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The𝐾-out-of-𝑁 configuration is a typical form of redundancy techniques to improve system reliability, where at least𝐾-out-of-𝑁
components must work for successful operation of system. When the components are degraded, more components are needed to
meet the system requirement, whichmeans that the value of𝐾 has to increase.The current reliability analysis methods overestimate
the reliability, because using constant 𝐾 ignores the degradation effect. In a load-sharing system with degrading components,
the workload shared on each surviving component will increase after a random component failure, resulting in higher failure
rate and increased performance degradation rate. This paper proposes a method combining a tampered failure rate model with
a performance degradation model to analyze the reliability of load-sharing 𝐾-out-of-𝑁 system with degrading components. The
proposed method considers the value of 𝐾 as a variable which is derived by the performance degradation model. Also, the load-
sharing effect is evaluated by the tampered failure rate model. Monte-Carlo simulation procedure is used to estimate the discrete
probability distribution of 𝐾. The case of a solar panel is studied in this paper, and the result shows that the reliability considering
component degradation is less than that ignoring component degradation.

1. Introduction

Redundancy technique is widely used to improve system
reliability. A typical form of redundancy is a 𝐾-out-of-𝑁
configuration in which at least 𝐾 out of𝑁 components must
work for normal operation of system.When using traditional
methods [1–4] to analyze reliability of 𝐾-out-of-𝑁 system,
independence is assumed within the system, which means
that a component failure does not affect the failure rate or
performance of surviving components. However, in the real
world, many systems are load-sharing, such as electric gen-
erators sharing an electrical load in a power plant, cables in a
suspension bridge, and valves or pumps in a hydraulic system.
In the load-sharing system, the workload has to be shared
by the remaining components, resulting in an increased load
shared on each surviving component [5]. Many empirical
studies of mechanical systems [6] and computer systems [7]
have proved that theworkload strongly affects the component
failure rate. Scheuer [8] studied the reliability of 𝐾-out-of-
𝑁 system when component failure induces higher failure

rate in survivors. The method is limited in system composed
of 𝑠-independent and identically distributed components
with exponential lifetimes. Liu [9] proposed a generalized
accelerated failure-timemodel (AFTM) for reliability analysis
of load-sharing 𝐾-out-of-𝑁 system with arbitrary distri-
bution load-dependent component lifetime distributions.
Amari et al. [10] provided a closed-form analytical solution
for the reliability of tampered failure rate load-sharing 𝐾-
out-of-𝑁 system, and Amari and Bergman [11] also used the
cumulative exposure model to account for the effect of load-
ing history. The mentioned reliability analysis methods are
based on the assumption of binary components, that is to say
the component is either failed or working in perfect state. In
fact, the performance of component is degrading in lifetime.
In order to meet the system performance requirement, the
value of 𝐾 has to monotonously increase in service time. In
that case, the reliability of 𝐾-out-of-𝑁 system considering
component degradationmay be less than the reliability based
on assumption of binary component.
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When components have several degraded performance
states, the multistate system (MSS) model is introduced
to analyze the reliability of 𝐾-out-of-𝑁 system [12–15].
Amari et al. [16] presented a fast and robust reliability
evaluation algorithm for very large multistate 𝐾-out-of-𝑁
systems. Levitin [17] introduced a new model named multi-
state vector-𝐾-out-of-𝑁 system, which is a generalization of
existingmultistate𝐾-out-of-𝑁 systemmodels. Using current
MSS algorithms to calculate reliability, we should know the
probability that component performance is located in each
state. Many experimental and theoretical researches [18–20]
indicate that the performance degradation rate is strangely
affected by the load shared on components. In the load-
sharing system, the shared load is increasing, and then the
performance degradation rate will increase correspondingly.
Consequently, it is difficult to get the probability of each
performance state.

In the degradation process, the value of 𝐾 is increasing
because of component degradation. The phased-mission
system (PMS) model [21–23] is introduced to calculate the
reliability of 𝐾-out-of-𝑁 system with variable 𝐾 in different
phases. Xing et al. [24] proposed an efficient method for reli-
ability evaluation of 𝐾-out-of-𝑁 systems subject to phased-
mission requirements. Unfortunately, when using the PMS
model to evaluate reliability, we need to know the specified𝐾
in each phase. However, in degradation process, the value of
𝐾 is determined by the system performance requirement and
the degraded performance of each component. As a result,
the value of 𝐾 in each phase is variable. Considering the
complexity of degradation law in load-sharing system, it is
hard to know the specified 𝐾 in each phase.

In conclusion, there are some special characteristics of
load-sharing 𝐾-out-of-𝑁 system with degrading compo-
nents: (1) a component random failure increases the load
shared on each remaining component, (2) the failure rate of
surviving components will increase after component failures,
(3) the rise of load will raise the degradation rate of com-
ponent, (4) the duration when components have a specified
degradation rate is stochastic because a component failure
occurs at random time, (5) the value of 𝐾 is stochastic
because the component performance is a random variable
at any given time. Some mentioned load-sharing methods
deal with characteristics (1) and (2) effectively. What is
more, the MSS model is suggested to compute the reliability
when component has degraded states, and the PMS model
is used to deal with phase-mission requirement. However,
characteristics (3), (4), and (5) make the degradation law of
component performance very complicated; consequently it is
very hard to get some conditions of existed methods.

This paper proposes a method combining a tampered
failure rate model with a performance degradation model
to analyze the reliability of load-sharing 𝐾-out-of-𝑁 sys-
tem with degrading components. The tampered failure rate
model is introduced to evaluate the reliability where the
rise of load makes the failure rate of surviving components
increase. The performance degradation model is derived to
calculate degraded component performance in service time.
Furthermore, the load-sharing effect on degradation rate and

the randomness of duration are included in the performance
degradation model. In this way, the discrete probability dis-
tribution of 𝐾 is obtained through performance degradation
model coupled with load-sharing effect. Using the discrete
probability distribution of 𝐾 and the reliability computed
by the tampered failure rate model when the system has a
specified𝐾, the reliability of load-sharing𝐾-out-of-𝑁 system
with degrading components is calculated accurately.

