖

 +

𝑞

∑

𝑖=1

𝐸𝑖 +𝐷𝐾𝐻
𝑖

)

+(

𝑞

∑

𝑖=1

𝐸𝑖 +𝐷𝐾𝐻
𝑖

) , ∀𝑡 ≥ 0,

(4)

where 𝑃 > 0 is the unique solution to the following
Lyapunov equation:

𝐴
𝑇
𝑃+𝑃𝐴 = − 2𝐼. (5)

Here we propose a full state estimator of the form

̇̂𝑥 (𝑡) = 𝐵0𝑥 (𝑡) +

𝑝

∑

𝑖=1
𝐵
𝑖
𝑥 (𝑡 − ℎ

𝑖 (𝑡))

+

𝑞

∑

𝑖=1
[𝐸
𝑖
𝑓
𝜆1,𝜆2 ,...,𝜆𝑛

(𝑥 (𝑡 − 𝜏
𝑖 (𝑡)))]

+𝐷𝑢 (𝑡) −𝐷𝐾 [𝑦 (𝑡) − 𝑦 (𝑡)] , 𝑡 ≥ 0,

(6a)

𝑦 (𝑡) = 𝐶0𝑥 (𝑡) +

𝑝

∑

𝑖=1
𝐶
𝑖
𝑥 (𝑡 − ℎ

𝑖 (𝑡))

+

𝑞

∑

𝑖=1
[𝐻
𝑖
𝑓
𝜆1 ,𝜆2 ,...,𝜆𝑛

(𝑥 (𝑡 − 𝜏
𝑖 (𝑡)))] ,

𝑡 ≥ 0,

(6b)

where𝑥(𝑡) expresses the reconstructed state of the system and
the constant matrix 𝐾 ∈ R𝑑×𝑟 is defined in (A1).
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Remark 1. It has been shown in [1, 3–6, 8] that Lyapunov-
Razumikhin function approach and Lyapunov-Krasovskii
functional approach are the key tools in the analysis of
time-delayed dynamical systems. In [4], some nonnegative
inequalities and Lyapunov-Krasovskii functional approach
have been used to design the switching control for a class
of time-delay systems. In [5], based on a new Lyapunov-
Krasovskii functional, linear matrix inequality technique,
and free weighting matrix approach, a control law has been
presented to make the neutral time-delayed system robustly
asymptotically stable. Besides, Razumikhin-type uniform
stability has been developed in [1] to guarantee the stability of
functional fractional-order time-delay systems. Meanwhile,
a necessary and sufficient stability condition joining the
Razumikhin and the Lyapunov-Krasovskii approaches has
been provided in [6] for linear systems with several delays.
The condition allows estimating the stability domains in the
parameter space. On the basis of Lyapunov-Krasovskii func-
tional approach, less conservative delay-dependent stability
criteria have been proposed in [8] to guarantee the stability
of the neutral time-delay system.

Remark 2. In practice, the saturation nonlinearities can be
regarded as uncertainties with Lipschitz property. Besides,
Lyapunov-Razumikhin function method is a useful and
general approach for studying the stability of time-delay sys-
tems with uncertainties. Therefore, motivated by Lyapunov-
Razumikhin function approach in [3], an asymptotic state
estimator for time-delay systems with saturation nonlinear-
ities of (1a), (1b), and (1c) will be presented. By the way, a
sufficient condition for the asymptotic convergence to zero
of the state observation error will be derived.

Now we present the first main result for the state recon-
struction of systems (1a), (1b), and (1c).

Theorem 3. If condition (A1) is satisfied, systems (6a) and
(6b) are an asymptotic state estimator for systems (1a), (1b), and
(1c); that is, lim

𝑡→∞
‖𝑥(𝑡) − 𝑥(𝑡)‖ = 0.

Proof. Define

𝑒 (𝑡) = 𝑥 (𝑡) − 𝑥 (𝑡) ,

𝐴
𝑖
= 𝐵
𝑖
+𝐷𝐾𝐶

𝑖
, ∀𝑖 ∈ 𝑝,

(7)

𝑘
𝑖
= 𝐸
𝑖
+𝐷𝐾𝐻

𝑖
, ∀𝑖 ∈ 𝑞, (8)

Δ𝑓 (𝑡) =

𝑞

∑

𝑖=1
(𝐸
𝑖
+𝐷𝐾𝐻

𝑖
) [𝑓
𝜆1,𝜆2 ,...,𝜆𝑛

(𝑥 (𝑡 − 𝜏
𝑖 (𝑡)))

−𝑓
𝜆1,𝜆2 ,...,𝜆𝑛

(𝑥 (𝑡 − 𝜏
𝑖 (𝑡)))] .

