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This paper investigates the observer-basedH
∞
tracking problem of networked output-feedback control systemswith consideration

of data transmission delays, data-packet dropouts, and sampling effects. Different from other approaches, this paper offers a single-
step procedure to handle nonconvex terms that appear in the process of designing observer-based output-feedback control, and then
establishes a set of linear matrix inequality conditions for the solvability of the tracking problem. Finally, two numerical examples
are given to illustrate the effectiveness of our result.

1. Introduction

Recently, the research on networked control systems (NCSs)
has been rapidly growing due to both the fast development
of technology of communication networks and the benefits
of NCSs that include (1) overcoming the spatial limits of
the traditional control system, (2) expanding system setups,
(3) increasing flexibility, (4)multitasking, and (5) improving
system diagnosis and maintenance (see [1–4]). In particular,
more recently, the development of the embedded system
that has various communication modules and digital signal
processing (DPS) core has confirmed the necessity of further
investigations on NCSs. However, it is worth noticing here
that the signal transmission over communication channels
inevitably gives rise to data transmission delay problem,
data-packet dropout problem, and sampling problem (see
[3, 5–8]), whichmay cause instability or serious deterioration
in the performance of the resultant control systems. Thus,
exploring such problems has been recognized as one of the
most important issues in the application of control theory.

Over the past several years, numerous researchers have
made considerable efforts to propose methods for solving
the aforementioned problems, especially based on Lyapunov-
Krasovskii functional approach (see [9–11] for stabilization
of NCSs (S-NCSs); [12, 13] for stabilization of NOCSs
(S-NOCSs); and [5, 14–16] for tracking control of NCSs

(T-NCSs), where NOCSs is the abbreviation of networked
output-feedback control systems). In addition, [17] investi-
gated the problem of output tracking for NCSs on the basis
of the Lyapunov function approach. However, it is worth
pointing out here that, regardless of such abundant literature,
little progress has been made toward solving the tracking
problem of NOCSs (T-NOCSs) in light of the Lyapunov-
Krasovskii functional approach. In fact, all states of the
controlled plant are not fullymeasurable inmany engineering
applications, and thus the tracking problem has emerged as
a topic of significant interest in parallel to the stabilization
problem. Thus, it is quite meaningful to study the method of
designing T-NOCSs, especially by establishing a set of linear
matrix inequality (LMI) conditions for the solvability of the
tracking problem.

Motivated by the above concern, we investigate the
problem of designing an observer-based T-NOCS with con-
sideration of data transmission delays, data-packet dropouts,
and sampling effects. Specifically, the attention is focused on
designing an observer-based NOCS in such a way that the
plant state tracks the reference signal in the H

∞
sense. The

contributions of this paper are mainly threefold.
(1) The problem of designing T-NOCSs is systematically

covered with the help of the Lyapunov-Krasovskii
functional approach, which helps our results to have
more wide applications.

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2015, Article ID 724389, 10 pages
http://dx.doi.org/10.1155/2015/724389



2 Mathematical Problems in Engineering

(2) A single-step procedure is proposed to handle non-
convex terms that inherently appear in the process
of designing observer-based output-feedback control,
which allows the derived sufficient conditions for the
solvability of the tracking problem to be established
in terms of LMIs.

(3) Through the control synthesis process, this paper
shows that the stability criteria derived from the recip-
rocally convex approach [18] can be clearly applied to
the problem of designing T-NOCSs, which offers the
possibilities for the extension of the results [19, 20] on
the stability analysis toward the design of T-NOCSs.

Finally, two numerical examples are given to illustrate the
effectiveness of our result.

Notation. The Lebesgue space L
2+

= L
2
[0,∞) consists

of square-integrable functions on [0,∞). Throughout this
paper, standard notions will be adopted.The notations𝑋 ≥ 𝑌

and 𝑋 > 𝑌 mean that 𝑋 − 𝑌 is positive semidefinite and
positive definite, respectively. In symmetric block matrices,
(∗) is used as an ellipsis for terms that are induced by
symmetry. For a squarematrixQ, the notationHe(Q) denotes
Q+Q𝑇, whereQ𝑇 is the transpose ofQ. col(𝑞

1
, 𝑞
2
) is a column

vector with entries 𝑞
1
and 𝑞

2
and diag(Q

1
,Q
2
) is a diagonal

matrix with diagonal entries Q
1
and Q

2
. All matrices, if

their dimensions are not explicitly stated, are assumed to be
compatible with algebraic operation.

2. System Description and Preliminaries

Consider a continuous-time plant of the following form:

𝑥̇ (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) + 𝐷𝑤 (𝑡) ,

𝑦 (𝑡) = 𝐶𝑥 (𝑡) ,

(1)

where 𝑥(𝑡) ∈ R𝑛𝑥 , 𝑢(𝑡) ∈ R𝑛𝑢 , and 𝑦(𝑡) ∈ R𝑛𝑦 denote
the state to be estimated, the control input, and the output,
respectively, and 𝑤(𝑡) ∈ R𝑛𝑤 denotes the disturbance input
such that 𝑤(𝑡) ∈ L

2+
. Here, as a way to estimate the

immeasurable state variables of (1), we employ the following
usual state observer:

̇
𝑥̂ (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) − 𝐿 (𝑦 (𝑡) − 𝑦 (𝑡)) ,

𝑦 (𝑡) = 𝐶𝑥 (𝑡) ,

(2)

where 𝑥(𝑡) ∈ R𝑛𝑥 denotes the estimated state and 𝐿 ∈ R𝑛𝑥×𝑛𝑦

is the observer gain to be designed. Further, in parallel to (1)
and (2), we incorporate the following dynamic system that
generates the reference signal 𝑥

𝑟
(𝑡) ∈ R𝑛𝑥 :

𝑥̇
𝑟
(𝑡) = 𝐴

𝑟
𝑥
𝑟
(𝑡) + 𝑟 (𝑡) , (3)

where 𝑟(𝑡) ∈ R𝑛𝑥 denotes the reference input such that 𝑟(𝑡) ∈
L
2+

and 𝐴
𝑟
is constructed to be an asymptotically stable

matrix. In this paper, our interest is to design an observer-
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Figure 1: Networked output-feedback control systems (NOCSs)
with observer-based controller.

based networked output-feedback control system (NOCS),
based on (1)–(3), such that

(1) the estimated state 𝑥(𝑡) can approach the real state
𝑥(𝑡) asymptotically;

(2) the estimated state 𝑥(𝑡) can track a reference signal
𝑥
𝑟
(𝑡) over a communication network; that is, the state

𝑥(𝑡) can track 𝑥
𝑟
(𝑡) by (1);

(3) a guaranteed H
∞

tracking performance can be
achieved.

To this end, we first employ the networked control system
(NCS) architecture proposed in [3], which contains an
observer with time-driven sampler, an event-driven con-
troller, and a packet analyzer with event-driven holder (see
Figure 1). For brevity, this paper omits the sophisticated
description for the NCS under consideration since it is
analogue to that of [3]. However, different from [3], we
assume that the initial condition of (2) is given as 𝑥(𝑡) = 𝜙(𝑡),
for 𝑡 ∈ [𝑡

0
−𝑑
𝑀
, 𝑡
0
], and the initial condition of (3) is given as

𝑥
𝑟
(𝑡) = 𝜑(𝑡), for 𝑡 ∈ [𝑡

0
− 𝑑
𝑀
, 𝑡
0
], where 𝑡

0
denotes the initial

time.

Remark 1. Here, it should be noted that, by the NCS archi-
tecture of [3], the communication constraints, such as data
transmission delays and packet dropouts, can be represented
in terms of piecewise continuous-time-varying delays with
the lower and upper bounds.

