Appendix A: Mathematical programming model for capacity planning problem under demand certainty

1. Indices
$c=$ customer $(c=1,2, \ldots, C)$.
$i=$ product type $(i=1,2, \ldots, I)$.
$l=$ production line $(l=1,2, \ldots, L)$.
$s=$ production stage $(s=1,2, \ldots, S)$.
$j=$ resource configuration $(j=1,2, \ldots, J)$.
$m=$ material type $(m=1,2, \ldots, M)$.
$k=$ machine type $(k=1,2, \ldots, K)$.
$n=$ tool type $(n=1,2, \ldots, N)$.
$t=$ time period $(t=1,2, \ldots, T)$.
2. Parameters
$d e_{i c t}=$ the demand quantity of customer c for product i in time t.
$p r_{i c t}=$ sales price of customer c for product i in time t.
$k l_{l s k}=$ initial amount of machine k in line l at stage s.
$k u_{l s}=$ maximum number of machines in line l at stage s.
$k s_{i j s k}=$ required work hours of machine k used at stage s for manufacturing a unit of product i with resource configuration j.
$k a_{\text {sk }}=$ available work hours of machine k at stage s.
$k b_{l \text { l's }}=$ machine migration capability from line l to l ' at stage s.
$n l_{l s n}=$ initial amount of tool n in line l at stage s.
$n u_{l s}=$ maximum number of tools in line l at stage s.
$n s_{i j s}=$ required work hours of tool n used at stage s for manufacturing a unit of product i with resource
configuration j.
$n a_{s n}=$ available work hours of tool n at stage s.
$n b_{l l \prime}=$ tool migration capability from line l to l ' at stage s.
$m q_{s m t}=$ total available quantity of material m at stage s in time t.
$m s_{i j s m}=$ consumption ratio of material m for manufacturing a unit of product i at stage s with resource configuration j.
$t f_{i j s}=$ production capability of product i at stage s with resource configuration j.
$t b_{l l^{\prime}(s+1)}=$ transportation capability from line l at stage s to line l^{\prime} at stage $s+1$.
$v c_{i l j s}=$ production cost for manufacturing a unit of product i in line l at stage s with resource configuration j.
$k c_{s}=$ machine migration cost at stage s.
$n c_{s}=$ tool migration cost at stage s.
3. Decision variables
$K Q_{\text {lskt }}=$ the number of machine k for line l at stage s in time t.
$K M_{l l^{\prime} s k t}=$ the migration number of machine k from line l to line l^{\prime} at stage s in time t.
$N Q_{\text {lsnt }}=$ the number of tool n for line l at stage s in time t.
$N M_{l \prime \prime \text { 'snt }}=$ the migration number of tool n from line l to line l ' at stage s in time t.
$X Q_{i l j s t}=$ production amounts of product i with resource configuration j for line l at stage s in time t.
$R Q_{i l j s l^{\prime} j^{\prime}(s+1) t}=$ transportation amounts of product i from line l with resource configuration j at stage s to line l^{\prime} with resource configuration j ' at stage ($s+1$) in time t.
$S Q_{i c t}=$ sales amounts of product i for customer c in time t.
$S L_{c}=$ service level for customer c.
4. Objective Function

Maximize

$\sum_{i} \sum_{c} \sum_{t}\left(p r_{i c t} \times S Q_{i c t}\right)-\sum_{i} \sum_{l} \sum_{j} \sum_{s} \sum_{t}\left(v c_{i j s} \times X Q_{i j j t}\right)$
$-\sum_{l} \sum_{l^{\prime}} \sum_{s} \sum_{k} \sum_{t}\left(k c_{s} \times K M_{l I^{\prime} s k t}\right)-\sum_{l} \sum_{l^{\prime}} \sum_{s} \sum_{n} \sum_{t}\left(n c_{s} \times N M_{l l^{\prime} s n t}\right)$
It aims to obtain the optimal capacity planning decision to seek the maximization of net profit.
5. Constraints

- Machine migration balance constraints

$$
\begin{gather*}
K Q_{l s k 0}=k l_{l s k} \quad \forall l, s, k \tag{2}\\
K Q_{l s k t}=K Q_{l s k(t-1)}-\sum_{l^{\prime}} K M_{l l^{\prime} s k t}+\sum_{l^{\prime}} K M_{l^{\prime} s k t} \quad \forall l, s, k, t \tag{3}\\
K Q_{l s k t} \leq k u_{l s} \quad \forall l, s, k, t \tag{4}\\
K M_{l l^{\prime} s k t} \leq M \times k b_{l l^{\prime} s} \quad \forall l, l^{\prime}, s, k, t \tag{5}
\end{gather*}
$$