(9)

Then, from (1a), (1b), and (1c)–(9), it is easy to see that the
error dynamic system is given by

̇𝑒 (𝑡) = (𝐵0 +𝐷𝐾𝐶0) 𝑒 (𝑡) +

𝑝

∑

𝑖=1
(𝐵
𝑖
+𝐷𝐾𝐶

𝑖
) 𝑒 (𝑡

− ℎ
𝑖 (𝑡)) +

𝑞

∑

𝑖=1
(𝐸
𝑖
+𝐷𝐾𝐻

𝑖
)

⋅ [𝑓
𝜆1,𝜆2 ,...,𝜆𝑛

(𝑥 (𝑡 − 𝜏
𝑖 (𝑡)))

−𝑓
𝜆1 ,𝜆2,...,𝜆𝑛

(𝑥 (𝑡 − 𝜏
𝑖 (𝑡)))] = 𝐴0𝑒 (𝑡)

+ [

𝑝

∑

𝑖=1
𝐴
𝑖
𝑒 (𝑡 − ℎ

𝑖 (𝑡))] +Δ𝑓 (𝑡) ,

(10)

with

Δ𝑓 (𝑡)
 =



𝑞

∑

𝑖=1
(𝐸
𝑖
+𝐷𝐾𝐻

𝑖
) [𝑓
𝜆1,𝜆2 ,...,𝜆𝑛

(𝑥 (𝑡 − 𝜏
𝑖 (𝑡)))

−𝑓
𝜆1 ,𝜆2 ,...,𝜆𝑛

(𝑥 (𝑡 − 𝜏
𝑖 (𝑡)))]



≤

𝑞

∑

𝑖=1

𝐸𝑖 +𝐷𝐾𝐻
𝑖



⋅
𝑥 (𝑡 − 𝜏

𝑖 (𝑡)) − 𝑥 (𝑡 − 𝜏
𝑖 (𝑡))

 =

𝑞

∑

𝑖=1

𝐸𝑖 +𝐷𝐾𝐻
𝑖



⋅
𝑒 (𝑡 − 𝜏

𝑖 (𝑡))
 ,

(11)

in view of the global Lipschitz of sat
𝜆
(𝑧). From (10), we have

̇𝑒 (𝑡) = 𝐴0𝑒 (𝑡) +

𝑝

∑

𝑖=1
𝐴
𝑖
𝑒 (𝑡)

− [

𝑝

∑

𝑖=1
𝐴
𝑖
(∫

𝑡

𝑡−ℎ
𝑖
(𝑡)

̇𝑒 (𝑧) 𝑑𝑧)]+Δ𝑓 (𝑡)

= (

𝑝

∑

𝑖=0
𝐴
𝑖
)𝑒 (𝑡) −{

𝑝

∑

𝑖=1
𝐴
𝑖

⋅ ∫

𝑡

𝑡−ℎ
𝑖
(𝑡)

[(

𝑝

∑

𝑖=0
𝐴
𝑖
𝑒 (𝑧 − ℎ

𝑖 (𝑧)))+Δ𝑓 (𝑧)] 𝑑𝑧}

+Δ𝑓 (𝑡) , ∀𝑡 ≥ 0,

(12a)

𝑥 (𝑡) = 𝜃 (𝑡) , 𝑡 ∈ [−𝐻, 0] . (12b)

Define the dynamic system

̇𝑦 (𝑡) = 𝐴0𝑦 (𝑡) +

𝑝

∑

𝑖=1
𝐴
𝑖
𝑦 (𝑡)

− [

𝑝

∑

𝑖=1
𝐴
𝑖
(∫

𝑡

𝑡−ℎ
𝑖
(𝑡)

̇𝑦 (𝑧) 𝑑𝑧)]+Δ𝑓 (𝑡)