Next, let us consider the following control law, inferred by
[3]:

𝑢 (𝑡) = 𝐹 (𝑥 (𝑡 − 𝑑 (𝑡)) − 𝑥
𝑟
(𝑡 − 𝑑 (𝑡))) , (4)

where 𝑑(𝑡) ∈ [𝑑
𝑚
, 𝑑
𝑀
] corresponds to the piecewise

continuous-time-varying delay that occurs from data trans-
mission delays and packet dropouts. Then, by letting 𝑒(𝑡) =
𝑥(𝑡) − 𝑥(𝑡) and 𝑒

𝑟
(𝑡) = 𝑥(𝑡) − 𝑥

𝑟
(𝑡), the control law (4) can be

rewritten as

𝑢 (𝑡) = 𝐹 (𝑒
𝑟
(𝑡 − 𝑑 (𝑡)) − 𝑒 (𝑡 − 𝑑 (𝑡))) . (5)

Further, by setting 𝑥(𝑡) = col(𝑥
𝑟
(𝑡), 𝑒
𝑟
(𝑡), 𝑒(𝑡)) ∈ R3𝑛𝑥 and

𝑤(𝑡) = col(𝑤(𝑡), 𝑟(𝑡)) ∈ R𝑛𝑤+𝑛𝑥 and by combining (1), (2), (3),
and (5), the closed-loop system is described as

̇
𝑥̃ (𝑡) = 𝐴𝑥 (𝑡) + 𝐴

𝑑
𝑥 (𝑡 − 𝑑 (𝑡)) + 𝐷𝑤 (𝑡) ,

𝑧̃ (𝑡) = 𝐶𝑥 (𝑡) (= 𝐶𝑒
𝑟
(𝑡)) ,

(6)
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where 𝑧̃(𝑡) ∈ R𝑛𝑥 denotes the desired output,

𝐴 =
[

[

𝐴
𝑟

0 0

𝐴 − 𝐴
𝑟
𝐴 0

0 0 𝐴 + 𝐿𝐶

]

]

, 𝐴
𝑑
=
[

[

0 0 0

0 𝐵𝐹 −𝐵𝐹

0 0 0

]

]

,

𝐶
𝑇

=
[

[

0

𝐶
𝑇

0

]

]

, 𝐷 =
[

[

0 𝐼

𝐷 −𝐼

𝐷 0

]

]

.

(7)

Before ending this section, we present the following
lemma that will be used in the proof of our main results.

Lemma 2 (see [21]). For real matrices 𝑋, 𝑌, and 𝑆 > 0

with appropriate dimensions, it is satisfied that 0 ≤ (𝑋 −

𝑆𝑌)
𝑇

𝑆
−1

(𝑋 − 𝑆𝑌) and thus the following inequality holds:
𝑌
𝑇

𝑆𝑌 ≥ He(𝑋𝑇𝑌) − 𝑋𝑇𝑆−1𝑋. Further if𝑋 = 𝜇𝐼, then

𝑌
𝑇

𝑆𝑌 ≥ He (𝜇𝑌) − 𝜇2𝑆−1, (8)

where 𝜇 is a scalar. On the other hand, if 𝑆 < 0, then

𝑌
𝑇

𝑆𝑌 ≤ −He (𝜇𝑌) − 𝜇2𝑆−1. (9)

3. Main Results

Choose a Lyapunov-Krasovskii functional of the following
form:

𝑉 (𝑡) = 𝑉
1
(𝑡) + 𝑉

2
(𝑡) + 𝑉

3
(𝑡) ,

𝑉
1
(𝑡) = 𝑥

𝑇

(𝑡) 𝑃𝑥 (𝑡) ,

𝑉
2
(𝑡) = ∫

𝑡

𝑡−𝑑
𝑚

𝑥
𝑇

(𝛼)𝑄
1
𝑥 (𝛼) 𝑑𝛼 + ∫

𝑡

𝑡−𝑑
𝑀

𝑥
𝑇

(𝛼)𝑄
2
𝑥 (𝛼) 𝑑𝛼,

𝑉
3
(𝑡) = 𝑑

𝑚
∫

0

−𝑑
𝑚

∫

𝑡

𝑡+𝛼

̇
𝑥̃

𝑇

(𝛽) 𝑅
1

̇
𝑥̃ (𝛽) 𝑑𝛽𝑑𝛼

+ 𝑑
𝐼
∫

−𝑑
𝑚

−𝑑
𝑀

∫

𝑡

𝑡+𝛼

̇
𝑥̃

𝑇

(𝛽) 𝑅
2

̇
𝑥̃ (𝛽) 𝑑𝛽𝑑𝛼,

(10)

where 𝑃, 𝑄
1
, 𝑄
2
, 𝑅
1
, and 𝑅

2
∈ R3𝑛𝑥×3𝑛𝑥 are positive definite

matrices and 𝑑
𝐼
= 𝑑
𝑀
− 𝑑
𝑚
. For later convenience, we define

an augmented state 𝜁(𝑡) = col(𝑥(𝑡), 𝑥(𝑡−𝑑
𝑚
), 𝑥(𝑡−𝑑(𝑡)), 𝑥(𝑡−

𝑑
𝑀
), 𝑤(𝑡)) ∈ R𝑛𝜂 , 𝑛

𝜂
= 13𝑛

𝑥
+ 𝑛
𝑤
, and then establish some

block entry matrices e
𝑖
such that 𝑥(𝑡) = e

1
𝜁(𝑡), 𝑥(𝑡 − 𝑑

𝑚
) =

e
2
𝜁(𝑡), 𝑥(𝑡 − 𝑑(𝑡)) = e

3
𝜁(𝑡), 𝑥(𝑡 − 𝑑

𝑀
) = e
4
𝜁(𝑡), and 𝑤(𝑡) =

e
5
𝜁(𝑡). Then the closed-loop system (6) can be rewritten as
̇
𝑥̃(𝑡) = Φ

𝑡
𝜁(𝑡), whereΦ

𝑡
= 𝐴e
1
+ 𝐴
𝑑
e
3
+ 𝐷e
5
. As a result, the

time derivative of 𝑉
𝑖
(𝑡) along the trajectories of (6) is given

by

𝑉̇
1
(𝑡) = 𝜁

𝑇

(𝑡)He (e𝑇
1
𝑃Φ
𝑡
) 𝜁 (𝑡) ,

𝑉̇
2
(𝑡) = 𝜁

𝑇

(𝑡) (e𝑇
1
(𝑄
1
+ 𝑄
2
) e
1
− e𝑇
2
𝑄
1
e
2
− e𝑇
4
𝑄
2
e
4
) 𝜁 (𝑡) ,

𝑉̇
3
(𝑡) = 𝜁

𝑇

(𝑡) Φ
𝑇

𝑡
(𝑑
2

𝑚
𝑅
1
+ 𝑑
2

𝐼
𝑅
2
)Φ
𝑡
𝜁 (𝑡) + O,

(11)

where

O = − 𝑑
𝑚
∫

𝑡

𝑡−𝑑
𝑚

̇
𝑥̃

𝑇

(𝛼) 𝑅
1

̇
𝑥̃ (𝛼) 𝑑𝛼

− 𝑑
𝐼
∫

𝑡−𝑑
𝑚

𝑡−𝑑(𝑡)

̇
𝑥̃

𝑇

(𝛼) 𝑅
2

̇
𝑥̃ (𝛼) 𝑑𝛼

− 𝑑
𝐼
∫

𝑡−𝑑(𝑡)

𝑡−𝑑
𝑀

̇
𝑥̃

𝑇

(𝛼) 𝑅
2

̇
𝑥̃ (𝛼) 𝑑𝛼.

