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An efficient approach of inverse optimal control and adaptive control is developed for global asymptotic stabilization of a novel
fractional-order four-wing hyperchaotic system with uncertain parameter. Based on the inverse optimal control methodology and
fractional-order stability theory, a control Lyapunov function (CLF) is constructed and an adaptive state feedback controller is
designed to achieve inverse optimal control of a novel fractional-order hyperchaotic system with four-wing attractor. Then, an
electronic oscillation circuit is designed to implement the dynamical behaviors of the fractional-order four-wing hyperchaotic
system and verify the satisfactory performance of the controller. Comparing with other fractional-order chaos control methods
which may have more than one nonlinear state feedback controller, the inverse optimal controller has the advantages of simple
structure, high reliability, and less control effort that is required and can be implemented by electronic oscillation circuit.

1. Introduction

Fractional calculus is a classical mathematical theory with
history of more than 300 years. Fractional-order differential
equations can describe many systems in the real world more
adequately, such as electrical circuits [1–3], polymer material
[4], finance systems [5], and population models [6].

Comparing with integer-order chaotic systems which
exhibit complex nonlinear phenomena, fractional-order and
multi-wing chaotic systems exhibit more complex and richer
dynamical behaviors. It is expected that those chaotic
systems will have a certain theoretical and practical sig-
nificance for secure communication, control processing,
and some other engineering applications. There exist some
well-known fractional-order systems and multi-wing sys-
tems, such as the fractional-order Chua’s circuit [7], the
fractional-order Rössler system [8], the fractional-order
Chen system [9],the fractional-order Lu system [10], the
first true four-wing attractor [11], a family of hyperchaotic
systems with four-wing attractor [12], among many others
[13–22].

The applications of fractional-order differential equations
in control processing developed rapidly in the last two
decades. Fractional-order control methods and researches
on the stability of fractional-order systems have become
the frontier problem in modern nonlinear dynamics [23–
25]. Podlubny and his colleagues proposed the fractional-
order proportional-integral (PI) and proportional-integral-
derivative (PID) controllers which are named PI𝜆 and PI𝜆D𝜇
controllers with the orders 𝜆 and 𝜇 [26] and designed
analogue circuits to implement fractional-order controllers
[27]. Hamamci presented a method to stabilize a given frac-
tional dynamic system using fractional-order PI𝜆 and PI𝜆D𝜇
controllers [28]. In [29], the author proposed a solution
scheme for a class of fractional optimal control problems.
In [30], authors designed a fractional-order sliding mode
controller to stabilize a fractional-order hyperchaotic system.

Nonlinear controllers have been adopted in many fields
in spite of having the complex structure and being not easy
to obtain. Optimal control guarantees several desirable prop-
erties for the closed-loop system, including stability margins
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and robustness. To circumvent the task of solving aHamilton-
Jacobi-Bellman equation whose solution is nonexistent or
nonunique in generally, the inverse optimal control technique
based on input-to-state stability concept was developed [31].

In this article, based on inverse optimal control method-
ology and fractional-order stability theory, we construct
an adaptive state feedback controller to achieve the global
asymptotic stabilization of a novel fractional-order four-
wing hyperchaotic system. An electronic oscillation circuit is
designed to realize the dynamical behaviors of the fractional-
order system and verify the satisfactory performance of
the controller. Comparing with other control methods, for
example, feedback control [32], active control [33], impulsive
control [34], back-stepping control [35], and sliding mode
control [36], the inverse optimal controller has the advantages
of simple structure, high reliability, and less control effort that
is required.

The rest of this paper is organized as follows. In Section 2,
the inverse optimal control methodology and fractional-
order stability theory are introduced. In Section 3, firstly,
a novel pseudo four-wing hyperchaotic system is analyzed.
Then a derivative fractional-order four-wing hyperchaotic
system is implemented by numerical simulations, and the
adaptive inverse optimal control is applied to stabilize an
unstable equilibrium point of the fractional-order four-wing
hyperchaotic system. In Section 4, circuitry implementations
are given for verifying the feasibility. Finally, the conclu-
sion part summarizes the whole development process and
presents some concluding remarks and comments.

2. Preliminaries

The inverse optimality approach of fractional-order four-
wing hyperchaotic system used in this paper requires the
knowledge of control Lyapunov function and fractional-
order stability theory.

2.1. Inverse Optimal Control Approach. Consider the follow-
ing nonlinear system:

�̇� = 𝑓 (𝑥) + 𝑔 (𝑥) 𝑢, (1)

where𝑥 ∈ R𝑛 denotes the state vector and𝑢 ∈ R𝑚 denotes the
control vector, respectively.Moreover,𝑓 : R𝑛 → R𝑛 is vector
function with𝑓(0) = 0 and 𝑔 : R𝑛 → R𝑛×𝑚 is matrix-valued
function.