The remainder of this paper is divided into five sections.
In Section 2, the tampered failure rate model is introduced to
analyze reliability of load-sharing 𝐾-out-of-𝑁 system when
the value of 𝐾 is constant. In Section 3, the performance
degradation model coupled with load-sharing effect is for-
mulated to evaluate the discrete probability distribution of
𝐾. In Section 4,Monte-Carlo simulation procedure is used to
estimate the discrete probability distribution of𝐾.The case of
a solar panel is studied in Section 5. Conclusions are drawn in
Section 6.

2. Reliability of Load-Sharing
𝐾-out-of-𝑁 System

In a load-sharing system, theworkload has to be redistributed
among the remaining components after a component failure.
Mostly the load is equally shared by each surviving compo-
nent. Let the total workload be 𝐿, and let the total number
of components be 𝑛. Let 𝑧

𝑖
be the load on each surviving

component when 𝑖 components have failed. Hence,

𝑧0 =
𝐿

𝑛
,

𝑧
𝑖
=

𝐿

(𝑛 − 𝑖)
.

(1)

In order to analyze the reliability of load-sharing system,
the load-sharing effect that the rise of shared load on a
surviving component raises the failure rate has to be eval-
uated. The tampered failure rate (TFR) model proposed by
Bhattacharyya and Soejoeti [25] can be applied for the load-
sharing system.The acceleration of failure when load is raised
from lower level to a higher level is reflected in the failure rate
function.

Let the component be subject to an ordered sequence of
loads, where load 𝑧

𝑖
(𝑖 = 0, 1, . . . , 𝑛 − 𝑘) is applied during the

time interval [𝜏
𝑖
, 𝜏
𝑖+1] (𝜏0 = 0). According to the TFR model,

the failure rate of the component at 𝑡 is

𝜆 (𝑡) = 𝜆𝑖 (𝑡) = 𝛿𝑖 ⋅ 𝜆0 (𝑡) = 𝛿 (𝑧𝑖) ⋅ 𝜆0 (𝑡)

for 𝜏
𝑖−1 ≤ 𝑡 ≤ 𝜏𝑖,

(2)

where 𝜆0(𝑡) is the baseline failure rate which has nothing to
do with load, 𝛿

𝑖
is the tampered factor at load 𝑧

𝑖
, and 𝑧

𝑖
is the

load shared on component at 𝑡.
With the assumptions that the load is equally distributed

among all surviving identical components and the failure
rate of a component varies as described in the TFR model,
the reliability of load-sharing 𝐾-out-of-𝑁 system without
component performance degradation could be calculated by
analytical method.
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2.1. Exponential Case. Firstly, consider a load-sharing 𝐾-
out-of-𝑁 system with components following the exponential
lifetime distribution [8]; in other words, the baseline failure
rate of the TFR model 𝜆0(𝑡) is constant.

When the system is put into operation, the failure rate
of every component is denoted by 𝜆0. Because there are
𝑛 working components in the system, the first component
failure occurs at failure rate 𝛼1 = 𝑛 ⋅ 𝜆0. After the first failure,
the remaining (𝑛 − 1) working components must carry the
same workload of system. As a result, the failure rate of each
surviving component becomes𝜆1, which is commonly higher
than 𝜆0. The second component failure occurs at rate 𝛼2 =
(𝑛 − 1) ⋅ 𝜆1. When 𝑖 components have failed, the failure rate
of each (𝑛 − 𝑖) remaining component is denoted by 𝜆

𝑖
(0 ≤

𝑖 ≤ 𝑛 − 𝑘). The 𝑖th component failure occurs at failure rate
𝛼
𝑖
= (𝑛 − 𝑖 + 1) ⋅ 𝜆

𝑖−1. The system is failed when more than
(𝑛 − 𝑘) components are failed.

The time when the 𝑖th component failure occurs in the
system is denoted by 𝑇

𝑖
(𝑇0 ≡ 0), and the time interval

between (𝑖 − 1)th and 𝑖th component failure is represented
by 𝑋
𝑖
= 𝑇
𝑖
− 𝑇
𝑖−1 (1 ≤ 𝑖 ≤ 𝑛 − 𝑘 + 1). Since all identical

components are following the exponential distributions, the
𝑋
𝑖
follows the exponential distribution with parameter 𝛼

𝑖
.

Hence, the lifetime of system is the (𝑛 − 𝑘 + 1)th failure time

𝑇 = 𝑇
𝑛−𝑘+1 =

𝑛−𝑘+1
∑

𝑖=1
𝑋
𝑖
. (3)

Then, the reliability of𝐾-out-of-𝑁 system at 𝑡0 is

𝑅 (𝑡0) = 𝑃 {𝑇> 𝑡0} . (4)

In order to calculate the distribution of 𝑇 and the
reliability function of load-sharing 𝐾-out-of-𝑁 system, two
typical formulas which can be used are as follows.

Case a. All 𝛼
𝑖
are equal (say 𝛼) [8]:

𝑅 (𝑡) =

𝑛−𝑘

∑

𝑖=0

(𝛼𝑡)
𝑖 exp (−𝛼𝑡)
𝑖!

= 𝑔𝑎𝑚𝑓𝑐 (𝛼𝑡; 𝑛 − 𝑘 + 1) . (5)

This case arises when the failure rate of each surviving
component is directly proportional to the load it carries,
which means that 𝛿(𝑧) ∝ 𝑧 in the TFR model.