(12)

By (11), the time derivative of 𝑉(𝑡) becomes

𝑉̇ (𝑡) = 𝜁
𝑇

(𝑡) Π
0
𝜁 (𝑡) + O, (13)

whereΠ
0
= He(e𝑇

1
𝑃Φ
𝑡
) + e𝑇
1
(𝑄
1
+𝑄
2
)e
1
− e𝑇
2
𝑄
1
e
2
− e𝑇
4
𝑄
2
e
4
+

Φ
𝑇

𝑡
(𝑑
2

𝑚
𝑅
1
+ 𝑑
2

𝐼
𝑅
2
)Φ
𝑡
. To deal with O, we apply the Jensen

inequality [22] to O, which results in

O ≤ − (∫

𝑡

𝑡−𝑑
𝑚

̇
𝑥̃(𝛼)𝑑𝛼)

𝑇

𝑅
1
(∫

𝑡

𝑡−𝑑
𝑚

̇
𝑥̃ (𝛼) 𝑑𝛼)

−

1

𝜃
1
(𝑡)

(∫

𝑡−𝑑
𝑚

𝑡−𝑑(𝑡)

̇
𝑥̃(𝛼)𝑑𝛼)

𝑇

𝑅
2
(∫

𝑡−𝑑
𝑚

𝑡−𝑑(𝑡)

̇
𝑥̃ (𝛼) 𝑑𝛼)

−

1

𝜃
2
(𝑡)

(∫

𝑡−𝑑(𝑡)

𝑡−𝑑
𝑀

̇
𝑥̃(𝛼)𝑑𝛼)

𝑇

𝑅
2
(∫

𝑡−𝑑(𝑡)

𝑡−𝑑
𝑀

̇
𝑥̃ (𝛼) 𝑑𝛼)

= − 𝜁
𝑇

(𝑡) (e
1
− e
2
)
𝑇

𝑅
1
(e
1
− e
2
) 𝜁 (𝑡)

−

1

𝜃
1
(𝑡)

𝜁
𝑇

(𝑡) (e
2
− e
3
)
𝑇

𝑅
2
(e
2
− e
3
) 𝜁 (𝑡)

−

1

𝜃
2
(𝑡)

𝜁
𝑇

(𝑡) (e
3
− e
4
)
𝑇

𝑅
2
(e
3
− e
4
) 𝜁 (𝑡) ,

(14)

where 𝜃
1
(𝑡) = (𝑑(𝑡) − 𝑑

𝑚
)/𝑑
𝐼
≥ 0, 𝜃

2
(𝑡) = (𝑑

𝑀
−𝑑(𝑡))/𝑑

𝐼
≥ 0,

and 𝜃
1
(𝑡) + 𝜃

2
(𝑡) = 1; that is, the set of 𝜃

𝑖
(𝑡) is convex.

Furthermore, by taking the convexity of 𝜃
𝑖
(𝑡) into account,

we can get the following equality:

RHS of (14)

= 𝜁
𝑇

(𝑡) ((e
1
− e
2
)
𝑇

𝑅
1
(e
2
− e
1
) + (e
2
− e
3
)
𝑇

𝑅
2
(e
3
− e
2
)

+(e
3
− e
4
)
𝑇

𝑅
2
(e
4
− e
3
)) 𝜁 (𝑡)

−

𝜃
2
(𝑡)

𝜃
1
(𝑡)

𝜁
𝑇

(𝑡) (e
2
− e
3
)
𝑇

𝑅
2
(e
2
− e
3
) 𝜁 (𝑡)

−

𝜃
1
(𝑡)

𝜃
2
(𝑡)

𝜁
𝑇

(𝑡) (e
3
− e
4
)
𝑇

𝑅
2
(e
3
− e
4
) 𝜁 (𝑡)
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= 𝜁
𝑇

(𝑡) Π
1
𝜁 (𝑡) −

[

[

[

[

[

[

√

𝜃
2

𝜃
1

(e
2
− e
3
) 𝜁(𝑡)

√

𝜃
1

𝜃
2

(e
3
− e
4
) 𝜁(𝑡)

]

]

]

]

]

]

𝑇

× Π
2

[

[

[

[

[

[

√

𝜃
2

𝜃
1

(e
2
− e
3
) 𝜁 (𝑡)

√

𝜃
1

𝜃
2

(e
3
− e
4
) 𝜁 (𝑡)

]

]

]

]

]

]

,

(15)

where Π
1
= (e
1
− e
2
)
𝑇

𝑅
1
(e
2
− e
1
) + (e

2
− e
3
)
𝑇

𝑅
2
(e
3
− e
2
) +

(e
3
− e
4
)
𝑇

𝑅
2
(e
4
− e
3
) +He((e

2
− e
3
)
𝑇

𝑆(e
3
− e
4
)),

Π
2
= [

𝑅
2

𝑆

(∗) 𝑅
2

] . (16)

Hence, we can see that the time derivative of 𝑉(𝑡) satisfies
that 𝑉̇(𝑡) ≤ 𝜁

𝑇

(𝑡)(Π
0
+ Π
1
)𝜁(𝑡) − (⋆)

𝑇

Π
2
(⋆), where (⋆) =

col(√𝜃
2
/𝜃
1
(e
2
− e
3
)𝜁(𝑡), √𝜃

1
/𝜃
2
(e
3
− e
4
)𝜁(𝑡)). As a result,

based on this derivation, the following stability criteria can
be established.

Lemma 3 (stability criterion). For 𝑤(𝑡) = 0, the stability
criterion is given by

0 > Π
0
+ Π
1
, 0 ≤ Π

2
, (17)

whereΦ
𝑡
= 𝐴e
1
+ 𝐴
𝑑
e
3
.

Proof. If Π
2
≥ 0 holds, then 𝑉̇(𝑡) ≤ 𝜁𝑇(𝑡)(Π

0
+ Π
1
)𝜁(𝑡).

Lemma 4 (stability criterion in theH
∞

sense). The stability
criterion in theH

∞
sense is given by

0 > Π
0
+ Π
1
+ Π
3
, 0 ≤ Π

2
, (18)

whereΦ
𝑡
= 𝐴e
1
+ 𝐴
𝑑
e
3
+ 𝐷e
5
, Π
3
= e𝑇
1
𝐶
𝑇

𝐶e
1
− 𝛾
2e𝑇
5
e
5
.

Proof. Let us consider the H
∞

tracking performance such
that sup

𝑤
(‖𝑧̃‖
2
/‖𝑤‖
2
) < 𝛾. Then, as reported in [19], theH

∞

stability criterion can be readily derived by 𝑉̇(𝑡) + 𝑧̃𝑇(𝑡)𝑧̃(𝑡) −
𝛾
2

𝑤
𝑇

(𝑡)𝑤(𝑡) < 0, which is assured by (18).

Based on Lemma 3, the stabilization problem of (6) with
𝑤(𝑡) = 0 will be addressed in Section 3.1, and further,
based on Lemma 4, the H

∞
stabilization problem of (6)

with 𝑤(𝑡) ̸= 0 will be investigated in Section 3.2. Here, to
derive a set of linear matrix inequalities (LMIs), we first set
𝑃 = diag(𝑃

1
, 𝑃
2
, 𝑃
3
) and 𝑃 = 𝑃−1 = diag(𝑃

1
, 𝑃
2
, 𝑃
3
), where

𝑃
1
= 𝑃
−1

1
, 𝑃
2
= 𝑃
−1

2
, and 𝑃

3
= 𝑃
−1

3
. Then, from (7), it follows

that

𝑃𝐴 =
[

[

𝑃
1
𝐴
𝑟

0 0

𝑃
2
𝐴 − 𝑃

2
𝐴
𝑟
𝑃
2
𝐴 0

0 0 𝑃
3
𝐴 + 𝐿𝐶

]

]

,

𝑃𝐴
𝑑
=
[

[

0 0 0

0 𝑃
2
𝐵𝐹𝑃
2
−𝑃
2
𝐵𝐹𝑃
2

0 0 0

]

]

, 𝑃𝐷 =
[

[

0 𝑃
1

𝑃
2
𝐷 −𝑃

2

𝑃
3
𝐷 0

]

]

,

(19)

where 𝐿 = 𝑃
3
𝐿 and 𝐹 = 𝐹𝑃

2
. Accordingly, the term 𝑃Φ

𝑡

becomes

𝑃Φ
𝑡
= 𝑋𝐴̆𝑋e

1
+ 𝑋𝐴̆

𝑑
𝑋e
3
+ 𝑋𝐷̆e

5
, (20)

where𝑋 = diag(𝐼, 𝑃
2
, 𝑃
2
),

𝐴̆ =
[

[

𝑃
1
𝐴
𝑟

0 0

𝐴 − 𝐴
𝑟
𝐴𝑃
2

0

0 0 𝑃
2
(𝑃
3
𝐴 + 𝐿𝐶)𝑃

2

]

]

,

𝐴̆
𝑑
=
[

[

0 0 0

0 𝐵𝐹 −𝐵𝐹

0 0 0

]

]

, 𝐷̆ =
[

[

0 𝑃
1

𝐷 −𝐼

𝑃
2
𝑃
3
𝐷 0

]

]

.