= (

𝑝

∑

𝑖=0
𝐴
𝑖
)𝑦 (𝑡) −{

𝑝

∑

𝑖=1
𝐴
𝑖

⋅ ∫

𝑡

𝑡−ℎ
𝑖
(𝑡)

[(

𝑝

∑

𝑖=0
𝐴
𝑖
𝑦 (𝑧 − ℎ

𝑖 (𝑧)))+Δ𝑓 (𝑧)] 𝑑𝑧}

+Δ𝑓 (𝑡) , ∀𝑡 ≥ 0,

(13a)

𝑦 (𝑡) = 𝑒 (𝑡) , 𝑡 ∈ [−𝐻, 0] ,

𝑦 (𝑡) = 𝑒 (−𝐻) , 𝑡 ∈ [−2𝐻,−𝐻] .

(13b)
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For brevity, let us define 𝑦
𝑡
(𝑠) = 𝑦(𝑡 + 𝑠), for all 𝑠 ∈ [−2𝐻,

0], and ‖𝑦
𝑡
‖
𝑠
:= sup

−2𝐻≤𝑟≤0‖𝑦(𝑡+𝑟)‖. By comparing (13a) and
(13b) with (12a) and (12b), it is easy to see that 𝑦(𝑡) = 𝑒(𝑡), for
all 𝑡 ≥ 0. Thus it can be deduced that



−

𝑝

∑

𝑖=1
𝐴
𝑖

⋅ ∫

𝑡

𝑡−ℎ
𝑖
(𝑡)

[(

𝑝

∑

𝑖=0
𝐴
𝑖
𝑦 (𝑧 − ℎ

𝑖 (𝑧)))+Δ𝑓 (𝑧)] 𝑑𝑧



≤

𝑝

∑

𝑖=1

𝐴 𝑖
 ⋅ ℎ
𝑖 (𝑡) ⋅ [(

𝑝

∑

𝑖=0

𝐴 𝑖
 ⋅

𝑦𝑡
𝑠)

+(

𝑞

∑

𝑖=1
𝑘
𝑖
⋅
𝑦𝑡

𝑠)] = {

𝑝

∑

𝑖=1

𝐴 𝑖
 ⋅ ℎ
𝑖 (𝑡)

⋅ [(

𝑝

∑

𝑖=0

𝐴 𝑖
)+(

𝑞

∑

𝑖=1
𝑘
𝑖
)]} ⋅

𝑦𝑡
𝑠 , ∀𝑡 ≥ 0.

(14)

Let

𝑉 (𝑦 (𝑡)) = 𝑦
𝑇
(𝑡) 𝑃𝑦 (𝑡) . (15)

The time derivative of 𝑉(𝑦(𝑡)) along the trajectories of
systems (13a) and (13b) is given by

�̇� (𝑦 (𝑡)) = 𝑦
𝑇
(𝑡) [𝐴

𝑇
𝑃+𝑃𝐴] 𝑦 (𝑡) − 2𝑦𝑇 (𝑡) 𝑃

𝑝

∑

𝑖=1
𝐴
𝑖

⋅ ∫

𝑡

𝑡−ℎ
𝑖
(𝑡)

[(

𝑝

∑

𝑖=0
𝐴
𝑖
𝑦 (𝑧 − ℎ

𝑖 (𝑧)))+Δ𝑓 (𝑧)] 𝑑𝑧

+ 2𝑦𝑇 (𝑡) 𝑃Δ𝑓 (𝑡) = − 2 𝑦 (𝑡)

2
− 2𝑦𝑇 (𝑡) 𝑃

𝑝

∑

𝑖=1
𝐴
𝑖

⋅ ∫

𝑡

𝑡−ℎ
𝑖
(𝑡)

[(

𝑝

∑

𝑖=0
𝐴
𝑖
𝑦 (𝑧 − ℎ

𝑖 (𝑧)))+Δ𝑓 (𝑧)] 𝑑𝑧

+ 2𝑦𝑇 (𝑡) 𝑃Δ𝑓 (𝑡) , ∀𝑡 ≥ 0.