Definition 1 (see [37]). 𝑉(𝑥) is a smooth, positive definite, and
radially unbounded function. Taking the time derivative of
𝑉(𝑥), one obtains

�̇� (𝑥) =
𝜕𝑉 (𝑥)

𝜕𝑥
(𝑓 (𝑥) + 𝑔 (𝑥) 𝑢) = 𝐿𝑓𝑉 + 𝑢𝐿𝑔𝑉, (2)

where

𝐿𝑓𝑉 =
𝜕𝑉 (𝑥)

𝜕𝑥
𝑓 (𝑥) ,

𝐿𝑔𝑉 =
𝜕𝑉 (𝑥)

𝜕𝑥
𝑔 (𝑥) .

(3)

For all 𝑥 ̸= 0, 𝑉(𝑥) is a control Lyapunov function (CLF) for
system (1), if it satisfies

𝐿𝑔𝑉 = 0 ⇒ 𝐿𝑓𝑉 < 0. (4)

Lemma 2 (see [38]). Suppose that the static state feedback
control law

𝑢 = 𝑘 (𝑥) := 𝑅(𝑥)
−1
(
𝜕𝑉

𝜕𝑥
𝑔 (𝑥))

𝑇

, (5)

where 𝑅 : R𝑛 → R𝑛×𝑚 is a positive definite matrix-valued
function, stabilizes system (1) with respect to a positive definite
radially unbounded Lyapunov function 𝑉(𝑥). Then the control
law

𝑢 := −𝛽𝑘 (𝑥) = −𝛽𝑅
−1
(𝑥) (

𝜕𝑉

𝜕𝑥
𝑔 (𝑥))

𝑇

(6)

is optimal with respect to the cost

𝐽 (𝑢) = ∫

∞

0

(𝑙 (𝑥) + 𝑢
𝑇
𝑅 (𝑥) 𝑢) 𝑑𝑡, (7)

where

𝑙 (𝑥) = − 2𝛽
𝜕𝑉

𝜕𝑥
(𝑓 (𝑥) + 𝑔 (𝑥) 𝑢)

+ 𝛽 (𝛽 − 2)
𝜕𝑉

𝜕𝑥
𝑔 (𝑥) 𝑅

−1
(𝑥) (

𝜕𝑉

𝜕𝑥
𝑔 (𝑥))

𝑇

.

(8)

2.2. The Fractional-Order Stability Theory. In the theory of
fractional calculus,

𝑎
𝐷
𝛼

𝑡
represents an arbitrary order differ-

integral operator. It is a notation for taking both fractional
integrals and derivatives in one single expression and can be
defined as

𝑎
𝐷
𝛼

𝑡
=

{{{{{

{{{{{

{

𝑑
𝛼

𝑑𝑡𝛼
, 𝛼 > 0

1, 𝛼 = 0

∫

𝑡

𝑎

(𝑑𝜏)
−𝛼
, 𝛼 < 0,

(9)

where 𝛼 ∈ R is the order of the operation 𝑎 and 𝑡 are the
bounds of the operation.

There are some different definitions for fractional deriva-
tives [39].Themost frequently used definitions are Riemann-
Liouville definition and Caputo definition.

Riemann-Liouville definition is given as

𝑑
𝛼
𝑓 (𝑡)

𝑑𝑡𝛼
=

1

Γ (𝑛 − 𝛼)

𝑑
𝑛

𝑑𝑡𝑛
∫

𝑡

𝑎

𝑓 (𝜏)

(𝑡 − 𝜏)
𝛼−𝑛+1

𝑑𝜏, (10)

where 𝑛 − 1 < 𝛼 < 𝑛, 𝑛 is an integer number, and Γ(⋅) is the
Gamma function.

If all the initial conditions are zero, the Laplace transform
of Riemann-Liouville functional derivative is given as

𝐿{
𝑑
𝛼
𝑓 (𝑡)

𝑑𝑡𝛼
} = 𝑠
𝛼
𝐿 {𝑓 (𝑡)} . (11)
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Figure 1: The stability region of fractional-order systems.

Another alternative definition of Riemann-Liouville def-
inition of fractional-order derivative was reported by Caputo
as follows:

𝑑
𝛼
𝑓 (𝑡)

𝑑𝑡𝛼
=

1

Γ (𝑛 − 𝛼)
∫

𝑡

0

𝑓
(𝑛)
(𝜏)

(𝑡 − 𝜏)
𝛼−𝑛+1

𝑑𝜏. (12)

Since the Caputo definition is more convenient for initial
conditions problems, in this paper, the operator 𝐷𝛼 denotes
the 𝛼-order Caputo fractional derivative.

Then some stability theorems for fractional-order systems
are introduced.