- Tool migration balance constraints

$$
\begin{gather*}
N Q_{l s n 0}=n l_{l s n} \quad \forall l, s, n \tag{6}\\
N Q_{l s n t}=N Q_{l s n(t-1)}-\sum_{l^{\prime}} N M_{l l^{\prime} s n t}+\sum_{l^{\prime}} N M_{l^{\prime} s n t t} \quad \forall l, s, n, t . \tag{7}\\
N Q_{l s n t} \leq n u_{l s} \quad \forall l, s, n, t \tag{8}\\
N M_{l l^{\prime} s n t} \leq M \times n b_{l l^{\prime} s} \quad \forall l, l^{\prime}, s, n, t \tag{9}
\end{gather*}
$$

- Production and transportation balance constraints

$$
\begin{gather*}
X Q_{i l j s t}=\sum_{l^{\prime}} \sum_{j^{\prime}} R Q_{i l j s l^{\prime}(s+1) t} \quad \forall i, l, j, s=1, \ldots S-1, t . \tag{10}\\
\sum_{l^{\prime}} \sum_{j^{\prime}} R Q_{i l j^{\prime}(s-1) \mid j s t}=X Q_{i l j s t} \quad \forall i, l, j, s=2, \ldots S, t \tag{11}
\end{gather*}
$$

- Capacity constraints

$$
\begin{align*}
& \sum_{i} \sum_{j}\left(X Q_{i j s t} \times k s_{i j k}\right) \leq K Q_{l s k t} \times k a_{s k} \quad \forall l, s, k, t \tag{12}\\
& \sum_{i} \sum_{j}\left(X Q_{i j j s t} \times n s_{i j s n}\right) \leq N Q_{l s n t} \times n a_{s n} \quad \forall l, s, n, t \tag{13}
\end{align*}
$$

- Material constraint

$$
\begin{equation*}
\sum_{i} \sum_{l} \sum_{j}\left(X Q_{i l j s t} \times m s_{i j s m}\right) \leq m q_{s m t} \quad \forall s, m, t \tag{14}
\end{equation*}
$$

- Production capability constraint

$$
\begin{equation*}
X Q_{i l j s t} \leq M \times t f_{i j s} \quad \forall i, l, j, s, t \tag{15}
\end{equation*}
$$

- Transportation capability constraint

$$
\begin{equation*}
R Q_{i l j s l^{\prime} j^{\prime}(s+1) t} \leq M \times t b_{l s l^{\prime}(s+1)} \quad \forall i, l, j, s, l^{\prime}, j^{\prime}, t \tag{16}
\end{equation*}
$$

- Demand fulfillment constraints

$$
\begin{gather*}
\sum_{l} \sum_{j} X Q_{i l j s t}=S Q_{i c t} \quad \forall i, s=S, c, t \tag{17}\\
S Q_{i c t} \leq d e_{i c t} \quad \forall i, c, t \tag{18}
\end{gather*}
$$

- Service level

$$
\begin{equation*}
S L_{c}=\left[\frac{\sum_{i} S Q_{i c t}}{\sum_{i} d e_{i c t}}\right] \forall c, t \tag{19}
\end{equation*}
$$

- Domain restriction for decision variables

$$
\begin{gather*}
K Q_{l s k t}, K M_{l l ' s k t}, N Q_{l s n t}, N M_{l l^{\prime} n t} \in \text { integer } \quad \forall l, s, k, n, t . \tag{20}\\
X Q_{i l j s t}, R Q_{i l j s l^{\prime} j^{\prime}(s+1) t}, S Q_{i c t}, S L_{c} \geq 0 \quad \forall i, l, l^{\prime}, j, j^{\prime}, s, t, c \tag{21}
\end{gather*}
$$

Appendix B: Input information

Table B.1~Table B. 22 show the related information for the large-scale semiconductor packaging and testing factory case required in this paper.