Case b. All 𝛼
𝑖
are distinct [8]:

𝑅 (𝑡) =

𝑛−𝑘+1
∑

𝑖=1
𝐴
𝑖
⋅ exp (−𝛼

𝑖
𝑡) ,

𝐴
𝑖
≡

𝑛−𝑘+1
∏

𝑗=1
𝑗 ̸=𝑖

𝛼
𝑗

𝛼
𝑗
− 𝛼
𝑖

𝑖 = 1, 2, . . . , 𝑛 − 𝑘 + 1.
(6)

2.2. General Case. In the case of a load-sharing 𝐾-out-
of-𝑁 system with components following arbitrary lifetime
distributions, the baseline failure rate of the TFR model is no
longer a constant. A closed-form analytical solution for TFR

model with an arbitrary baseline distribution is introduced.
The basic idea is to use a time-transformation to convert TFR
model with an arbitrary baseline distribution into an equiva-
lent problem with an exponential baseline distribution [10].

Lemma 1. (1) For any failure distribution 𝐹(𝑡), the reliability
function is 𝑅(𝑡) = 1 − 𝐹(𝑡).

(2) The cumulative failure rate function is

Λ (𝑡) = ∫

𝑡

0
𝜆 (𝑡) 𝑑𝑡 = ∫

𝑡

0

𝑑𝐹 (𝑡)

𝑅 (𝑡)
= ∫

𝑡

0

−𝑑𝑅 (𝑡)

𝑅 (𝑡)

= − ln𝑅 (𝑡) .
(7)

(3) The random variable 𝑦 = 𝑅(𝑡) follows a uniform
distribution in interval [0, 1]. The random variable 𝑙 = Λ(𝑡)
follows an exponential distribution with mean 1.

(4) For a TFR model with a standard exponential (𝜆 = 1)
baseline failure time distribution

𝜆 (𝑡) = 𝛿𝑖,

Λ (𝑡) = Λ (𝜏𝑖−1) + 𝛿𝑖 (𝑡 − 𝜏𝑖−1) 𝜏
𝑖−1 ≤ 𝑡 < 𝜏𝑖.

(8)

(5) For a TFR model with a baseline failure rate of 𝜆0(𝑡)
and a baseline cumulative failure rate of Λ 0(𝑡),

(a) under the regular scale 𝑡,

𝜆 (𝑡) = 𝛿𝑖 ⋅ 𝜆0 (𝑡) ,

Λ (𝑡) = Λ (𝜏𝑖−1) + 𝛿𝑖 ⋅ [Λ 0 (𝑡) −Λ 0 (𝜏𝑖−1)]

𝜏
𝑖−1 ≤ 𝑡 < 𝜏𝑖;

(9)

(b) under the transformed scale 𝑙 = Λ 0(𝑡).
Let

V
𝑖
= Λ 0 (𝜏𝑖) ,

𝜆
𝑙 (𝑙) = 𝛿𝑖,

Λ
𝑙 (𝑙) = Λ 𝑙 (V𝑖−1) + 𝛿𝑖 ⋅ [𝑙 − V𝑖−1] V

𝑖−1 ≤ 𝑙 < V
𝑖
,

(10)

where Λ
𝑙
(𝑙) is the cumulative failure rate in the transformed

scale.

According to the above lemmas, it becomes obvious that
if the load-sharing effect on the failure rate of an individual
component follows a TFR model with 𝜆(𝑡) = 𝛿

𝑖
⋅ 𝜆0(𝑡), the

reliability of a load-sharing system at 𝑡 is equivalent to the
reliability of corresponding exponential load-sharing model
at time 𝑙 = Λ 0(𝑡), where the failure rate of a component is
𝜆
𝑖
= 𝛿
𝑖
when 𝑖 components have failed for 𝑖 = 0, . . . , (𝑛 − 𝑘).

3. Degradation Effect in Load-Sharing System

In a load-sharing 𝐾-out-of-𝑁 system with degrading com-
ponents, a random component failure raises the load shared
on remaining components, leading to the rise of the failure
rate and performance degradation rate. Besides, the duration
when component has a specified degradation rate is variable
because a component failure occurs at random time. There-
fore, the component performance is a random variable at any
given time, thus the value of𝐾 is stochastic in service time.
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3.1. Independent Degradation Effect. At the first step, consider
the component degradation rate to be independent of load-
sharing effect, which means that the load-sharing effect just
makes the failure rate higher but the degradation rate has
nothing to do with shared load. When the system is just
put into operation, the value of 𝐾 is determined by 𝐾 =

⌈𝐶/𝑐0⌉, where 𝐶 is the system performance requirement,
𝑐0 is the initial performance of each component, and 𝐾 is
the minimum integer that is greater than or equal to the
quotient. When the system has operated for a period of time
𝑡, the degraded performance of component is denoted by
𝑐(𝑡) = 𝑐0𝐷(𝑡), where 𝐷(𝑡) is degradation law of component
performance. 𝐷(𝑡) is a monotone decreasing function, and
𝐷(0) = 1, 𝐷(+∞) = 0. For example, the common
degradation laws are exponential law denoted by 𝐷(𝑡) = 1 −
𝑎𝑡
𝑚 and power law denoted by𝐷(𝑡) = exp(−𝑎𝑡). At time 𝑡, the

value of 𝐾 is determined by 𝐾(𝑡) = ⌈𝐶/𝑐(𝑡)⌉. Since 𝐷(𝑡) is a
monotone decreasing function, it is quite clear that 𝑐(𝑡) < 𝑐0.
Thus,𝐾(𝑡) ≥ 𝐾, while the condition for equality is ⌈𝐶/𝑐(𝑡)⌉ =
⌈𝐶/𝑐0⌉. Hence, the reliability of 𝐾-out-of-𝑁 system with
degrading component is calculated in a general expression as

𝑅
󸀠
(𝑡) =

𝑛−𝐾(𝑡)

∑

𝑖=0
𝐶
𝑖

𝑛
[1−𝑅0 (𝑡)]

𝑖
[𝑅0 (𝑡)]

𝑛−𝑖
. (11)

Correspondingly, using the TFR model to analyze the
load-sharing 𝐾-out-of-𝑁 system with degrading compo-
nents, the value of𝐾 should be replaced by 𝐾(𝑡).