Consider the following autonomous system:

𝑑𝑥

𝑑𝑡
= 𝐴 (𝑥) 𝑥. (13)

One can get the fractional-order form of system (13) as

𝑑
𝛼
𝑥

𝑑𝑡𝛼
= 𝐴 (𝑥) 𝑥, (14)

where 𝑥(𝑥1, 𝑥2, . . .) ∈ R
𝑛
(𝑛 ∈ 𝑁), 0 < 𝛼 < 1.

Lemma 3 (see [40]). For fractional-order system (14), we have
following.

(i) The system is asymptotically stable if and only if
| arg{𝜆𝑖[𝐴(𝑥)]}| > 𝛼𝜋/2, (𝑖 = 1, 2, . . . , 𝑛), where
arg 𝜆𝑖[𝐴(𝑥)] denotes the argument of the matrix𝐴(𝑥)’s
eigenvalue 𝜆𝑖. In this case, components of the state
decay toward 0 like 𝑡−𝛼.

(ii) The system is stable if and only if either it is asymptot-
ically stable or those critical eigenvalues which satisfy
| arg(𝜆𝑖(𝐴))| = 𝛼𝜋/2 have geometric multiplicity one.

The stability region for 0 < 𝑎 < 1 is illustrated in Figure 1.

Lemma 4 (see [41]). If system (13) is asymptotically stable, in
the range of state variable 𝑥 (except the origin), all the real part
of matrix 𝐴(𝑥)’s eigenvalues 𝜆𝑖 are not more than zero.

Theorem 5. If system (13) is asymptotically stable, fractional-
order system (14) is also asymptotically stable.

Proof. According to Lemma 4, assume that system (13) is
asymptotically stable, one can get that all the real part of the
matrix𝐴(𝑥)’s eigenvalues 𝜆𝑖 are notmore than zero.Then one
can obtain | arg(𝜆)| > 𝜋/2. It satisfies | arg(𝜆)| ≥ 𝑎𝜋/2 for
0 < 𝛼 < 1. According to Lemma 3, fractional-order system
(14) is stable.

3. Adaptive Inverse Optimal
Control of a Novel Fractional-Order
Four-Wing Hyperchaotic System with
Uncertain Parameter

3.1. Analysis of a Novel Pseudo Four-Wing Hyperchaotic
System. We consider a hyperchaotic system described by

𝑑𝑥1

𝑑𝑡
= 𝑎 (−𝑥1 + 𝑥2𝑥3) ,

𝑑𝑥2

𝑑𝑡
= 𝑏𝑥2 − ℎ𝑥1𝑥3 + 𝑐𝑥4,

𝑑𝑥3

𝑑𝑡
= 𝑘𝑥1𝑥2 − 𝑔𝑥3,

𝑑𝑥4

𝑑𝑡
= − (𝑚𝑥2 + 𝑛𝑥3) ,

(15)

where 𝑥1, 𝑥2, 𝑥3, and 𝑥4 are state variables and 𝑎, 𝑏, 𝑐, ℎ, 𝑘, 𝑔,
𝑚, and 𝑛 are positive real constants.

Jacobian matrix is equal to

𝐽 =
[
[
[

[

−𝑎

−ℎ𝑥3
𝑘𝑥2
0

𝑎𝑥3
𝑏

𝑘𝑥1
−𝑚

𝑎𝑥2
−ℎ𝑥1
−𝑔

−𝑛

0

𝑐

0

0

]
]
]

]

. (16)

With parameters 𝑎 = 10, 𝑏 = 2.5, 𝑐 = 1, ℎ = 1, 𝑘 = 4, 𝑔 = 4,
𝑚 = 1, and 𝑛 = 1/8, system (15) has three equilibrium points:
𝑃1(0, 0, 0, 0), 𝑃2(−8, 1, −8, 61.5), and 𝑃3(−8, −1, 8, −61.5).

Then let |𝐽 − 𝜆𝐼| = 0; eigenvalues of matrix 𝐽 for
equilibrium point 𝑃1 are 𝜆

(𝑝
1
)

1
= 0.5, 𝜆(𝑝1)

2
= 2, 𝜆(𝑝1)

3
=

−10, and 𝜆(𝑝1)
4
= −4, where 𝜆(𝑝1)

1
and 𝜆(𝑝1)

2
are positive roots

and 𝜆(𝑝1)
3

and 𝜆(𝑝1)
4

are negative roots. For equilibrium points
𝑃2 and 𝑃3, eigenvalues of matrix 𝐽 are 𝜆(𝑝2,3)

1
= −11.8430,

𝜆
(𝑝
2,3
)

2
= 0.007799, 𝜆(𝑝2,3)

3
= 0.1676 − 29.4284𝑖, and 𝜆(𝑝2,3)

4
=

0.1676 + 29.4284𝑖, where 𝜆(𝑝2,3)
1

is a negative root, 𝜆(𝑝2,3)
2

is
a positive root, and 𝜆(𝑝2,3)

3
and 𝜆(𝑝2,3)

4
are a pair of conjugate

complex roots with positive real part. Therefore, equilibrium
points 𝑃1, 𝑃2, and 𝑃3 are all unstable.