(21)

Remark 5. Inspired by thework of [18], this paper also applied
the reciprocally convex approach to reduce the computational
complexity and the conservatism of the delay-dependent
stability criteria that will be used to derive our main results.

3.1. Control Design for 𝑤(𝑡) = 0

Lemma 6. Let 𝜇
1
> 0, 𝜇

2
> 0, and 𝜖 > 0 be prescribed.

Suppose that there exist matrices 𝐹 ∈ R𝑛𝑢×𝑛𝑥 , 𝐿 ∈ R𝑛𝑥×𝑛𝑦 , and
𝑆 ∈ R3𝑛𝑥×3𝑛𝑥 and symmetric matrices 0 < 𝑃

1
, 𝑃
2
, 𝑃
3
∈ R𝑛𝑥×𝑛𝑥 ,

0 < 𝑄
1
, 𝑄
2
∈ R3𝑛𝑥×3𝑛𝑥 , 0 < 𝑅̃

1
, 𝑅̃
2
∈ R3𝑛𝑥×3𝑛𝑥 such that

0 >

[

[

[

[

[

[

[

[

[

[

[

(1, 1) 0 𝑑
𝑚
𝐴 0 𝑑

𝑚
𝐴̆
𝑑

0 𝜖𝐸
1

0 (2, 2) 𝑑
𝐼
𝐴 0 𝑑

𝐼
𝐴̆
𝑑

0 𝜖𝐸
2

(∗) (∗) (3, 3) 𝑅̃
1

𝐴̆
𝑑

0 𝜖𝐸
3

0 0 (∗) (4, 4) 𝑅̃
2
+ 𝑆 −𝑆 0

(∗) (∗) (∗) (∗) (5, 5) 𝑅̃
2
+ 𝑆 0

0 0 0 (∗) (∗) (6, 6) 0

(∗) (∗) (∗) 0 0 0 (7, 7)

]

]

]

]

]

]

]

]

]

]

]

,

(22)

0 ≤ [

𝑅̃
2

𝑆

(∗) 𝑅̃
2

] , (23)

where

(1, 1) = 𝜇
2

1
𝑅̃
1
+ diag (−2𝜇

1
𝑃
1
, −2𝜇
1
𝑃
2
, −2𝜖𝑃

2
) ,

(2, 2) = 𝜇
2

2
𝑅̃
2
+ diag (−2𝜇

2
𝑃
1
, −2𝜇
2
𝑃
2
, −2𝜖𝑃

2
) ,

(3, 3) = 𝐴 + 𝑄
1
+ 𝑄
2
− 𝑅̃
1
,

(4, 4) = −𝑄
1
− 𝑅̃
1
− 𝑅̃
2
,

(5, 5) = −2𝑅̃
2
−He (𝑆) , (6, 6) = −𝑄

2
− 𝑅̃
2
,

(7, 7) =
[

[

[

−2𝜇
1
𝑃
3

0 𝑑
𝑚
(𝑃
3
𝐴 + 𝐿𝐶)

0 −2𝜇
2
𝑃
3
𝑑
𝐼
(𝑃
3
𝐴 + 𝐿𝐶)

(∗) (∗) He (𝑃
3
𝐴 + 𝐿𝐶)

]

]

]

,

𝐴̆
𝑑
=
[

[

0 0 0

0 𝐵𝐹 −𝐵𝐹

0 0 0

]

]

,
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𝐴 =
[

[

𝑃
1
𝐴
𝑟

0 0

𝐴 − 𝐴
𝑟
𝐴𝑃
2
0

0 0 0

]

]

,

𝐴 =
[

[

[

He (𝑃
1
𝐴
𝑟
) (𝐴 − 𝐴

𝑟
)
𝑇

0

(∗) He (𝐴𝑃
2
) 0

0 0 −2𝜖𝑃
2

]

]

]

,

𝐸
1
=
[

[

0 0 0

0 0 0

𝐼 0 0

]

]

, 𝐸
2
=
[

[

0 0 0

0 0 0

0 𝐼 0

]

]

,

𝐸
3
=
[

[

0 0 0

0 0 0

0 0 𝐼

]

]

.

(24)

Then the closed-loop system (6) is asymptotically stable in the
absence of𝑤(𝑡) for any time-varying delay 𝑑(𝑡) satisfying 𝑑

𝑚
≤

𝑑(𝑡) ≤ 𝑑
𝑀
. Moreover, the control and observer gain matrices

can be reconstructed as follows:

𝐹 = 𝐹𝑃

−1

2
, 𝐿 = 𝑃

−1

3
𝐿. (25)

Proof. From Lemma 3, the stabilization condition is given as
follows: (i) 0 ≤ Π

2
and (ii) 0 > Π

0
+ Π
1
= He(e𝑇

1
𝑃Φ
𝑡
) +

e𝑇
1
(𝑄
1
+ 𝑄
2
)e
1
− e𝑇
2
𝑄
1
e
2
− e𝑇
4
𝑄
2
e
4
+ Φ
𝑇

𝑡
(𝑑
2

𝑚
𝑅
1
+ 𝑑
2

𝐼
𝑅
2
)Φ
𝑡
+

(e
1
−e
2
)
𝑇

𝑅
1
(e
2
−e
1
) + (e
2
−e
3
)
𝑇

𝑅
2
(e
3
−e
2
)+(e
3
−e
4
)
𝑇

𝑅
2
(e
4
−

e
3
)+He((e

2
−e
3
)
𝑇

𝑆(e
3
−e
4
)), whereΦ

𝑡
= 𝐴e
1
+𝐴
𝑑
e
3
and thus

𝑃Φ
𝑡
= 𝑋𝐴̆𝑋e

1
+𝑋𝐴̆
𝑑
𝑋e
3
. Let us consider the condition given

in (ii). Then, by letting 𝑅
1
= 𝑋𝑃𝑅

1
𝑃𝑋 and 𝑅

2
= 𝑋𝑃𝑅

2
𝑃𝑋,

we can rewrite the condition, 0 > Π
0
+ Π
1
, as follows:

0 > He (e𝑇
1
𝑋𝐴̆𝑋e

1
+ e𝑇
1
𝑋𝐴̆
𝑑
𝑋e
3
) + e𝑇
1
(𝑄
1
+ 𝑄
2
) e
1

− e𝑇
2
𝑄
1
e
2
− e𝑇
4
𝑄
2
e
4
+ (𝑋𝐴̆𝑋e

1
+ 𝑋𝐴̆

𝑑
𝑋e
3
)

𝑇

× 𝑋(𝑑
2

𝑚
𝑅
1
+ 𝑑
2

𝐼
𝑅
2
)𝑋 (𝑋𝐴̆𝑋e

1
+ 𝑋𝐴̆

𝑑
𝑋e
3
)

+ (e
1
− e
2
)
𝑇

𝑃𝑋𝑅
1
𝑋𝑃 (e

2
− e
1
)

+ (e
2
− e
3
)
𝑇

𝑃𝑋𝑅
2
𝑋𝑃 (e

3
− e
2
)

+ (e
3
− e
4
)
𝑇

𝑃𝑋𝑅
2
𝑋𝑃 (e

4
− e
3
)

+He ((e
2
− e
3
)
𝑇

𝑆 (e
3
− e
4
)) ,

(26)

where 𝑋 = 𝑋
−1. Further, since diag(𝑋,𝑋,𝑋,𝑋)e𝑇

𝑖
= e𝑇
𝑖
𝑋

(𝑖 = 1, 2, 3, 4), pre- and postmultiplying both sides of (26) by
diag(𝑋,𝑋,𝑋,𝑋) and its transpose yield