Obviously, 𝑅󸀠(𝑡) ≤ 𝑅(𝑡) because of 𝐾(𝑡) ≥ 𝐾, mean-
ing that the reliability of 𝐾-out-of-𝑁 system considering
component degradation is less than the reliability ignoring
component degradation.

3.2. Degradation Coupled with Load-Sharing Effect. When
the component performance degradation is related to load-
sharing effect, a random failure of component will raise the
degradation rate of surviving component. Since a component
failure occurs at random time, the duration when compo-
nents have a specified degradation rate is variable. Therefore,
the variable𝐾 denoted by 𝐾̃(𝑡) is stochastic at any given time.

In a load-sharing system, the degradation law of compo-
nent performance𝐷(𝑡) is not only a function of time, but also
a function of the shared load. The generalization of degrada-
tion law is expressed as a function of time and load, denoted
by 𝐷(𝑡, 𝑧). The degradation rate of component performance
with load-sharing effect is 𝑑(𝑡, 𝑧) = 𝜕𝐷(𝑡, 𝑧)/𝜕𝑡. After
𝑖th component failure, the performance degradation rate of
surviving components is denoted by 𝑑

𝑖
(𝑡, 𝑧
𝑖
) = 𝑑[𝑡, 𝐿/(𝑛− 𝑖)].

In order to analyze the reliability of load-sharing 𝐾-out-
of-𝑁 system with degrading components at 𝑡0, 𝐾̃(𝑡0) should
be evaluated previously, which is determined by the degraded
performance of component at 𝑡0. With the understanding
of degradation rate 𝑑

𝑖
(𝑡, 𝑧
𝑖
) after 𝑖th component failure, the

degraded performance at 𝑡0 is estimated by using the dura-
tion when the component has a specified degradation rate,
denoted by𝑋

𝑖
.Theduration𝑋

𝑖
is the interval between (𝑖−1)th

component failure and 𝑖th component failure. In other words,
𝑋
𝑖
is the minimum order statistic of the components failure

time of the surviving (𝑛 − 𝑖 + 1) components under the
condition that the (𝑛 − 𝑖 + 1) components do not fail at 𝑇

𝑖−1.

Lemma 2.
(1) Conditional Distribution Function

(a) The reliability of component at (𝑇
𝑖
+ Δ𝑡) is

𝑅 (𝑇
𝑖
+Δ𝑡) = exp [−∫

𝑇𝑖+Δ𝑡

0
𝜆 (𝑡) 𝑑𝑡]

= exp [−∫
𝑇1

0
𝜆0 (𝑡) 𝑑𝑡 −∫

𝑇2

𝑇1

𝜆1 (𝑡) 𝑑𝑡 − ⋅ ⋅ ⋅

− ∫

𝑇𝑖

𝑇𝑖−1

𝜆
𝑖−1 (𝑡) 𝑑𝑡 −∫

𝑇𝑖+Δ𝑡

𝑇𝑖

𝜆
𝑖 (𝑡) 𝑑𝑡]

= exp[

[

−

𝑖−1
∑

𝑗=0
∫

𝑇𝑗+1

𝑇𝑗

𝜆
𝑗 (𝑡) 𝑑𝑡 −∫

𝑇𝑖+Δ𝑡

𝑇𝑖

𝜆
𝑖 (𝑡) 𝑑𝑡

]

]

.

(12)

(b) The reliability at 𝑇
𝑖
is

𝑅 (𝑇
𝑖
) = exp[

[

−

𝑖−1
∑

𝑗=0
∫

𝑇𝑗+1

𝑇𝑗

𝜆
𝑗 (𝑡) 𝑑𝑡

]

]

. (13)

(c) The cumulative distribution function of component
failure time under the condition that the component did
not fail at 𝑇

𝑖
is

𝐹 (𝑇
𝑖
+Δ𝑡 | 𝑇

𝑖
) = 1−𝑅 (𝑇

𝑖
+Δ𝑡 | 𝑇

𝑖
)

= 1−
𝑅 (𝑇
𝑖
+ Δ𝑡)

𝑅 (𝑇
𝑖
)

= 1− exp [−∫
𝑇𝑖+Δ𝑡

𝑇𝑖

𝜆
𝑖 (𝑡) 𝑑𝑡]

= 1− exp [−∫
Δ𝑡

0
𝜆
𝑖
(𝑡 + 𝑇
𝑖
) 𝑑𝑡] .