The divergence is given by

∇𝑉 =
𝜕�̇�

𝜕𝑥
+
𝜕 ̇𝑦

𝜕𝑦
+
𝜕�̇�

𝜕𝑧
+
𝜕V̇
𝜕V
= −11.5 < 0. (17)

System (15) is dissipative.
Figure 2 shows Lyapunov exponents versus 𝑏. When 𝑏 =

2.5, Lyapunov exponents are as follows: 𝜆𝐿1 = 0.602, 𝜆𝐿2 =
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Figure 2: Lyapunov exponents versus 𝑏.
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Figure 3: Bifurcation diagram of 𝑥3 versus 𝑏.

0.187, 𝜆𝐿3 = −0.173, 𝜆𝐿4 = −12.166. 𝜆𝐿1, 𝜆𝐿2 > 0, and
𝜆𝐿3, 𝜆𝐿4 < 0, so system (15) is in hyperchaotic state.

Figure 3 is the bifurcation diagram of 𝑥3 versus 𝑏. The
image shows complex and rich dynamical behaviors.

In the process of investigating this hyperchaotic system,
we found this odd: different initial values would gener-
ate different area of attractor. With the aforementioned
set of parameters and the initial values (0.1, 0.4, 0.9, 1),
(0.1, 0.4, −0.9, 1), one can get the strange attractor as shown
in Figure 4, where the upper one is indicated by a solid line
and the lower one is indicated by a dotted line.

To explain this weird phenomenon, detailed mathemati-
cal deduction and simulations will be given.

Firstly, observing the first and third equations in system
(15), one has

𝑑𝑥1

𝑑𝑡
= 𝑎 (−𝑥1 + 𝑥2𝑥3) (18)

𝑑𝑥3

𝑑𝑡
= 𝑘𝑥1𝑥2 − 𝑔𝑥3. (19)

Multiplying (18) with 𝑥1 and (19) with 𝑥3 yields

𝑑𝑥1

𝑑𝑡
𝑥1 = −𝑎𝑥

2

1
+ 𝑎𝑥1𝑥2𝑥3,

𝑑𝑥3

𝑑𝑡
𝑥3 = 𝑘𝑥1𝑥2𝑥3 − 𝑔𝑥

2

3
.

(20)

Equation (20) can be rewritten as

1

𝑎

𝑑𝑥1

𝑑𝑡
𝑥1 = −𝑥

2

1
+ 𝑥1𝑥2𝑥3 (21)

1

𝑘

𝑑𝑥3

𝑑𝑡
𝑥3 = 𝑥1𝑥2𝑥3 −

𝑔

𝑘
𝑥
2

3
. (22)

Subtracting (22) from (21), one obtains

1

𝑘

𝑑𝑥3

𝑑𝑡
𝑥3 −

1

𝑎

𝑑𝑥1

𝑑𝑡
𝑥1 = 𝑥

2

1
−
𝑔

𝑘
𝑥
2

3
. (23)

Equation (23) is equivalent to

𝑑 (𝑎𝑥
2

3
− 𝑘𝑥
2

1
)

𝑑𝑡
= 2 (𝑎𝑘𝑥

2

1
− 𝑎𝑔𝑥

2

3
) . (24)

Equation (24) can be rewritten as

𝑑 [(√𝑎𝑥3)
2
− (√𝑘𝑥1)

2

]

𝑑𝑡
= 2 [𝑎(√𝑘𝑥1)

2

− 𝑔(√𝑎𝑥3)
2
] .

(25)

By assumption, 𝑎 > 𝑔 > 0, let 𝑎 = 𝜇 + 𝑔, where 𝜇 is a
positive real constant and 𝜇 > 0. Equation (25) is equivalent
to

𝑑 [(√𝑎𝑥3)
2
− (√𝑘𝑥1)

2

]

𝑑𝑡

= −2𝑔 [(√𝑎𝑥3)
2
− (√𝑘𝑥1)

2

] + 2𝜇(√𝑎𝑥1)
2
.

(26)

Solving (26) yields

(√𝑎𝑥3(𝑡))
2
− (√𝑘𝑥1(t))

2

= 𝑒
−2𝑔𝑡
[∫

𝑡

0

2𝜇(√𝑎𝑥1(t))
2
𝑒
2𝑔𝜏
𝑑𝜏 + (√𝑎𝑥3(0))

2

− (√𝑘𝑥1(0))
2

] .

(27)

Since 𝑒−2𝑔𝑡 > 0, 2𝜇(√𝑎𝑥1(𝑡))
2
𝑒
2𝑔𝜏

> 0; if the initial
values of system (15) at time satisfy |√𝑎𝑥3(0)| > |√𝑘𝑥1(0)| or
(√𝑎𝑥3(0))

2
> (√𝑘𝑥1(0))

2

, then (26) implies that (√𝑎𝑥3(𝑡))
2
−

(√𝑘𝑥1(𝑡))
2

> 0 for all 𝑡 ≥ 0.
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Figure 4: Chaotic attractor of system (15).