(16)

Applying (14) to (16) yields

�̇� (𝑦 (𝑡)) ≤ − 2 𝑦 (𝑡)

2
+ 2 𝑦 (𝑡)

 ⋅ 𝜆max (𝑃)

⋅ {

𝑝

∑

𝑖=1

𝐴 𝑖
 ⋅ ℎ
𝑖 (𝑡) ⋅ [(

𝑝

∑

𝑖=0

𝐴 𝑖
)+(

𝑞

∑

𝑖=1
𝑘
𝑖
)]}

⋅
𝑦𝑡

𝑠 + 2 𝑦 (𝑡)
 𝜆max (𝑃) ⋅ (

𝑞

∑

𝑖=1
𝑘
𝑖
) ⋅

𝑦𝑡
𝑠

= − 2 𝑦 (𝑡)

2
+ 2 𝑦 (𝑡)

 ⋅ 𝜆max (𝑃) ⋅ {

𝑝

∑

𝑖=1

𝐴 𝑖


⋅ ℎ
𝑖 (𝑡) ⋅ [(

𝑝

∑

𝑖=0

𝐴 𝑖
)+(

𝑞

∑

𝑖=1
𝑘
𝑖
)]+(

𝑞

∑

𝑖=1
𝑘
𝑖
)}

⋅
𝑦𝑡

𝑠 , ∀𝑡 ≥ 0.

(17)

By (A1), (7), and (8), there exists a sufficiently small constant
𝜀1 > 0 such that

𝜀2 := 1− (1+ 𝜀1)√
𝜆
3
max (𝑃)

𝜆min (𝑃)
⋅ {(

𝑝

∑

𝑖=1
ℎ
𝑖 (𝑡) ⋅

𝐴 𝑖
)

⋅(

𝑝

∑

𝑖=0

𝐴 𝑖
 +

𝑞

∑

𝑖=1
𝑘
𝑖
)+(

𝑞

∑

𝑖=1
𝑘
𝑖
)} > 0, ∀𝑡 ≥ 0.

(18)

In the spirit of Theorem 4.2 in [3], with 𝑝(𝑠) = (1 + 𝜀1)
2
𝑠, we

suppose that

𝑦
𝑇
(𝑡 + 𝑟) 𝑃𝑦 (𝑡 + 𝑟) < (1+ 𝜀1)

2
𝑦
𝑇
(𝑡) 𝑃𝑦 (𝑡) ,

∀ − 2𝐻 ≤ 𝑟 ≤ 0;
(19)

this implies that

𝜆min (𝑃)
𝑦 (𝑡 + 𝑟)


2
< (1+ 𝜀1)

2
𝜆max (𝑃)

𝑦 (𝑡)

2
,

∀ − 2𝐻 ≤ 𝑟 ≤ 0.
(20)

This shows that

𝑦 (𝑡 + 𝑟)
 < (1+ 𝜀1)√

𝜆max (𝑃)

𝜆min (𝑃)

𝑦 (𝑡)
 ,

∀ − 2𝐻 ≤ 𝑟 ≤ 0.

(21)

Substituting (21) into (17), it can be shown that

�̇� (𝑦 (𝑡)) ≤ − 2 𝑦 (𝑡)

2
+ 2 𝑦 (𝑡)

 ⋅ 𝜆max (𝑃)

⋅ {(

𝑝

∑

𝑖=1

𝐴 𝑖
 ⋅ ℎ
𝑖 (𝑡))[(

𝑝

∑

𝑖=0

𝐴 𝑖
)+(

𝑞

∑

𝑖=1
𝑘
𝑖
)]

+(

𝑞

∑

𝑖=1
𝑘
𝑖
)} ⋅ (1+ 𝜀1) .√

𝜆max (𝑃)

𝜆max (𝑃)
⋅
𝑦 (𝑡)



= − 2𝜀2
𝑦 (𝑡)


2
, ∀𝑡 ≥ 0,

(22)

in view of (18). Thus, by Theorem 4.2 in [3] with (15) and
(22), we conclude that systems (13a) and (13b) and systems
(12a) and (12b) are both globally asymptotically stable with

lim
𝑡→∞

‖𝑒 (𝑡)‖ = lim
𝑡→∞

‖𝑥 (𝑡) − 𝑥 (𝑡)‖ = 0. (23)

This completes our proof.

Remark 4. ByTheorem 3, an upper bound of arbitrary time-
varying delays without destroying the state estimator is given
by 𝐻 < 𝐻, where
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System (1)

State estimator of (2) 
Channel

Channel
+ +

+

Transmitter Receiver

y(t)

x(t)
T T

m1(t)
m2(t)

𝜙m(t) −

x̂(t)

Figure 1: Secure communication system (𝑚
1
(𝑡) is the message vector and 𝑚

2
(𝑡) is the recovered vector).