(14)

(2) Minimum Order Statistic

(a) Let the cumulative distribution function of a popula-
tion be 𝐹(𝑡), and probability distribution function is
𝑓(𝑡). For samples with size 𝑛, probability distribution
function of 𝑗th order statistic 𝑌

(𝑗)
is

𝑓
𝑌(𝑗) (𝑡) = 𝑛𝐶

𝑗−1
𝑛−1 [𝐹 (𝑡)]

𝑗−1
[1−𝐹 (𝑡)]𝑛−𝑗 𝑓 (𝑡) . (15)

(b) The probability distribution function of the minimum
order statistic is

𝑓
𝑌(1) (𝑡) = 𝑛𝑓 (𝑡) [1−𝐹 (𝑡)]

𝑛−1
. (16)
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(c) The cumulative distribution function of the minimum
order statistic is

𝐹
𝑌(1) (𝑡) = ∫

𝑡

0
𝑓
𝑌(1) (𝑡) 𝑑𝑡 = ∫

𝑡

0
𝑛𝑓 (𝑡) [1−𝐹 (𝑡)]𝑛−1 𝑑𝑡

= 1− [1−𝐹 (𝑡)]𝑛 .
(17)

Hence, the cumulative distribution function of 𝑋
𝑖
is

expressed as

𝐹
𝑋𝑖
(Δ𝑡)

= 1− [1−𝐹 (𝑇
𝑖−1 +Δ𝑡 | 𝑇𝑖−1)]

𝑛−𝑖+1

= 1− [𝑅 (𝑇
𝑖−1 +Δ𝑡 | 𝑇𝑖−1)]

𝑛−𝑖+1

= 1− exp [− (𝑛 − 𝑖 + 1) ∫
Δ𝑡

0
𝜆
𝑖−1 (𝑡 + 𝑇𝑖−1) 𝑑𝑡] .

(18)

In a special situation that the baseline distribution of
TFR is exponential distribution, the distribution of 𝑋

𝑖
is an

exponential distribution with parameter (𝑛−𝑖+1)𝜆
𝑖−1, which

agrees with the conclusion in previous paper Section 2.1.
As 𝑖 components have failed in the system, the degrada-

tion rate of each surviving component is 𝑑
𝑖
(𝑡, 𝑧
𝑖
). Moreover,

the time interval between 𝑖th component failure and (𝑖 +
1)th failure is 𝑋

𝑖+1. Therefore, the component performance
degradation in time interval [𝑇

𝑖
, 𝑇
𝑖+1] is

Δ𝑐
𝑖
= 𝑐0 ∫

𝑇𝑖+1

𝑇𝑖

𝑑
𝑖
(𝑡, 𝑧
𝑖
) 𝑑𝑡 = 𝑐0 ∫

𝑋𝑖+1

0
𝑑
𝑖
(𝑇
𝑖
+ 𝑡, 𝑧
𝑖
) 𝑑𝑡. (19)

The degraded component performance at 𝑡0 is calculated
as

𝑐 (𝑡0) = 𝑐0 +
𝑚−1
∑

𝑗=0
Δ𝑐
𝑗
+ 𝑐0 ∫

𝑡0

𝑇𝑚

𝑑
𝑚
(𝑡, 𝑧
𝑚
) 𝑑𝑡

= 𝑐0 + 𝑐0

𝑚−1
∑

𝑗=0
∫

𝑇𝑗+1

𝑇𝑗

𝑑
𝑗
(𝑡, 𝑧
𝑗
) 𝑑𝑡

+ 𝑐0 ∫
𝑡0

𝑇𝑚

𝑑
𝑚
(𝑡, 𝑧
𝑚
) 𝑑𝑡.

(20)

According to 𝑋
𝑗+1 = 𝑇𝑗+1 − 𝑇𝑗, 𝑇𝑗 = ∑

𝑗

𝑖=0𝑋𝑖+1 (𝑇0 ≡ 0)
and 𝑧
𝑗
= 𝐿/(𝑛 − 𝑗) for 𝑗 = 0, 1, 2, . . . , 𝑚, 𝑚 is determined by

𝑇
𝑚
≤ 𝑡0 < 𝑇𝑚+1,

∫

𝑇𝑗+1

𝑇𝑗

𝑑
𝑗
(𝑡, 𝑧
𝑗
) 𝑑𝑡 = ∫

𝑋𝑗+1

0
𝑑
𝑗
(𝑡 +𝑇

𝑗
,
𝐿

𝑛 − 𝑗
) 𝑑𝑡. (21)

Hence,

𝑐 (𝑡0) = 𝑐0 + 𝑐0

𝑚−1
∑

𝑗=0
∫

𝑋𝑗+1

0
𝑑
𝑗
(𝑡 +𝑇

𝑗
,
𝐿

𝑛 − 𝑗
) 𝑑𝑡

+ 𝑐0 ∫
𝑡0−𝑇𝑚

0
𝑑
𝑚
(𝑡 +𝑇

𝑚
,
𝐿

𝑛 − 𝑚
)𝑑𝑡,

(22)

where the distribution of 𝑋
𝑗
is 𝐹
𝑋𝑗
(Δ𝑡) and the degradation

rate at each phase is 𝑑
𝑗
(𝑡, 𝑧
𝑗
).

According to (22), the distribution of the degraded
component performance 𝑐(𝑡0) is calculated on basis of the
distribution of 𝑋

𝑗
denoted by 𝐹

𝑋𝑗
(Δ𝑡) and degradation rate

𝑑
𝑗
(𝑡, 𝑧
𝑗
). Then, the discrete probability distribution of 𝐾̃(𝑡0)

could be obtained through

𝐾̃ (𝑡0) = ⌈
𝐶

𝑐 (𝑡0)
⌉ = [

[
[
[

𝐶

𝑐0 + 𝑐0∑
𝑚−1
𝑗=0 ∫
𝑋𝑗+1

0 𝑑
𝑗
(𝑡 + 𝑇

𝑗
, 𝐿/𝑛 − 𝑗) 𝑑𝑡 + 𝑐0 ∫

𝑡0−𝑇𝑚

0 𝑑
𝑚
(𝑡 + 𝑇

𝑚
, 𝐿/𝑛 − 𝑚) 𝑑𝑡

]
]
]
]

. (23)

Using the probability distribution of 𝐾̃(𝑡0) estimated
by the performance degradation model and the reliability
calculated by the TFRmodel when the system has a specified
𝐾, the reliability of load-sharing 𝐾-out-of-𝑁 system with
degrading components is computed in formula as

𝑅̃ (𝑡0) = ∑𝑝(𝐾̃𝑗) 𝑅𝐾̃𝑗 (𝑡0) , (24)

where 𝑝(𝐾̃
𝑗
) is the probability when the 𝐾̃(𝑡0) is equal to

𝐾̃
𝑗
and 𝑅

𝐾̃𝑗
(𝑡0) is the reliability of 𝐾-out-of-𝑁 system when

the 𝐾̃(𝑡0) is equal to 𝐾̃
𝑗
. Using the proposed formula to

evaluate the reliability of load-sharing 𝐾-out-of-𝑁 system
with degrading components, the load-sharing effect on com-
ponent failure rate and the degradation effect coupled with
load-sharing effect are all included in the model. Therefore,
the reliability is calculated more accurately.