State variable 𝑥3(𝑡) cannot cross the plane 𝑥3 = 0

(Figure 10). The trajectories of system (15) are limited in the
area of |√𝑎𝑥3(𝑡)| > |√𝑘𝑥1(𝑡)|. If the trajectories of system
(15) travel from the upper part to the lower part, there will
be 𝑡1 > 0 at 𝑥3(𝑡1) = 0. That contradicts the fact that
(√𝑎𝑥3(𝑡))

2
> (√𝑘𝑥1(𝑡))

2

for all 𝑡 ≥ 0.
For example, with the aforementioned set of parameters

and 𝑎 > 𝑔 > 0, the initial values are (0.1, 0.4, 0.9, 1) and
(0.1, 0.4, −0.9, 1), respectively, which all belong to the area
of |√𝑎𝑥3(0)| > |√𝑘𝑥1(0)|, and one can find two coexisting
attractors: the upper one with the initial value (0.1, 0.4, 0.9, 1)
and the lower one with the initial value (0.1, 0.4, −0.9, 1), as
shown in Figure 5. The trajectories of the attractor can travel
only within the area |√𝑎𝑥3(𝑡)| > |√𝑘𝑥1(𝑡)| limited by the
dashed line and cannot cross the plane 𝑥3 = 0. That means
that system (15) can only generate pseudo four-wing attractor.

To produce a real four-wing attractor, we introduce a
simple linear state feedback 𝑒𝑥4 to the third equation of
system (15). Then one gets the following system:

𝑑𝑥1

𝑑𝑡
= 𝑎 (−𝑥1 + 𝑥2𝑥3) ,

𝑑𝑥2

𝑑𝑡
= 𝑏𝑥2 − ℎ𝑥1𝑥3 + 𝑐𝑥4,

𝑑𝑥3

𝑑𝑡
= 𝑘𝑥1𝑥2 − 𝑔𝑥3 + 𝑒𝑥4,

𝑑𝑥4

𝑑𝑡
= − (𝑚𝑥2 + 𝑛𝑥3) .

(28)

With the aforementioned set of parameters and 𝑒 = 1, the real
four-wing attractor is shown in Figure 6.
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3.2. Adaptive Inverse Optimal Control of the Fractional-Order
Four-Wing Hyperchaotic System with Uncertain Parameter.
The fractional-order hyperchaotic system with four-wing
attractor can be constructed as the following form:

𝑑
𝛼
𝑥1

𝑑𝑡𝛼
= 𝑎 (−𝑥1 + 𝑥2𝑥3) ,

𝑑
𝛼
𝑥2

𝑑𝑡𝛼
= 𝑏𝑥2 − ℎ𝑥1𝑥3 + 𝑐𝑥4,

𝑑
𝛼
𝑥3

𝑑𝑡𝛼
= 𝑘𝑥1𝑥2 − 𝑔𝑥3 + 𝑒𝑥4,

𝑑
𝛼
𝑥4

𝑑𝑡𝛼
= − (𝑚𝑥2 + 𝑛𝑥3) .

(29)

The predictor-corrector method is used to implement
the fractional-order four-wing hyperchaotic system with the
order 𝛼 = 0.9. The fractional-order four-wing attractor of
system (29) with the aforementioned set of parameters is
shown in Figure 7.

Then the inverse optimal control methodology is devel-
oped to achieve the global asymptotic stabilization of the
fractional-order four-wing hyperchaotic system with uncer-
tain parameter. The closed-loop system with a controller 𝑢 is
described by

𝑑
𝛼
𝑥1

𝑑𝑡𝛼
= 𝑎 (−𝑥1 + 𝑥2𝑥3) ,

𝑑
𝛼
𝑥2

𝑑𝑡𝛼
= 𝑏 (𝑡) 𝑥2 − ℎ𝑥1𝑥3 + 𝑐𝑥4 + 𝑢,

𝑑
𝛼
𝑥3

𝑑𝑡𝛼
= 𝑘𝑥1𝑥2 − 𝑔𝑥3 + 𝑒𝑥4,

𝑑
𝛼
𝑥4

𝑑𝑡𝛼
= − (𝑚𝑥2 + 𝑛𝑥3) .

(30)

With the aforementioned set of parameters, 𝑏(𝑡) is an
time-varying uncertain parameter described by 𝑏(𝑡) = 𝑏 +
Δ𝑏(𝑡), 𝑏 is positive definite, and Δ𝑏(𝑡) is a bounded function
which satisfied |Δ𝑏(𝑡)| ≤ 𝜉.