𝐻 =
{

{

{

𝛼4 − 𝛼3
𝛼1 (𝛼2 + 𝛼3)

, if 𝛼1 (𝛼2 + 𝛼3) ̸= 0, 𝛼4 > 𝛼3,

∞, if 𝛼1 (𝛼2 + 𝛼3) = 0, 𝛼4 > 𝛼3,

𝛼1 =

𝑝

∑

𝑖=1

𝐵𝑖 + 𝐷𝐾𝐶
𝑖

 , 𝛼2 =

𝑝

∑

𝑖=0

𝐵𝑖 + 𝐷𝐾𝐶
𝑖

 , 𝛼3 =

𝑞

∑

𝑖=1

𝐸𝑖 + 𝐷𝐾𝐻
𝑖

 , 𝛼4 = √
𝜆min (𝑃)

𝜆3
max (𝑃)

.

(24)

3. Application to Secure
Communication System

Motivated by the time-delay systems (1a), (1b), and (1c) with
their state estimator of (6a) and (6b), let us consider the
following secure communication system and the architecture
of such a system is shown in Figure 1.

Transmitter:

�̇� (𝑡) = 𝐵0𝑥 (𝑡) +

𝑝

∑

𝑖=1
𝐵
𝑖
𝑥 (𝑡 − ℎ

𝑖 (𝑡))

+

𝑞

∑

𝑖=1
[𝐸
𝑖
𝑓
𝜆1 ,𝜆2 ,...,𝜆𝑛

(𝑥 (𝑡 − 𝜏
𝑖 (𝑡)))]

+𝐷𝑢 (𝑡) , 𝑡 ≥ 0,

(25a)

𝑦 (𝑡) = 𝐶0𝑥 (𝑡) +

𝑝

∑

𝑖=1
𝐶
𝑖
𝑥 (𝑡 − ℎ

𝑖 (𝑡))

+

𝑞

∑

𝑖=1
[𝐻
𝑖
𝑓
𝜆1,𝜆2 ,...,𝜆𝑛

(𝑥 (𝑡 − 𝜏
𝑖 (𝑡)))] ,

𝑡 ≥ 0,

(25b)

𝜙
𝑚 (𝑡) = 𝑇𝑥 (𝑡) +𝑚1 (𝑡) , (25c)

where 𝑚
1
(𝑡) ∈ RV×1 is the message vector, 𝑇 ∈ RV×𝑛, and

systems (25a) and (25b) are the same as systems (1a) and (1b),
respectively.

Receiver:

̇̂𝑥 (𝑡) = 𝐵0𝑥 (𝑡) +

𝑝

∑

𝑖=1
𝐵
𝑖
𝑥 (𝑡 − ℎ

𝑖 (𝑡))

+

𝑞

∑

𝑖=1
[𝐸
𝑖
𝑓
𝜆1 ,𝜆2 ,...,𝜆𝑛

(𝑥 (𝑡 − 𝜏
𝑖 (𝑡)))]

+𝐷𝑢 (𝑡) −𝐷𝐾 [𝑦 (𝑡) − 𝑦 (𝑡)] , 𝑡 ≥ 0,

(26a)

𝑦 (𝑡) = 𝐶0𝑥 (𝑡) +

𝑝

∑

𝑖=1
𝐶
𝑖
𝑥 (𝑡 − ℎ

𝑖 (𝑡))

+

𝑞

∑

𝑖=1
[𝐻
𝑖
𝑓
𝜆1,𝜆2 ,...,𝜆𝑛

(𝑥 (𝑡 − 𝜏
𝑖 (𝑡)))] ,

𝑡 ≥ 0,

(26b)

𝑚2 (𝑡) = 𝜙
𝑚 (𝑡) − 𝑇𝑥 (𝑡) , (26c)

where dynamics of (26a) and (26b) are the same as those of
(6a) and (6b), respectively. In addition, 𝑚

2
(𝑡) ∈ RV×1 is the

signal recovered from𝑚
1
(𝑡). It is worthwhile to note that our

proposed secure communication is motivated by the time-
delay systems (1a), (1b), and (1c) with their state estimator
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of (6a) and (6b). For any information vector 𝑚
1
(𝑡) in the

transmitter system, the objective of secure communication
system is to recover the message𝑚

2
(𝑡) in the receiver system.