4. Monte-Carlo Simulation

In the load-sharing system, the failure rate and degradation
rate are variable during the lifetime, and the duration in each
phase is stochastic because a component failure occurs at ran-
dom time. The analytic expression of degraded performance
could be obtained only if the failure rate or degradation rate
is subject to some specified formats, such as components
following the exponential lifetime distribution or degrada-
tion rate being constant. This paper employs Monte-Carlo
simulation to estimate the discrete probability distribution of
𝐾. The simulation procedure is shown in Figure 1.

In order to evaluate the discrete probability distribution
of 𝐾, the system configuration must be set firstly: as the
total component number denoted by 𝑛, the total workload
denoted by 𝐿, the system performance requirement denoted
by 𝐶, the initial performance of each component denoted by
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Start

Initialization

Develop FX𝑖
(Δt)

Sample the failure time interval Xi

Calculate Ti

Calculate the probability of each K(t0)

Compute the component performance degradation in [Ti−1, t0]

Compute the component performance

Set i = i + 1

No

No

Yes

Calculate the K(t0)
Count the number of different K(t0)

End

Yes

Set j = j + 1

Ti > t0

j = S

degradation in [Ti−1, Ti]

Set initial value: n L C c0 t0 S j

Formulate: d̃(t, z) 𝜆0(t) 𝛿(z)

Reset T0 = 0 i = 1

Calculate zi−1 and refresh 𝛿(zi−1) d̃(t, zi−1)

Figure 1: The Monte-Carlo simulation procedure.

𝑐0, and the system required operation time denoted by 𝑡0.
Furthermore, the baseline failure rate function denoted by
𝜆0(𝑡), the degradation rate function denoted by 𝑑(𝑡, 𝑧), and
the tampered factor function denoted by 𝛿(𝑧) all need to be
formulated in advance. Set the required number of simulation
cycle 𝑆 and initialize cyclic variable 𝑗 = 1, and then carry out
the Monte-Carlo simulation.

At the beginning of a simulation cycle, reset the start
moment 𝑇0 = 0 and sampling variable 𝑖 = 1. At the 𝑖th sam-
pling in a cycle of the simulation, there are (𝑛−𝑖+1) remaining
components. The workload shared on each component is
denoted by 𝑧

𝑖−1. Then the tampered factor can be calculated
by 𝛿(𝑧), and the failure rate under current load is obtained
through the baseline failure rate function multiplied by the
tampered factor. Besides, the degradation rate under current
load is computed by 𝑑(𝑡, 𝑧). According to the current failure
rate and last component failure time 𝑇

𝑖−1, the distribution
of 𝑋
𝑖
between (𝑖 − 1)th and 𝑖th component failure denoted

by 𝐹
𝑋𝑖
(Δ𝑡) is obtained. Using the distribution 𝐹

𝑋𝑖
(Δ𝑡), the

sampling formula of𝑋
𝑖
denoted by 𝐹−1

𝑋𝑖
(𝜂) is derived, where 𝜂

follows uniform distribution in the interval [0, 1]. Generating
the 𝑋

𝑖
from 𝐹−1

𝑋𝑖
(𝜂), the 𝑖th component failure time is 𝑇

𝑖
=

𝑇
𝑖−1 + 𝑋𝑖. If 𝑇𝑖 is less than 𝑡0, compute the component

performance degradation in time interval [𝑇
𝑖−1, 𝑇𝑖], and then

start the next sampling. When 𝑇
𝑖
reaches system required

operation time 𝑡0, compute the component performance
degradation in time interval [𝑇

𝑖−1, 𝑡0], and then the degraded
component performance at 𝑡0 is obtained. The 𝐾̃(𝑡0) is
determined by the system performance requirement 𝐶 and
the degraded component performance 𝑐(𝑡0), and then carry
out the next cycle of the simulation. When the number of
simulation cycles meets the requirement denoted by 𝑆, count
the number when 𝐾̃(𝑡0) is equal to different values. Then the
probability of each 𝐾̃(𝑡0) is estimated by dividing the number
of different 𝐾̃(𝑡0) by the number of simulation cycles 𝑆.
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5. Case Study

Satellites or space station which needs to work for long peri-
ods in aerospace must be equipped with suitable and reliable
solar panels to provide power for the normal operation of
equipment. Once a solar panel cannot supply required power,
the spacecraft will lose its function, and it may become “space
junk.” As the critical module, there are strict requirements
about the performance and reliability of solar panel. A solar
panelmodule consists ofmany solar cells. Factors of the space
environment like space radiation, temperature cycling, and
charge-discharge cycles will destroy some solar cells. Besides,
the performance of solar cells will degrade in lifetime. The
failure solar cell cannot be repaired in outer space timely, so
the workload of solar panel is shared by the remaining solar
cells, and surviving solar cells should supply the required
power of system.