0 > Q + (𝐴̆e
1
+ 𝐴̆
𝑑
e
3
)

𝑇

(𝑑
2

𝑚
𝑅
1
+ 𝑑
2

𝐼
𝑅
2
) (𝐴̆e
1
+ 𝐴̆
𝑑
e
3
) ,

(27)

where Q = He(e𝑇
1
𝐴̆e
1
+ e𝑇
1
𝐴̆
𝑑
e
3
) + e𝑇
1
(𝑄
1
+𝑄
2
)e
1
− e𝑇
2
𝑄
1
e
2
−

e𝑇
4
𝑄
2
e
4
+ (e
1
− e
2
)
𝑇

𝑅̃
1
(e
2
− e
1
) + (e
2
− e
3
)
𝑇

𝑅̃
2
(e
3
− e
2
) + (e
3
−

e
4
)
𝑇

𝑅̃
2
(e
4
−e
3
)+He((e

2
−e
3
)
𝑇

𝑆(e
3
−e
4
)) in which𝑄

1
= 𝑋𝑄

1
𝑋,

𝑄
2
= 𝑋𝑄

2
𝑋, 𝑅̃
1
= 𝑋𝑅

1
𝑋, 𝑅̃
2
= 𝑋𝑅

2
𝑋, 𝑆 = 𝑋𝑆𝑋, and

𝑋 = 𝑋𝑃𝑋 = diag(𝑃
1
, 𝑃
2
, 𝑃
2
𝑃
3
𝑃
2
) > 0. That is, by applying

the Schur complement to (27), we can get

0 >
[

[

[

−𝑅

−1

1
0 𝑑

𝑚
(𝐴̆e
1
+ 𝐴̆
𝑑
e
3
)

0 −𝑅

−1

2
𝑑
𝐼
(𝐴̆e
1
+ 𝐴̆
𝑑
e
3
)

(∗) (∗) Q

]

]

]

. (28)

Here, since 𝑅−1
1
= 𝑋𝑅̃

−1

1
𝑋 and 𝑅−1

2
= 𝑋𝑅̃

−1

2
𝑋, it follows from

Lemma 2 that 𝑅−1
1
≥ 2𝜇
1
𝑋 − 𝜇

2

1
𝑅̃
1
and 𝑅−1

2
≥ 2𝜇
2
𝑋 − 𝜇

2

2
𝑅̃
2
.

In this sense, it is clear that (28) holds if

0 >

[

[

[

[

[

[

[

[

[

(1, 1)
󸀠

0 (1, 3)
󸀠

0 𝑑
𝑚
𝐴̆
𝑑

0

0 (2, 2)
󸀠

(2, 3)
󸀠

0 𝑑
𝐼
𝐴̆
𝑑

0

(∗) (∗) (3, 3)
󸀠

𝑅̃
1

𝐴̆
𝑑

0

0 0 (∗) (4, 4) 𝑅̃
2
+ 𝑆 −𝑆

(∗) (∗) (∗) (∗) (5, 5) 𝑅̃
2
+ 𝑆

0 0 0 (∗) (∗) (6, 6)

]

]

]

]

]

]

]

]

]

, (29)

where

(1, 1)
󸀠

= 𝜇
2

1
𝑅̃
1
+ diag (−2𝜇

1
𝑃
1
, −2𝜇
1
𝑃
2
, 𝑃
2
(−2𝜇
1
𝑃
3
) 𝑃
2
) ,

(2, 2)
󸀠

= 𝜇
2

2
𝑅̃
2
+ diag (−2𝜇

2
𝑃
1
, −2𝜇
2
𝑃
2
, 𝑃
2
(−2𝜇
2
𝑃
3
) 𝑃
2
) ,

(3, 3)
󸀠

= He (𝐴̆) + 𝑄
1
+ 𝑄
2
− 𝑅̃
1
,

(1, 3)
󸀠

= 𝑑
𝑚
𝐴̆, (2, 3)

󸀠

= 𝑑
𝐼
𝐴̆.

(30)

However, as shown in (29), there exist some nonconvex terms
in (1, 1)󸀠, (1, 3)󸀠, (2, 2)󸀠, (2, 3)󸀠, and (3, 3)󸀠 as follows:

(1, 1)
󸀠

=
[

[

(⋆) (⋆) (⋆)

(⋆) (⋆) (⋆)

(⋆) (⋆) (⋆) + 𝑃
2
(−2𝜇
1
𝑃
3
) 𝑃
2

]

]

,

(2, 2)
󸀠

=
[

[

(⋆) (⋆) (⋆)

(⋆) (⋆) (⋆)

(⋆) (⋆) (⋆) + 𝑃
2
(−2𝜇
2
𝑃
3
) 𝑃
2

]

]

,

(1, 3)
󸀠

=
[

[

(⋆) 0 0

(⋆) (⋆) 0

0 0 𝑃
2
(𝑑
𝑚
(𝑃
3
𝐴 + 𝐿𝐶)) 𝑃

2

]

]

,

(2, 3)
󸀠

=
[

[

(⋆) 0 0

(⋆) (⋆) 0

0 0 𝑃
2
(𝑑
𝐼
(𝑃
3
𝐴 + 𝐿𝐶)) 𝑃

2

]

]

,

(3, 3)
󸀠

=
[

[

(⋆) (⋆) (⋆)

(⋆) (⋆) (⋆)

(⋆) (⋆) (⋆) + 𝑃
2
(He (𝑃

3
𝐴 + 𝐿𝐶)) 𝑃

2

]

]

.

(31)

Here, note that all terms associated with 𝑃
2
(⋆)𝑃
2
in

[

[

(1, 1)
󸀠

0 (1, 3)
󸀠

0 (2, 2)
󸀠

(2, 3)
󸀠

(∗) (∗) (3, 3)
󸀠

]

]

(32)

can be separated as follows:
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[

[

𝐸
1

𝐸
2

𝐸
3

]

]

[

[

𝑃
2
0 0

0 𝑃
2
0

0 0 𝑃
2

]

]

[

[

−2𝜇
1
𝑃
3

0 𝑑
𝑚
(𝑃
3
𝐴 + 𝐿𝐶)

0 −2𝜇
2
𝑃
3
𝑑
𝐼
(𝑃
3
𝐴 + 𝐿𝐶)

(∗) (∗) He(𝑃
3
𝐴 + 𝐿𝐶)

]

]

[

[

𝑃
2
0 0

0 𝑃
2
0

0 0 𝑃
2

]

]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Ψ

[

[

𝐸
1

𝐸
2

𝐸
3

]

]

𝑇

. (33)

Furthermore, from Lemma 2, it follows that

Ψ ≤ − 2𝜖
[

[

𝑃
2
0 0

0 𝑃
2
0

0 0 𝑃
2

]

]

− 𝜖
2
[

[

−2𝜇
1
𝑃
3

0 𝑑
𝑚
(𝑃
3
𝐴 + 𝐿𝐶)

0 −2𝜇
2
𝑃
3
𝑑
𝐼
(𝑃
3
𝐴 + 𝐿𝐶)

(∗) (∗) He(𝑃
3
𝐴 + 𝐿𝐶)

]

]

−1

,

(34)

which allows that (22) implies (29), based on the Schur
complement. Next, we need to convert the given condition
in (i), that is, 0 ≤ Π

2
, into an LMI. To this end, let us pre-

and postmultiply both sides of 0 ≤ Π
2
by diag(𝑋,𝑋) and its

transpose. Then we can get

0 ≤ [

𝑋𝑅
2
𝑋 𝑆

(∗) 𝑋𝑅
2
𝑋

] , (35)

which becomes (23) due to 𝑅̃
2

= 𝑋𝑅
2
𝑋 =

(𝑋𝑃𝑋)(𝑋𝑃𝑅
2
𝑅𝑋)(𝑋𝑃𝑋) = 𝑋𝑅

2
𝑋.