Table B. 1 Index information

Customer		c1	c2	c3					
Product		i1	i2	i3	i4	i5	i6	i7	i8
Line		$\ell 1$	$\ell 2$						
Stage		DB	WB	MD					
Scenario		r1	r2	r3					
Material		m1	m2	m3	m4				
Machine		k1	k2	k3					
Tool		n1	n2	n3	n4				
Period		1	2	3	4				
Configuration	DB	j1	j2	j3					
	WB	j1	j2	j3					
	MD	j1	j2	j3	j4	j5	j6	j7	

Table B. 2 Resource configuration

DB(s1)	$\mathrm{j}_{1}=\mathrm{k}_{1}$	$\mathrm{j}_{2}=\mathrm{k}_{2}$	$\mathrm{j}_{3}=\mathrm{k}_{3}$				
WB(s2)	$\mathrm{j}_{1}=\mathrm{k}_{1}$	$\mathrm{j}_{2}=\mathrm{k}_{2}$	$\mathrm{j}_{3}=\mathrm{k}_{3}$				
MD(s3)	$\mathrm{j}_{1}=\mathrm{k}_{1}+\mathrm{n}_{1}+\mathrm{m}_{4}$	$\mathrm{j}_{2}=\mathrm{k}_{1}+\mathrm{n}_{2}+\mathrm{m}_{1}$	$\mathrm{j}_{3}=\mathrm{k}_{1}+\mathrm{n}_{3}+\mathrm{m}_{2}$	$\mathrm{j}_{4}=\mathrm{k}_{2}+\mathrm{n}_{3}+\mathrm{m}_{4}$	$\mathrm{j}_{5}=\mathrm{k}_{2}+\mathrm{n}_{4}+\mathrm{m}_{4}$	$\mathrm{j}_{6}=\mathrm{k}_{3}+\mathrm{n}_{1}+\mathrm{m}_{4}$	$\mathrm{j}_{7}=\mathrm{k}_{3}+\mathrm{n}_{4}+\mathrm{m}_{2}$

1. Demand-related parameters

Table B. 3 shows customer demands for all products under each scenario. This case covers four time periods. Table B. 4 shows sales prices of products. Table B. 5 shows the occurring probability of all scenarios.

Table B. 3 Customer demands for all products under each scenario Period (month)

Scenario	Customer	Product	Period (month)			
			1	2	3	4
r1		i1	45,955	80,375	22,548	37,665
	c1	i2	137,865	40,187	72,153	0
		i3	137,865	40,187	0	75,331
		i4	91,910	60,281	54,115	0
	c2	i5	22,977	120,562	45,096	15,066

		i6	110,292	58,606	4,509	41,432
	c3	i7	53,614	24,112	54,115	33,899
	c1	i8	225,946	21,768	0	11,299
	i1	i2	48,000	96,000	30,000	60,000
		i3	144,000	48,000	96,000	0
	c2	i4	144,000	48,000	0	120,000
	c3	i5	96,000	72,000	72,000	0

Table B. 4 Sales prices of products

| Products | i1 | i2 | i3 | i4 | i5 | i6 | i7 | i8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sales prices | 20 | 30 | 20 | 25 | 100 | 50 | 60 | 70 |

Table B. 5 Occurring probability of all scenarios

Scenarios	Probability
r1	$1 / 3$
r2	$1 / 3$
r3	$1 / 3$

2. Machine-related parameters

There is an initial machine allocation in each line at each stage, as shown in Table B.6; Table B. 7 indicates that there is the upper limit of machine allocation in each line at each stage; Required work hours of machines for manufacturing a unit of product is presented in Table B.8; Production capacity of each machine (machine hour) at each production stage is shown in Table B.9. Machine migration capability between different lines at each stage is shown in Table B.10, which is a binary parameter. Below, 1 means that they can be moved between lines; 0 means that they cannot be moved.

Table B. 6 Initial machine allocation in each line at each stage

Lines	Types of machine			
		k 1	k 2	k 3
$\ell 1$		10	15	0
	WB	5	6	0
$\ell 2$	MD	10	10	0
	DB	0	5	6
	WB	0	10	9
		0	8	6

Table B. 7 Upper limit of machine allocation in each line at each stage
Production stage

Production line	DB	WB	MD
$\ell 1$	17	7	11
$\ell 2$	8	12	10

Table B. 8 Work hours of machines for producing a unit of product at all stages under all kinds of configurations