A kind of solar panel of geostationary orbit satellite has 20
solar cells.The satellite needs 10 kWoutput power (the system
performance requirement) from solar panel to ensure normal
operation of other subsystems. The initial output power of
each solar cell is 1 kW (initial performance of component).
The solar panel is subject to 10A steady current (the total
workload), and it is shared by 20 solar cells evenly. The
baseline failure time distribution is Weibull one with shape
parameter 𝛽 = 2 and location parameter 𝜂 = 200000 h. The
tampered factor is 𝛿(𝑧) = 𝑧1.5 under the operating current 𝑧.
The degradation law of solar cell output power is 𝐷(𝑡, 𝑧) =
exp(𝑎𝑡/𝑧4), where 𝑎 = −1/6000000. According to the
requirement, the solar panel should supply sufficient power
for 15 years (consider one year as 365 days, and then 15 years
are equal to 131400 hours). The output power of a solar cell
is degrading with service time. The random failure of a solar
cell will increase the current shared on remaining solar cells,
resulting in higher failure rate of solar cells, and the degra-
dation rate of solar cells output power will increase corre-
spondingly.The value of𝐾 is determined by the output power
of surviving solar cells and the output power requirement of
solar panel. It is obvious that the solar panels are a typical
load-sharing 𝐾-out-of-𝑁 system with component perfor-
mance degradation.With the proposedmethod in this paper,
the reliability of solar panels could be estimated accurately.

Firstly, we should calculate the discrete probability of 𝐾
by performance degradation model.

According to the Monte-Carlo simulation method, the
time interval 𝑋

𝑖
between 𝑖th and (𝑖 − 1)th solar cell failure

is subject to

𝐹
𝑋𝑖
(Δ𝑡)

= 1− exp [− (𝑛 − 𝑖 + 1) ∫
Δ𝑡

0
𝜆
𝑖−1 (𝑡 + 𝑇𝑖−1) 𝑑𝑡] .

(25)

Using the given value 𝑛 = 20, 𝐿 = 10, 𝜆0(𝑡), and 𝛿(𝑧𝑖−1),
the distribution of𝑋

𝑖
is expressed as

Table 1: The count and possibility of𝐾(131400).

𝐾(131400) 12 13 14 15
Count 29 1710 6749 1512
Possibility 0.29% 17.1% 67.49% 15.12%

𝐹
𝑋𝑖
(Δ𝑡) = 1− exp{−101.5 ⋅ (21− 𝑖)−0.5

⋅ [(
𝑇
𝑖−1 + Δ𝑡

200000
)

2
−(

𝑇
𝑖−1

200000
)

2
]} .

(26)

Hence, the sampling formula of𝑋
𝑖
is derived:

Δ𝑡 = 200000

⋅ [(
𝑇
𝑖−1

200000
)

2
−
(21 − 𝑖)0.5

101.5
ln (1− 𝜂)]

1/2

−𝑇
𝑖−1,

(27)

where 𝜂 is subject to uniform distribution in [0, 1].
The degradation rate of a solar cell output power is

𝑑 (𝑡, 𝑧) =
𝜕𝐷 (𝑡, 𝑧)

𝜕𝑡
=
𝑎

𝑧4
exp(𝑎𝑡

𝑧4
) , (28)

where 𝑎 = −1/6000000. The required output power of the
solar panel is 𝐶 = 10, and the initial output power of a solar
cell is 𝑐0 = 1.

The output power degradation in time interval [𝑇
𝑖
, 𝑇
𝑖+1]

is

Δ𝑐
𝑖
= 𝑐0 ∫

𝑇𝑖

𝑇𝑖−1

𝑑
𝑖−1 (𝑡, 𝑧𝑖−1) 𝑑𝑡

= 𝑐0 ∫
𝑇𝑖

𝑇𝑖−1

𝑑 (𝑡,
𝐿

𝑛 + 1 − 𝑖
) 𝑑𝑡.

(29)

With the given value

Δ𝑐
𝑖

= −∫

𝑇𝑖

𝑇𝑖−1

1
6000000 (10/21 − 𝑖)4

exp[− 𝑡

6000000 (10/21 − 𝑖)4
]𝑑𝑡.

(30)

After a cycle of the simulation, the output power of a solar
cell 𝑐(131400) at 𝑡 = 131400 h can be calculated. Hence, the
value of𝐾 is expressed as

𝐾̃ (131400) = ⌈ 10
𝑐 (131400)

⌉ . (31)

Set the number of cycle as 𝑆 = 10000; the count and
possibility of 𝐾̃(131400) are shown in Table 1.

If the output power of a solar cell does not degrade, the
value of𝐾 is

𝐾 = ⌈
10
𝑐0
⌉ = ⌈

10
1
⌉ = 10. (32)
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Table 2: The coefficients of 𝛼
𝑖
.

𝛼1 𝛼2 𝛼3 𝛼4 𝛼5 𝛼6 𝛼7 𝛼8 𝛼9 𝛼10

7.0711 7.2548 7.4536 7.6696 7.9057 8.1650 8.4515 8.7706 9.1287 9.5346
𝛼11 𝛼12 𝛼13 𝛼14 𝛼15 𝛼16 𝛼17 𝛼18 𝛼19 𝛼20

10 10.5409 11.1803 11.9523 12.9099 14.1421 15.8114 18.2574 22.3607 31.6228

Table 3: The coefficients of 𝐴
𝑖
when 𝐾(131400) = 12.

𝐴1 𝐴2 𝐴3 𝐴4 𝐴5 𝐴6 𝐴7 𝐴8 𝐴9

9.7723𝑒7 −5.7858𝑒8 1.4768𝑒9 −2.1193𝑒9 1.8667𝑒9 −1.0311𝑒9 3.4787𝑒8 −6.5332𝑒7 5.2086𝑒6

From the above results, because the output power of a
solar cell is degrading, the value of𝐾 at 𝑡 = 131400 h is greater
than the situation ignoring solar cell degradation.