3.2. Control Design for 𝑤(𝑡) ̸= 0

Theorem 7. Let 𝜇
1
> 0, 𝜇

2
> 0, 𝜖
𝑝
> 0 be prescribed. Suppose

that there exist scalars 𝜖
𝑞
> 0, 𝛾 > 0; matrices 𝐹 ∈ R𝑛𝑢×𝑛𝑥 ,

𝐿 ∈ R𝑛𝑥×𝑛𝑦 , 𝑆 ∈ R3𝑛𝑥×3𝑛𝑥 ; and symmetric matrices 0 < 𝑃
1
,

𝑃
2
, 𝑃
3
∈ R𝑛𝑥×𝑛𝑥 , 0 < 𝑄

1
, 𝑄
2
∈ R3𝑛𝑥×3𝑛𝑥 , 0 < 𝑅̃

1
, 𝑅̃
2
∈ R3𝑛𝑥×3𝑛𝑥

such that

0 >

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

(1, 1) 0 𝑑
𝑚
𝐴 0 𝑑

𝑚
𝐴̆
𝑑

0 𝑑
𝑚
𝐷 𝜖
𝑝
𝐸
1

0

0 (2, 2) 𝑑
𝐼
𝐴 0 𝑑

𝐼
𝐴̆
𝑑

0 𝑑
𝐼
𝐷 𝜖
𝑝
𝐸
2

0

(∗) (∗) (3, 3) 𝑅̃
1

𝐴̆
𝑑

0 𝐷 𝜖
𝑝
𝐸
3
𝑋𝐶
𝑇

0 0 (∗) (4, 4) 𝑅̃
2
+ 𝑆 −𝑆 0 0 0

(∗) (∗) (∗) (∗) (5, 5) 𝑅̃
2
+ 𝑆 0 0 0

0 0 0 (∗) (∗) (6, 6) 0 0 0

(∗) (∗) (∗) 0 0 0 (7, 7) 𝜖
𝑞
𝐸
4

0

(∗) (∗) (∗) 0 0 0 (∗) (8, 8) 0

0 0 (∗) 0 0 0 0 0 −𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

, (36)

0 ≤ [

𝑅̃
2

𝑆

(∗) 𝑅̃
2

] , (37)

where

(1, 1) = 𝜇
2

1
𝑅̃
1
+ diag (−2𝜇

1
𝑃
1
, −2𝜇
1
𝑃
2
, −2𝜖
𝑝
𝑃
2
) ,

(2, 2) = 𝜇
2

2
𝑅̃
2
+ diag (−2𝜇

2
𝑃
1
, −2𝜇
2
𝑃
2
, −2𝜖
𝑝
𝑃
2
) ,

(3, 3) = 𝐴 + 𝑄
1
+ 𝑄
2
− 𝑅̃
1
,

(4, 4) = −𝑄
1
− 𝑅̃
1
− 𝑅̃
2
,

(5, 5) = −2𝑅̃
2
−He (𝑆) ,

(6, 6) = −𝑄
2
− 𝑅̃
2
, (7, 7) = diag (−2𝜖

𝑞
𝐼, −𝛾
2

𝐼) ,

(8, 8) =

[

[

[

[

[

[

[

−2𝜇
1
𝑃
3

0 𝑑
𝑚
(𝑃
3
𝐴 + 𝐿𝐶) 𝑑

𝑚
𝑃
3
𝐷

0 −2𝜇
2
𝑃
3
𝑑
𝐼
(𝑃
3
𝐴 + 𝐿𝐶) 𝑑

𝐼
𝑃
3
𝐷

(∗) (∗) He (𝑃
3
𝐴 + 𝐿𝐶) 𝑃

3
𝐷

(∗) (∗) (∗) −𝛾
2

𝐼

]

]

]

]

]

]

]

,

𝐴̆
𝑑
=
[

[

[

0 0 0

0 𝐵𝐹 −𝐵𝐹

0 0 0

]

]

]

,

𝐴 =
[

[

[

𝑃
1
𝐴
𝑟

0 0

𝐴 − 𝐴
𝑟
𝐴𝑃
2
0

0 0 0

]

]

]

,
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𝐴 =
[

[

[

He (𝑃
1
𝐴
𝑟
) (𝐴 − 𝐴

𝑟
)
𝑇

0

(∗) He (𝐴𝑃
2
) 0

0 0 −2𝜖
𝑝
𝑃
2

]

]

]

,

𝐷 =
[

[

0 𝑃
1

𝐷 −𝐼

0 0

]

]

, 𝐶
𝑇

=
[

[

0

𝐶
𝑇

0

]

]

,

𝐸
1
=
[

[

0 0 0 0

0 0 0 0

𝐼 0 0 0

]

]

, 𝐸
2
=
[

[

0 0 0 0

0 0 0 0

0 𝐼 0 0

]

]

,

𝐸
3
=
[

[

0 0 0 0

0 0 0 0

0 0 𝐼 0

]

]

, 𝐸
4
= [

0 0 0 𝐼

0 0 0 0
] .

(38)

Then the closed-loop system (6) is asymptotically stable and
satisfies ‖𝑧̃‖

2
< 𝛾‖𝑤‖

2
for all nonzero 𝑤(𝑡) ∈L

2+
and for any

time-varying delay 𝑑(𝑡) satisfying 𝑑
𝑚
≤ 𝑑(𝑡) ≤ 𝑑

𝑀
. Moreover,

the control and observer gain matrices can be reconstructed as
follows:

𝐹 = 𝐹𝑃

−1

2
, 𝐿 = 𝑃

−1

3
𝐿. (39)

Proof. From Lemma 4, the H
∞

stabilization condition is
given as follows: (i) 0 ≤ Π

2
and (ii) 0 > Π

0
+ Π
1
+ Π
3
=

He(e𝑇
1
𝑃Φ
𝑡
) + e𝑇
1
(𝑄
1
+𝑄
2
)e
1
− e𝑇
2
𝑄
1
e
2
− e𝑇
4
𝑄
2
e
4
+Φ
𝑇

𝑡
(𝑑
2

𝑚
𝑅
1
+

𝑑
2

𝐼
𝑅
2
)Φ
𝑡
+ (e
1
− e
2
)
𝑇

𝑅
1
(e
2
− e
1
) + (e
2
− e
3
)
𝑇

𝑅
2
(e
3
− e
2
) + (e
3
−

e
4
)
𝑇

𝑅
2
(e
4
−e
3
)+He((e

2
−e
3
)
𝑇

𝑆(e
3
−e
4
))+e𝑇
1
𝐶
𝑇

𝐶e
1
−𝛾
2e𝑇
5
e
5
,

where Φ
𝑡
= 𝐴e
1
+ 𝐴
𝑑
e
3
+ 𝐷e
5
. As in the proof of Lemma 6,

we first consider the condition given in (ii) by letting 𝑅
1
=

𝑋𝑃𝑅
1
𝑃𝑋 and 𝑅

2
= 𝑋𝑃𝑅

2
𝑃𝑋. Then the condition, 0 > Π

0
+

Π
1
+ Π
3
, can be converted by (20) into

0 > He (e𝑇
1
𝑋𝐴̆𝑋e

1
+ e𝑇
1
𝑋𝐴̆
𝑑
𝑋e
3
+ e𝑇
1
𝑋𝐷̆e
5
)

+ e𝑇
1
(𝑄
1
+ 𝑄
2
) e
1
− e𝑇
2
𝑄
1
e
2
− e𝑇
4
𝑄
2
e
4

+ (𝑋𝐴̆𝑋e
1
+ 𝑋𝐴̆

𝑑
𝑋e
3
+ 𝑋𝐷̆e

5
)

𝑇

𝑋(𝑑
2

𝑚
𝑅
1
+ 𝑑
2

𝐼
𝑅
2
)

× 𝑋 (𝑋𝐴̆𝑋e
1
+ 𝑋𝐴̆

𝑑
𝑋e
3
+ 𝑋𝐷̆e

5
)

+ (e
1
− e
2
)
𝑇

𝑃𝑋𝑅
1
𝑋𝑃 (e

2
− e
1
)