Product	Resource configuration	Production stage (s)	Type of machine	$k s_{i j s k}$	Product	Resource configuration	Production stage (s)	Type of machine	$k s_{i j s k}$
i1	j1	DB	k1	10	i5	j1	MD	k1	20
i1	j1	WB	k1	30	i5	j3	DB	k3	12
i1	j1	MD	k1	10	i5	j3	WB	k3	30
i1	j2	DB	k2	8	i5	j7	MD	k3	10
i1	j2	MD	k1	5	i6	j2	WB	k2	25
i2	j1	WB	k1	35	i6	j3	DB	k3	7
i2	j2	DB	k2	11	i6	j3	WB	k3	20

i2	j2	WB	k2	25	i6	j4	MD	k2	25
i2	j2	MD	k1	15	i6	j7	MD	k3	15
i2	j3	DB	k3	7	i7	j2	DB	k2	12
i2	j3	MD	k1	10	i7	j3	WB	k3	35
i3	j1	DB	k1	12	i7	j6	MD	k3	33
i3	j1	MD	k1	12	i8	j1	DB	k1	15
i3	j2	WB	k2	40	18	j1	WB	k1	40
i4	j2	DB	k2	9	i8	j2	WB	k2	30
i4	j3	WB	k3	20	i8	j3	DB	k3	10
i4	j3	MD	k1	10	18	j3	MD	k3	40
i5	j1	DB	k1	15	18	j5	MD	k2	25
i5	j1	WB	k1	40					

Table B. 9 Production capacity of each machine (machine hour) at each production stage

Production stage	Type of machine		
	k 1	k 2	k 3
	$4,320,000$	$2,160,000$	$4,320,000$
WB	$8,640,000$	$6,912,000$	$7,776,000$
MD	$2,592,000$	$3,888,000$	$2,592,000$

Table B. 10 Machine migration capability between different lines at each stage

Lines	Move to line	Production stages		
		DB	WB	MD
$\ell 1$		0	1	1
$\ell 2$	$\ell 1$	0	1	1

3. Tool-related parameters

The MD stage has an initial tool allocation in each line, as shown in Table B.11; Table B. 12 indicates that there is the upper limit of tool allocation in each line; Required work hours of tools for manufacturing a unit of product under all kinds of configurations is presented in Table B.13. Production capacity of each tool (tool hour) is shown in

Table B.14. Tool migration capability between different lines is shown in Table B.15, which is a binary parameter. Below, 1 means that they can be moved between lines; 0 means that they cannot be moved.

Table B. 11 Initial tool allocation in each line at MD stage

Table B.11 Initial tool allocation in each line at MD stage						
Lines	Production stage	Type of tool				
		n 1	n 2	n 3	n 4	
$\ell 1$	MD	0	30	0	30	
$\ell 2$	MD	30	0	20	0	

Table B. 12 Upper limit of tool allocation in each line at MD stage

Lines	Upper limit of tool allocation
$\ell 1$	70
$\ell 2$	80

Table B. 13 Work hours of tools for producing a unit of product at MD stage under all kinds of configurations

Product (i)	Resource configuration (j)	Production stages (s)	Type of tool (n)	$n s_{i j s n}$
i1	j1	MD	n1	10
i1	j2	MD	n2	5
i2	j2	MD	n2	15
i2	j3	MD	n3	10
i3	j1	MD	n1	12
i4	j3	MD	n3	10
i5	j1	MD	n1	20
i5	j7	MD	n4	10
i6	j4	MD	n3	25
i6	j7	MD	n4	15
i7	j6	MD	n1	20
i8	j3	MD	n3	40
i8	j5	MD	n4	25

Table B. 14 Production capacity of each tool (tool hour) at MD stage

Production stage	n 1	n 2	n 3	n 4
MD	$12,960,000$	$12,960,000$	$8,640,000$	$12,960,000$

Table B. 15 Tool migration capability between different lines at MD stage

Lines	Move to line	Production stages
		MD
$\ell 1$	$\ell 2$	1
$\ell 2$	$\ell 1$	1

4. Material related parameters

Table B. 16 shows the material available amount at all production stages. Table B. 17 indicates material consumption ratio for manufacturing a unit of product at production stages under resource configurations.