Theorem 5. The global synchronization of signals 𝑚
1
(𝑡) and

𝑚
2
(𝑡) can be realized by the transmitters (25a), (25b), and (25c)

with the receiver of (26a), (26b), and (26c), provided that (A1)
is satisfied.

Proof. ByTheorem 3 with (23)–(26c), one can see that

lim
𝑡→∞

𝑚1 (𝑡) −𝑚2 (𝑡)


= lim
𝑡→∞

𝜙𝑚 (𝑡) − 𝑇𝑥 (𝑡) − 𝜙
𝑚 (𝑡) + 𝑇𝑥 (𝑡)



≤ lim
𝑡→∞

‖𝑇‖ ⋅ ‖𝑒 (𝑡)‖ = 0.

(27)

This implies that one can recover the information𝑚
1
(𝑡) in the

receiver system. This completes our proof.

4. Illustrative Example with
Numerical Simulations

Example. Consider the transmitter system of (25a), (25b),
and (25c) with parameters as follows:

𝑝 = 𝑞 = 2,

𝑟 = 1,

𝐻 = 10,

𝑚1 (𝑡) = 3 sin (0.7𝑡) + 3 cos (0.5𝑡) + 𝑒
−0.01𝑡

,

𝐵0 = [
−0.1 −2
0.1 0

] ,

𝐵1 = [
−2 −2
0 0

] ,

𝐵2 = [
0 2

−0.1 −0.1
] ,

𝐸1 = [
2 0
0 0.1

] ,

𝐸2 = [
−2 2
0.1 0.1

] ,

𝐷 = [
−1
0

] ,

𝐶0 = [0 1] ,

𝐶1 = [1 1] ,

u
(t
)

t

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50

Figure 2: Signal of 𝑢(𝑡).

𝐶2 = [0 −1] ,

𝐻1 = [1 0] ,

𝐻2 = [−1 1] ,

𝑇 = [1 −1] .
(28)

Furthermore, the input 𝑢(𝑡) is a Lorenz chaotic signal, shown
in Figure 2. Condition (A1) is evidently satisfied if we let𝐾 =

−2. Consequently, by Theorem 3, we conclude that the state
estimator of systems (25a)-(25b) is of existence and a suitable
state estimator is given by (26a)-(26b). Additionally, the real
information 𝑚

1
(𝑡), the recovered information 𝑚

2
(𝑡), and the

error signal are depicted in Figures 3–5, respectively. From
the foregoing simulations results, it is seen that the global
synchronization of signals 𝑚

1
(𝑡) and 𝑚

2
(𝑡) can be achieved

by the transmitters (25a), (25b), and (25c) with the receiver of
(26a), (26b), and (26c). By the way, from Remark 4, an upper
bound of arbitrary time-varying delays without destroying
the state estimator is given by 𝐻 < 𝐻 = 10.2.

Remark 6. It should be emphasized that there exist an infi-
nite number of secure communication systems of (25a),
(25b), and (25c) with (26a), (26b), and (26c) since there
exist infinitely many systems (1a), (1b), and (1c) satisfying the
condition of (A1).

5. Conclusion

In this paper, the design and application of state estima-
tor for a class of time-delay systems with state saturation
nonlinearities have been firstly investigated. Based on the
Lyapunov-Razumikhin functions, sufficient conditions have
been established to guarantee the asymptotic stability of the
error between the state estimate and the true state. Besides,
an upper bound of arbitrary time-varying delays has been
derived to guarantee that the resulting error can converge
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Figure 3: Real information of 𝑚
1
(𝑡) described in the transmitter of

(25a), (25b), and (25c).
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Figure 4: Recovered information of 𝑚
2
(𝑡) described in the receiver

of (26a), (26b), and (26c).

t
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)
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Figure 5: Error signal of 𝑚
1
(𝑡) − 𝑚

2
(𝑡).

asymptotically to zero. Applications of the proposed state
estimator technique to secure communication as well as
some numerical simulations have also been presented to
demonstrate the practicability and effectiveness of the main
results.
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