Secondly, after getting the discrete probability distri-
bution of 𝐾̃(131400), the reliability when 𝐾̃(131400) is a
specified value should be calculated by the TFR model.

TFR model of solar panel is shown as follows:

Model: 𝑛 = 20, 𝐿 = 10, 𝑡 = 131400 h, 𝛽 = 2, and
𝜂 = 200000.
Baseline failure rate:

𝜆0 (𝑡) =
𝛽

𝜂
⋅ (
𝑡

𝜂
)

𝛽−1
=

1
100000

⋅
𝑡

200000
. (33)

The cumulative failure rate:

Λ 0 (𝑡) = (
𝑡

𝜂
)

𝛽

= (
𝑡

200000
)

2
. (34)

The TFR model of failure rate caused by operating
current

𝜆 (𝑡) = 𝛿 (𝑧) ⋅ 𝜆0 (𝑡) , (35)

where the tampered factor is 𝛿(𝑧) = 𝑧1.5.

Solution is as follows:

The tampered factor:

𝛿
𝑖
= 𝛿 (𝑧

𝑖
) = 𝑧

1.5
𝑖
= (

𝐿

𝑛 − 𝑖
)

1.5
= (

10
20 − 𝑖

)

1.5
. (36)

The corresponding TFR model with exponential
baseline failure distribution is as follows:
Transformed scale:

𝑙 = Λ 0 (𝑡) = (
131400
200000

)

2
. (37)

Because 𝜆
𝑖
= 𝛿
𝑖
= (10/(20 − 𝑖))1.5, 𝛼

𝑖
= (𝑛 − 𝑖 + 1)𝜆

𝑖−1 =

101.5(21 − 𝑖)−0.5, the coefficients of 𝛼
𝑖
are shown in Table 2.

When 𝐾̃(131400) = 12,

𝐴
𝑖
≡

20−12+1
∏

𝑗=1
𝑗 ̸=𝑖

𝛼
𝑗

𝛼
𝑗
− 𝛼
𝑖

=

9
∏

𝑗=1
𝑗 ̸=𝑖

𝛼
𝑗

𝛼
𝑗
− 𝛼
𝑖

𝑖 = 1, 2, . . . , 9. (38)

The coefficients of𝐴
𝑖
when 𝐾̃(131400) = 12 are shown in

Table 3:

𝑅̃
𝐾̃=12 (131400) =

20−12+1
∑

𝑖=1
𝐴
𝑖
⋅ exp [−𝛼

𝑖
Λ 0 (131400)]

=

9
∑

𝑖=1
𝐴
𝑖
⋅ exp [−(1314

2000
)

2
𝛼
𝑖
]

= 0.9912.

(39)

In the same way, the reliability when the system has other
𝐾 is calculated as follows:

𝑅̃
𝐾̃=13 (131400) = 0.9778,

𝑅̃
𝐾̃=14 (131400) = 0.9477,

𝑅̃
𝐾̃=15 (131400) = 0.8866.

(40)

Therefore, the reliability of solar panel that it could supply
sufficient power for 15 years is computed as

𝑅̃ (131400) = ∑𝑝 (𝐾̃𝑗) 𝑅𝐾̃𝑗 (131400) = 0.9437. (41)

If the output power of solar cells does not degrade, mean-
ing that𝐾 = 10, the coefficients of 𝐴

𝑖
are shown in Table 4.

Hence, the reliability is

𝑅 (131400) =
20−10+1
∑

𝑖=1
𝐴
𝑖
⋅ exp [−𝛼

𝑖
Λ 0 (131400)]

=

11
∑

𝑖=1
𝐴
𝑖
⋅ exp [−(1314

2000
)

2
𝛼
𝑖
] = 0.9988.

(42)

Comparing 𝑅(131400) and 𝑅̃(131400), we can see that
random failures of some solar cells make the operating
current of the remaining solar cells increase, also leading to
an increase of failure rate and degradation rate. Due to the
degradation of solar cells output power, the reliability of solar
panel 𝑅̃(131400) is less than 𝑅(131400) which ignores the
degradation of solar cell output power.

6. Conclusion

In a load-sharing𝐾-out-of-𝑁 systemwith degrading compo-
nents, a component random failure raises the load shared on
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Table 4: The coefficients of 𝐴
𝑖
when 𝐾(131400) = 10.

𝐴1 𝐴2 𝐴3 𝐴4 𝐴5 𝐴6 𝐴7 𝐴8 𝐴9 𝐴10 𝐴11

1.2913𝑒9 −8.8141𝑒9 2.6571𝑒10 −4.6495𝑒10 5.2171𝑒10 −3.9115𝑒10 1.9777𝑒10 −6.6315𝑒9 1.4042𝑒9 −1.6848𝑒8 8.6283𝑒6

each remaining component, resulting in a higher failure rate
and increased degradation rate of surviving components.This
paper proposes amethod combining a TFRmodel with a per-
formance degradationmodel to analyze the reliability of load-
sharing𝐾-out-of-𝑁 systemwith degrading components.The
TFR model deals with load-sharing effect on failure rate,
and the reliability when the system has a specified 𝐾 is
calculated by the TFR model. The performance degradation
model is derived to evaluate degradation effect coupled
with load-sharing effect, and then the degraded component
performance is estimated considering the load-sharing effect
on degradation rate.The case of a solar panel is a typical load-
sharing𝐾-out-of-𝑁 systemwith degrading components.The
results calculated by the proposed method show that the
reliability considering component degradation is less than
that ignoring component degradation. With utilization of
the proposed method, the degradation effect is quantitatively
evaluated, and then the reliability of load-sharing 𝐾-out-of-
𝑁 system can be calculated more accurately.
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