Theorem 6. The fractional-order hyperchaotic system with
four-wing attractor can achieve global asymptotical stability by
the following linear state feedback control law:

𝑢 = − (𝑏1 + 𝜆) 𝑥2, (31)

where 𝑏1 is the estimate value of the unknown parameter 𝑏 and
𝜆 > 0. The parameter estimation update law �̇�1 is

�̇�1 =
4𝑎𝑥
2

2

ℎ
. (32)

Proof. According to Theorem 5, one considers the integer-
order dynamical system as follows:

𝑑𝑥1

𝑑𝑡
= 𝑎 (−𝑥1 + 𝑥2𝑥3)

𝑑𝑥2

𝑑𝑡
= 𝑏 (𝑡) 𝑥2 − ℎ𝑥1𝑥3 + 𝑐𝑥4 + 𝑢

𝑑𝑥3

𝑑𝑡
= 𝑘𝑥1𝑥2 − 𝑔𝑥3 + 𝑒𝑥4

𝑑𝑥4

𝑑𝑡
= − (𝑚𝑥2 + 𝑛𝑥3) .

(33)

Construct a Lyapunov function for system (33). Consider

𝑉 = 𝑥
2

1
+
2𝑎

ℎ
𝑥
2

2
+
𝑎

𝑘
𝑥
2

3
+ 2𝑎𝑥

2

4
+
1

2
�̃�
2
, (34)

where 𝑎 > 0, 𝑐 > 0, ℎ > 0, 𝑘 > 0, and �̃� = 𝑏 − 𝑏1. Obviously,
𝑉(𝑥) is positive definite.The derivative of𝑉(𝑥) along the time
is

�̇� (𝑥) = 2𝑥1�̇�1 +
4𝑎𝑥2

ℎ
�̇�2 +

2𝑎𝑥3

𝑘
�̇�3 + 4𝑎𝑥4�̇�4 − �̃��̇�1. (35)

Substituting (32) and (33) into (35) yields

�̇� (𝑥) = 2𝑎 (−𝑥1 + 𝑥2𝑥3) 𝑥1

+
4𝑎

ℎ
(𝑏 (𝑡) 𝑥2 − ℎ𝑥1𝑥3 + 𝑐𝑥4 + 𝑢) 𝑥2

+
2𝑎

𝑘
(𝑘𝑥1𝑥2 − 𝑔𝑥3 + 𝑒𝑥4) 𝑥3

− 4𝑎 (𝑚𝑥2 + 𝑛𝑥3) 𝑥4 − (𝑏 − 𝑏1)
4𝑎𝑥
2

2

ℎ
.

(36)

Equation (36) can be rewritten as

�̇� (𝑥) = −2𝑎𝑥
2

1
+
4𝑎 (𝑏1 + Δ𝑏 (𝑡))

ℎ
𝑥
2

2
−
2𝑎𝑔

𝑘
𝑥
2

3
+
4𝑎

ℎ
𝑢𝑥2.

(37)

According to Definition 1, one can obtain

𝐿𝑓𝑉 = −2𝑎𝑥
2

1
+
4𝑎 (𝑏1 + Δ𝑏 (𝑡))

ℎ
𝑥
2

2
−
2𝑎𝑔

𝑘
𝑥
2

3
,

𝐿𝑔𝑉 =
4𝑎

ℎ
𝑥2.

(38)

It is easy to verify that 𝐿𝑓𝑉 < 0 for 𝐿𝑔𝑉 = 0. Then 𝑉(𝑥)
is indeed a control Lyapunov function (CLF).

Define a state feedback controller according to the results
of Lemma 2:

𝑢 = −𝛽𝑅(𝑥)
−1
(𝐿𝑔𝑉) = − (𝑏1 + 𝜆) 𝑥2, (39)

where 𝛽 is a positive constant and 𝑅(𝑥)−1 is a positive definite
function of 𝑥. Consider

𝑅(𝑥)
−1
=
ℎ

4𝑎𝛽
(𝑏1 + 𝜆) . (40)
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Figure 13: Phase portrait of the real four-wing attractor by Pspice.

Substituting (39) into (37) yields

�̇� (𝑥) = −2𝑎𝑥
2

1
−
4𝑎 (𝜆 − Δ𝑏 (𝑡))

ℎ
𝑥
2

2
−
2𝑎𝑔

𝑘
𝑥
2

3
. (41)

According to the definition of Δ𝑏(𝑡), if 𝜆 satisfies 𝜆 ≥
|Δ𝑏(𝑡)| = 𝜉, it can be proved that �̇�(𝑥) is negative definite
for all 𝑥 ̸= 0 easily.

That means the close-loop system can achieve global
asymptotical stabilization with the controller.