Table B. 16 Material available amount at MD stage

Table B.16 Material available amount at MD stage						
Production stage	Category of material	Period (month)				

Table B. 17 Material consumption ratio for manufacturing a unit of product

Product (i)	Resource configuration (j)	Production stage (s)	Category of material (m)	$m s_{i j s m}$
i1	j1	MD	m4	1
i1	j2	MD	m1	1
i2	j2	MD	m1	1
i2	j3	MD	m2	1
i3	j1	MD	m4	1
i4	j3	MD	m2	1
i5	j7	MD	m2	1
i6	j4	MD	m3	1
i6	j7	MD	m2	1

$i 7$	$j 6$	$M D$	$m 3$	1
i8	j3	MD	$m 2$	1
i8	j5	MD	$m 4$	1

5. Production capability related parameters

Production capability for each product at production stages with resource configurations is shown in Table B. 18 .

Table B. 18 Production capability for each product at production stages with resource configurations

Product	Resource configuration	Production stage			Product	Resource configuration	Production stage		
		DB	WB	MD			DB	WB	MD
i1	j1	1	1	1		j1	1	1	1
	j2	1	0	1		j2	0	0	0
	j3	0	0	0		j3	1	1	0
	j4			0	i5	j4			0
	j5			0		j5			0
	j6			0		j6			0
	j7			0		j7			1
i2	j1	0	1	0		j1	0	0	0
	j2	1	1	1		j2	0	1	0
	j3	1	0	1		j3	1	1	0
	j4			0	i6	j4			1
	j5			0		j5			0
	j6			0		j6			0
	j7			0		j7			1
i3	j1	1	0	1		j1	0	0	0
	j2	0	1	0	i7	j2	1	0	0
	j3	0	0	0		j3	0	1	0

	j4			0		j4			0
	j5			0		j5			0
	j6			0		j6			1
	j7			0		j7			0
	j1	0	0	0		j1	1	1	0
	j2	1	0	0		j2	0	1	0
	j3	0	1	1		j3	1	0	1
14	j4			0	i8	j4			0
	j5			0		j5			1
	j6			0		j6			0
	j7			0		j7			0

6. Transportation-related parameters

Transportation capability between production stages is shown in Table B.19, which is a binary parameter. Below, 1 means transportation operation is available; 0 means transportation operation is unavailable.

Table B. 19 Transportation capability between production stages

Line	Pre-production stage	Post-production stage			
		Line $\ell 1$		Line $\ell 2$	
		WB'	MD'	WB'	MD'
$\ell 1$	DB	1	0	0	0
	WB	0	1	0	0
$\ell 2$	DB	0	0	1	0
	WB	0	0	0	1

7. Costs-related parameters

Variable cost for manufacturing a unit of product in lines at production stages with resource configurations is shown in Table B.20. Migration cost for moving machines and tools between lines at each production stage is presented in Table B. 21 and Table B. 22 .

Table B. 20 Variable cost for manufacturing a unit of product in lines at production stages with resource configurations

configurations									
Product (i)	Line ($\ell)$	Resource configuration (j)	Production stage (s)	$v c_{i l j s}$	Product (i)	Line (ℓ	Resource configuration (j)	Production stage (s)	$V C_{i l j}$

i1	$\ell 1$	j1	MD	3	i5	$\ell 1$	j7	MD	6
i1	$\ell 1$	j2	MD	2	i5	$\ell 2$	j1	MD	8
i1	$\ell 2$	j1	MD	4	i5	$\ell 2$	j7	MD	6
i1	$\ell 2$	j2	MD	2	i6	$\ell 1$	j4	MD	10
i2	$\ell 1$	j2	MD	5	i6	$\ell 1$	j7	MD	8
i2	$\ell 1$	j3	MD	4	i6	$\ell 2$	j4	MD	9
i2	$\ell 2$	j2	MD	7	i6	$\ell 2$	j7	MD	9
i2	$\ell 2$	j3	MD	4	i7	$\ell 2$	j6	MD	9
i3	$\ell 1$	j1	MD	6	i8	$\ell 1$	j3	MD	12
i3	$\ell 2$	j1	MD	6	i8	$\ell 1$	j5	MD	11
i4	$\ell 1$	j3	MD	5	i8	$\ell 2$	j3	MD	12
i4	$\ell 2$	j3	MD	4	i8	$\ell 2$	j5	MD	13
i5	$\ell 1$	j1	MD	8					

Table B. 21 Machine migration costs at each production stages

Stages	Machine migration costs
DB	1,000
WB	500
MD	3,000

Table B. 22 Tool migration costs at MD production stage

Stages	Tool migration costs
MD	1,000