+ (e
2
− e
3
)
𝑇

𝑃𝑋𝑅
2
𝑋𝑃 (e

3
− e
2
) + e𝑇
1
𝐶
𝑇

𝐶e
1

+ (e
3
− e
4
)
𝑇

𝑃𝑋𝑅
2
𝑋𝑃 (e

4
− e
3
)

+He ((e
2
− e
3
)
𝑇

𝑆 (e
3
− e
4
)) − 𝛾

2e𝑇
5
e
5
,

(40)

where 𝑋 = 𝑋
−1. Further, since diag(𝑋,𝑋,𝑋,𝑋, 𝐼)e𝑇

𝑖
= e𝑇
𝑖
𝑋,

for 𝑖 = 1, 2, 3, 4, and diag(𝑋,𝑋,𝑋,𝑋, 𝐼)e𝑇
5
= e𝑇
5
𝐼, pre- and

postmultiplying both sides of (40) by diag(𝑋,𝑋,𝑋,𝑋, 𝐼) and
its transpose yield

0 > Q + (𝐴̆e
1
+ 𝐴̆
𝑑
e
3
+ 𝐷̆e
5
)

𝑇

× (𝑑
2

𝑚
𝑅
1
+ 𝑑
2

𝐼
𝑅
2
) (𝐴̆e
1
+ 𝐴̆
𝑑
e
3
+ 𝐷̆e
5
) ,

(41)

where Q = He(e𝑇
1
𝐴̆e
1
+ e𝑇
1
𝐴̆
𝑑
e
3
+ e𝑇
1
𝐷̆e
5
) + e𝑇
1
(𝑄
1
+ 𝑄
2
)e
1
−

e𝑇
2
𝑄
1
e
2
−e𝑇
4
𝑄
2
e
4
+(e
1
−e
2
)
𝑇

𝑅̃
1
(e
2
−e
1
)+(e
2
−e
3
)
𝑇

𝑅̃
2
(e
3
−e
2
)+

(e
3
−e
4
)
𝑇

𝑅̃
2
(e
4
−e
3
)+He((e

2
−e
3
)
𝑇

𝑆(e
3
−e
4
))+e𝑇
1
𝑋𝐶
𝑇

𝐶𝑋e
1
−

𝛾
2e𝑇
5
e
5
, in which 𝑄

1
= 𝑋𝑄

1
𝑋, 𝑄
2
= 𝑋𝑄

2
𝑋, 𝑅̃
1
= 𝑋𝑅

1
𝑋,

𝑅̃
2
= 𝑋𝑅

2
𝑋, 𝑆 = 𝑋𝑆𝑋, 𝑋 = 𝑋𝑃𝑋 = diag(𝑃

1
, 𝑃
2
, 𝑃
2
𝑃
3
𝑃
2
) >

0. That is, by applying the Schur complement to (41), we can
get

0 >
[

[

[

−𝑅

−1

1
0 𝑑

𝑚
(𝐴̆e
1
+ 𝐴̆
𝑑
e
3
+ 𝐷̆e
5
)

0 −𝑅

−1

2
𝑑
𝐼
(𝐴̆e
1
+ 𝐴̆
𝑑
e
3
+ 𝐷̆e
5
)

(∗) (∗) Q

]

]

]

. (42)

Here, since 𝑅−1
1
= 𝑋𝑅̃

−1

1
𝑋 and 𝑅−1

2
= 𝑋𝑅̃

−1

2
𝑋, it follows from

Lemma 2 that 𝑅−1
1
≥ 2𝜇
1
𝑋 − 𝜇

2

1
𝑅̃
1
and 𝑅−1

2
≥ 2𝜇
2
𝑋 − 𝜇

2

2
𝑅̃
2
.

In this sense, it is clear that (42) holds if

0 >

[

[

[

[

[

[

[

[

[

[

[

(1, 1)
󸀠

0 (1, 3)
󸀠

0 𝑑
𝑚
𝐴̆
𝑑

0 (1, 7)
󸀠

0 (2, 2)
󸀠

(2, 3)
󸀠

0 𝑑
𝐼
𝐴̆
𝑑

0 (2, 7)
󸀠

(∗) (∗) (3, 3)
󸀠󸀠

𝑅̃
1

𝐴̆
𝑑

0 (3, 7)
󸀠

0 0 (∗) (4, 4) 𝑅̃
2
+ 𝑆 −𝑆 0

(∗) (∗) (∗) (∗) (5, 5) 𝑅̃
2
+ 𝑆 0

0 0 0 (∗) (∗) (6, 6) 0

(∗) (∗) (∗) 0 0 0 (7, 7)
󸀠

]

]

]

]

]

]

]

]

]

]

]

, (43)

where

(1, 1)
󸀠

= 𝜇
2

1
𝑅̃
1
+ diag (−2𝜇

1
𝑃
1
, −2𝜇
1
𝑃
2
, 𝑃
2
(−2𝜇
1
𝑃
3
) 𝑃
2
) ,

(2, 2)
󸀠

= 𝜇
2

2
𝑅̃
2
+ diag (−2𝜇

2
𝑃
1
, −2𝜇
2
𝑃
2
, 𝑃
2
(−2𝜇
2
𝑃
3
) 𝑃
2
) ,

(3, 3)
󸀠󸀠

= He (𝐴̆) + 𝑄
1
+ 𝑄
2
− 𝑅̃
1
+ 𝑋𝐶

𝑇

𝐶𝑋,

(1, 3)
󸀠

= 𝑑
𝑚
𝐴̆, (1, 7)

󸀠

= 𝑑
𝑚
𝐷̆,

(2, 3)
󸀠

= 𝑑
𝐼
𝐴̆, (2, 7)

󸀠

= 𝑑
𝐼
𝐷̆, (3, 7)

󸀠

= 𝐷̆,

(7, 7)
󸀠

= diag (−𝛾2𝐼, −𝛾2𝐼) .
(44)
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However, as shown in (43), there exist some nonconvex terms
in (1, 1)󸀠, (1, 3)󸀠, (1, 7)󸀠, (2, 2)󸀠, (2, 3)󸀠, (2, 7)󸀠, (3, 3)󸀠󸀠, (3, 7)󸀠,
and (7, 7)󸀠 as follows: (1, 1)󸀠, (1, 3)󸀠, (2, 2)󸀠, and (2, 3)󸀠 are the
same as those defined in the proof of Lemma 6, and

(1, 7)
󸀠

=
[

[

0 (⋆)

(⋆) (⋆)

𝑃
2
(𝑑
𝑚
𝑃
3
𝐷) 𝐼 0

]

]

,

(2, 7)
󸀠

=
[

[

0 (⋆)

(⋆) (⋆)

𝑃
2
(𝑑
𝐼
𝑃
3
𝐷) 𝐼 0

]

]

,

(3, 7)
󸀠

=
[

[

0 (⋆)

(⋆) (⋆)

𝑃
2
(𝑃
3
𝐷) 𝐼 0

]

]

,

(7, 7)
󸀠

= [
−𝛾
2

𝐼 0

0 (⋆)

] ,

(3, 3)
󸀠󸀠

=
[

[

(⋆) (⋆) (⋆)

(⋆) (⋆) (⋆)

(⋆) (⋆) (⋆) + 𝑃
2
(He (𝑃

3
𝐴 + 𝐿𝐶)) 𝑃

2

]

]

+ 𝑋𝐶
𝑇

𝐶𝑋,

(45)

where 𝐼 denotes the identity matrix. As in the proof of
Lemma 6, to deal with the nonconvex terms, we apply
Lemma 2 to (43), which boils down to

0 >

[

[

[

[

[

[

[

[

[

[

[

[

[

(1, 1) 0 𝑑
𝑚
𝐴 0 𝑑

𝑚
𝐴̆
𝑑

0 𝑑
𝑚
𝐷 𝐸

1

0 (2, 2) 𝑑
𝐼
𝐴 0 𝑑

𝐼
𝐴̆
𝑑

0 𝑑
𝐼
𝐷 𝐸

2

(∗) (∗) (3, 3)
󸀠

𝑅̃
1

𝐴̆
𝑑

0 𝐷 𝐸
3

0 0 (∗) (4, 4) 𝑅̃
2
+ 𝑆 −𝑆 0 0

(∗) (∗) (∗) (∗) (5, 5) 𝑅̃
2
+ 𝑆 0 0

0 0 0 (∗) (∗) (6, 6) 0 0

(∗) (∗) (∗) 0 0 0 (7, 7) 𝐸
4

(∗) (∗) (∗) 0 0 0 (∗) (8, 8)