Define a cost functional as follows:

𝐽 (𝑢) = lim
𝑡→∞

{2𝛽𝑉 (𝑥) + ∫

𝑡

0

(𝑙 (𝑥) + 𝑢
𝑇
𝑅 (𝑥) 𝑢) 𝑑𝜏} , (42)

where

𝑙 (𝑥) = −𝛽𝐿𝑓𝑉 + 𝛽
2
𝑅(𝑥)
−1
(𝐿𝑔𝑉)

2

. (43)

Substituting (38) into (43) yields

𝑙 (𝑥) = − 𝛽(−2𝑎𝑥
2

1
−
2𝑎𝑔

𝑘
𝑥
2

3
+
4𝑎 (𝑏1 + Δ𝑏 (𝑡))

ℎ
𝑥
2

2
)

+
4𝑎

ℎ
𝛽 (𝑏1 + 𝜆) 𝑥

2

2
.

(44)

Then

𝑙 (𝑥) = 2𝑎𝛽𝑥
2

1
+
2𝑎𝑔𝛽

𝑘
𝑥
2

3
+
4𝑎𝛽

ℎ
(𝜆 − Δ𝑏 (𝑡)) 𝑥

2

2
. (45)

Equation (45) implies that 𝑙(𝑥) is positive definite for all
𝑥 ̸= 0. When 𝑥 approaches infinity, 𝑙(𝑥) also approaches
infinity. So function 𝑙(𝑥) is radially unbounded.

Substituting (39) into (2) yields

�̇� (𝑥) = 𝐿𝑓𝑉 − 𝛽𝑅
−1
(𝑥) (𝐿𝑔𝑉)

2

. (46)



12 Mathematical Problems in Engineering

Time (s)
190 192 194 196 198 200 202 204 206 208 210

0

2.0

4.0

6.0

8.0
x
1

(V
)

−2.0

−4.0

−6.0

V(U12 : X1)

(a) 𝑥1 state

Time (s)
190 192 194 196 198 200 202 204 206 208 210

x
2

(V
) 0.0

1.0

2.0

3.0

−1.0

−2.0

−3.0

−4.0

V(U13 : Y1)

(b) 𝑥2 state

Time (s)
190 192 194 196 198 200 202 204 206 208 210

x
3

(V
)

0

2.0

4.0

6.0

−2.0

−4.0

−6.0

V(U13 : X1)

(c) 𝑥3 state

Time (s)
190 192 194 196 198 200 202 204 206 208 210

0.0

1.0

2.0

3.0

x
4

(V
)

−1.0

−2.0

−3.0

V(C16 : 2)

(d) 𝑥4 state

Figure 14: Time waveform of the state variables of the controlled fractional-order system with the controller started at 𝑡 = 200 s by Pspice.

Multiplying both sides of (46) with −𝛽, one obtains

−𝛽�̇� (𝑥) = −𝛽𝐿𝑓𝑉 + 𝛽
2
𝑅(𝑥)
−1
(𝐿𝑔𝑉)

2

. (47)

Substituting (43) into (47) yields

−𝛽�̇� (𝑥) = 𝑙 (𝑥) . (48)

According to (39), one obtains

𝑢
𝑇
𝑅 (𝑥) 𝑢 = 𝛽

2
𝑅(𝑥)
−1
(𝐿𝑔𝑉)

2

. (49)

Then

𝑙 (𝑥) + 𝑢
𝑇
𝑅 (𝑥) 𝑢 = −𝛽�̇� (𝑥) + 𝛽

2
𝑅(𝑥)
−1
(𝐿𝑔𝑉)

2

. (50)

Substituting (50) into (42) yields

𝐽 (𝑢) = lim
𝑡→∞

{2𝛽𝑉 (𝑥)

+ ∫

𝑡

0

(−𝛽�̇� (𝑥) + 𝛽
2
𝑅(𝑥)
−1
(𝐿𝑔𝑉)

2

) 𝑑𝜏} .

(51)

In accordance with the optimal control law, theminimum
of the cost function is

𝐽(𝑢)min = 2𝛽𝑉 (𝑥 (0)) . (52)
Now, the linear state feedback control law (31) has been

proved to be the optimal control law. Then integer-order
system (33) is stable at zero equilibrium point with the
controller 𝑢. According to Theorem 5, one can obtain that
fractional-order four-wing hyperchaotic system (29) is also
stable at the zero equilibrium point because all the real parts
of matrix 𝐴(𝑥)’s eigenvalues are not more than zero.

The blocks diagram for adaptive inverse optimal control
of the fractional-order four-wing hyperchaotic system is
shown in Figure 8.

The perturbation of parameter 𝑏(𝑡) is given by 𝑏(𝑡) =
2.5+sin(7𝑡).The state trajectories of the controlled fractional-
order hyperchaotic system are displayed in Figure 9.

When 𝑡 = 200 s, the controller begins to work. States
converge to zero with the parameter perturbation which
indicates the former uncertainty. The fractional-order four-
wing hyperchaotic system is indeed globally asymptotically
stabilized by the adaptive inverse optimal controller.
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Figure 15: Phase portrait of the real four-wing attractor by circuitry implementation.