]

]

]

]

]

]

]

]

]

]

]

]

]

, (46)

where (3, 3)󸀠 = 𝐴 + 𝑄
1
+ 𝑄
2
− 𝑅̃
1
+ 𝑋𝐶

𝑇

𝐶𝑋. As a result, by
applying the Schur complement to𝑋𝐶𝑇𝐶𝑋 in (3, 3)󸀠, we can
obtain (36). The next step is to convert the given condition
in (i), that is, 0 ≤ Π

2
, into an LMI. To this end, let us pre-

and postmultiply both sides of 0 ≤ Π
2
by diag(𝑋,𝑋) and its

transpose. Then we can get

0 ≤ [

𝑋𝑅
2
𝑋 𝑆

(∗) 𝑋𝑅
2
𝑋

] , (47)

which becomes (23) due to 𝑅̃
2
= 𝑋𝑅

2
𝑋.

4. Numerical Example

We provide two examples to verify the effectiveness of
the proposed methods in Lemma 6 and Theorem 7. For
the networked output-feedback control system (NOCS), we
assume that the sampling period ℎ = 0.01 and the data
transmission delay bounds are given by 𝜏

𝑚
= 0.005 and 𝜏

𝑀
=

0.01. As a result, from [3], it follows that 𝑑
𝑚
= 𝜏
𝑚
= 0.005[𝑠]

and 𝑑
𝑀
= (𝑜 + 1)ℎ + 𝜏

𝑀
= 0.01𝑜 + 0.02[𝑠], where 𝑜 denotes

the maximum number of data-packet dropouts.

4.1. Example 1. Consider a continuous-time system of the
following form:

𝑥̇ (𝑡) = [

0 1

−1 𝛼
] 𝑥 (𝑡) + [

0

1
] 𝑢 (𝑡) + [

0

1
]𝑤 (𝑡) ,

𝑦 (𝑡) = [1 0] 𝑥 (𝑡) ,

(48)

where 𝛼 > 0 is a variable element. First of all, to show the
applicability of the proposed method in Lemma 6, we search
the maximum allowable upper bounds (MAUBs) for (48)
with 𝑤(𝑡) = col(𝑤(𝑡), 𝑟(𝑡)) = 0 ∈ R𝑛𝑥+𝑛𝑤 . To this end, let
us set 𝜇

1
= 𝜇
2
= 0.1, 𝜖 = 10, and 𝐴

𝑟
= diag(1, 1). Then, from

Lemma 6, we can obtain the MAUBs for 𝛼 = 1, 2, 3, which
are tabulated in Table 1. Now, let us analyze the behavior
of the tracking response for 𝑥(𝑡) and 𝑥

𝑟
(𝑡) of the NOCS in

the case where 𝑤(𝑡) ̸= 0 by using the derived condition
in Theorem 7. For this purpose, we set 𝛼 = 1, 𝑜 = 10,
𝜇
1
= 𝜇
2
= 0.1, 𝜖 = 10, and 𝐴

𝑟
= diag(1, 1). Then, from

Theorem 7, we can obtain the following control and observer
gain matrices: 𝐹 = [−5.5501 − 4.9075], 𝐿 = [−31.1609 −

179.7242]
𝑇. In addition, the disturbance attenuation is given

by 𝛾 = 1.1679. Here we assume that 𝑤(𝑡) = 𝑒
−0.5𝑡 sin(2𝜋𝑡),

𝑥(0) = col(±0.5, ±0.5), 𝑥
𝑟
(𝑡) = 𝑥(𝑡) = 0, for 𝑡 ∈ [−𝑑

𝑀
, 0],

and 𝑟(𝑡) = col(0.2 sin 0.2𝜋𝑡, 0.04𝜋 cos 0.2𝜋𝑡), for 𝑡 ≥ 0, where
the initial time 𝑡

0
is set to zero. Figure 2(a) shows the 𝑥

1
-𝑥
2

trajectories for four different initial conditions 𝑥(0), which
form a specific ellipse, made by the given reference input 𝑟(𝑡),
as the time 𝑡 increases. Further, the behavior of the estimation
error 𝑒

1
(𝑡) = 𝑦(𝑡) − 𝑦(𝑡) is depicted in Figure 2(d), from

which we can see that the estimation error goes to zero as the
time 𝑡 increases. Figures 2(b) and 2(c) show the behavior of
the state 𝑥(𝑡) of (49) for initial condition 𝑥(0) = (0.5, −0.5),
where the network-induced delay 𝑑(𝑡) is generated as shown
in Figure 2(e) such that the data transmission delay 𝜏(𝑡) ∈
[0.005, 0.01] and the data-packet dropouts 𝑜 = 10. From
Figures 2(b) and 2(c), we can see that the state 𝑥(𝑡) tracks the
reference signal 𝑥

𝑟
(𝑡) well; that is, the tracking response of
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Figure 2: (a) The 𝑥
1
-𝑥
2
trajectory for each different initial condition 𝑥(0); (b) the tracking response of 𝑥

1
(𝑡) for 𝑥

𝑟,1
(𝑡); (c) the tracking

response of 𝑥
2
(𝑡) for 𝑥

𝑟,2
(𝑡); (d) the estimation error 𝑒

1
(𝑡) = 𝑦(𝑡)−𝑦(𝑡); and (e) the network-induced delay 𝑑(𝑡). Here, 𝑥

𝑖
, 𝑥
𝑖
, 𝑒
𝑖
, and 𝑥

𝑟,𝑖
denote

the 𝑖th element of 𝑥, 𝑥, 𝑒, and 𝑥
𝑟
, respectively.

Table 1: Maximum allowable upper bounds (MAUBs) for 𝛼 of
Example 1.

𝛼 1 2 3

𝜏
𝑀

0.32 (𝑜 = 30) 0.19 (𝑜 = 17) 0.09 (𝑜 = 7)

the NOCS with (2), (5), and (48) is in a good shape with
respect to our control goal.

4.2. Example 2. Consider the following satellite system,
modified from [5]: 𝐴

𝑟
= diag(−1, −1, −1, −1),

𝐴 =

[

[

[

[

0.000 0.000 1.000 0.000

0.000 0.000 0.000 1.000

−0.300 0.300 −0.004 0.004

0.300 −0.300 0.004 −0.004

]

]

]

]

,

𝐵 =

[

[

[

[

0

0

1

0

]

]

]

]

, 𝐶
𝑇

=

[

[

[

[

0

1

0

0

]

]

]

]

, 𝐷 =

[

[

[

[

0

0

0

1

]

]

]

]

.

(49)

Through this example, we will achieve theH
∞

performance
for (49) based on Theorem 7 to design an observer-based

Table 2:H
∞
performance for each upper bound 𝑑

𝑀
.

𝑑
𝑀

0.02 0.03 0.05 0.1

𝛾 0.8265 0.9072 1.1337 2.3290

NOCS in such a way that the state 𝑥(𝑡) of (49) tracks the
reference signal 𝑥

𝑟
(𝑡) in the H

∞
sense. The obtained H

∞

performance for each upper bound𝑑
𝑀
is tabulated in Table 2,

where 𝜇
1
= 𝜇
2
= 0.1 and 𝜖

𝑝
= 10 are assumed. From

Table 2, we can see that theH
∞

performance is improved as
𝑑
𝑀
decreases from 0.1 to 0.02, which is reasonable.

5. Concluding Remarks

This paper has addressed the observer-based H
∞

tracking
problem of NOCSs with network-induced delays. In the
derivation, a single-step procedure is proposed to handle
nonconvex terms that appear in the process of designing
observer-based output-feedback control, and then a set of
linear matrix inequality conditions are established for the
solvability of the tracking problem.
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