4. Circuit Experimental Researches

In this part, an electronic oscillation circuit is designed to
stabilize the equilibrium of the fractional-order four-wing
hyperchaotic system based on inverse optimal control law.

As shown in Figure 11, the electronic oscillation cir-
cuit has two parts: one is the fractional-order four-wing
hyperchaotic circuit and the other is an adaptive inverse
optimal controller.The circuit consists of resistors, capacitors,
operational amplifiers (AD741), andmultipliers (AD633).The
circuit parameters are as follows: 𝑅1 = 𝑅3 = 𝑅9 = 𝑅14 =
100 kΩ, 𝑅2 = 𝑅4 = 𝑅8 = 10 kΩ, 𝑅5 = 𝑅6 = 𝑅12 = 1 kΩ,
𝑅13 = 𝑅18 = 𝑅19 = 1 kΩ, 𝑅7 = 𝑅16 = 40 kΩ, 𝑅10 = 𝑅11 =
𝑅15 = 10 kΩ, 𝑅17 = 𝑅20 = 𝑅22 = 10 kΩ, 𝑅21 = 2.5 kΩ,
𝑅23 = 80 kΩ, 𝑅24 = 400 kΩ, 𝑅25 = 𝑅27 = 𝑅29 = 10 kΩ,
𝑅26 = 400 kΩ, 𝑅28 = 2 kΩ, 𝑅30 = 20 kΩ, 𝑅31 = 100 kΩ, and
𝑅32 = 10 kΩ 𝐶5 = 1 𝜇F. State variables 𝑥1, 𝑥2, 𝑥3, and 𝑥4
are obtained from voltage outputs of fractional calculus unit,
respectively. State feedback 𝑒𝑥4 is 𝑅24 in a dotted line zone,
which is the key of the four-wing system.The perturbation of
parameter 𝑏 is generated by sine generator and multiplier.

To implement the electronic circuit of the fractional-
order system, the frequency domain approximation method
is adopted. In [42], an effective algorithm is developed to
approximate fractional-order transfer functions. FromTable 1
in [14], one can obtain an approximation of 1/𝑠0.9 with an
error of about 2 dB as follows:

𝐹 (𝑠) =
2.2675 (𝑠 + 1.292) (𝑠 + 215.4)

(𝑠 + 0.01292) (𝑠 + 2.154) (𝑠 + 359.4)
. (53)

The fractional calculus unit is shown in Figure 12, which
is the chain fractance.

One can get the transfer function between A and B.
Consider

𝐺 (𝑠) =
𝑅𝑎

1 + 𝑅𝑎𝐶𝑎𝑠
+

𝑅𝑏

1 + 𝑅𝑏𝐶𝑏𝑠
+

𝑅𝑐

1 + 𝑅𝑐𝐶𝑐𝑠
. (54)

Using themethod of undetermined coefficients and com-
paring (53) with (54), parameters of the fractional calculus
unit are 𝑅𝑎 = 62.84MΩ, 𝑅𝑏 = 250 kΩ, 𝑅𝑐 = 2.5 kΩ, 𝐶𝑎 =
1.232 𝜇F, 𝐶𝑏 = 1.835 𝜇F, and 𝐶𝑐 = 1.1 𝜇F [43].
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Figure 16: Time waveform of state variables of the controlled
fractional-order system by circuitry implementation.

By circuit simulation, the real four-wing attractor without
the controller is shown in Figure 13.

When 𝑡 = 200 s, the controller starts to work. As shown in
Figure 14, state variables are closer to zero. In other words, the
fractional-order four-wing hyperchaotic system is stabilized
to its unstable equilibrium point.

Then an electronic oscillation circuit is constructed to
implement the fractional-order four-wing attractor and the
adaptive inverse optimal controller.

As shown in Figure 15, because the output of the circuit
is limited precisely for using low-cost components, the
experimental phase portraits of the fractional-order four-
wing attractor are approximately in agreement with circuitry
simulations.

The waveforms of state variables in time domain are
shown in Figure 16. When the controller is added to the
circuit, the waveforms are close to zero. It verifies the
satisfactory performance of the proposed control law and
proves the robustness of the system to some extent.

5. Conclusions

In this paper, combining the adaptive inverse optimal control
with the stability theory of fractional-order system, a linear
state feedback controller is designed to make the fractional-
order four-wing hyperchaotic system with uncertain param-
eter stable in the unstable equilibrium point. Through circuit
simulations and circuit implementations, the method turned
out to be workable. It is remarkably simple as comparing
with other fractional chaos control methods which may
have more than one nonlinear state feedback controller. This
research has a certain theoretical and practical significance
for the application of the adaptive inverse optimal control in
nonlinear circuits, security communication, and many other
engineering applications.
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