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In complex networks, the size of the giant component formed by unfailed nodes is critically important for estimating the robustness
of networks against cascading failures. In order to explore the critical moment of cascading failures break-out, we provide a cascade
of overload failure model with local load sharing mechanism and then deduce the threshold of node capacity when the large-scale
cascading failures happen and unfailed nodes in steady state cannot connect to each other to form a large connected subnetwork.
We get the theoretical derivation of this threshold in degree-degree uncorrelated networks and validate the effectiveness of this
method in simulation. This threshold provides us with a guidance to improve the network robustness under the premise of limited
capacity resource when creating a network and assigning load. Therefore, this threshold is useful and important to analyze the
robustness of networks. We believe that our research provides us with a guidance to improve the network robustness under the

premise of limited capacity resource.

1. Introduction

Cascading failures are a sort of phenomena in which a
random failure or intentional attack on one or a few nodes
leads to serve chain reaction in the networks, which can cause
collapse of a large fraction of nodes in the network. It is
widely found in many real-world networks, such as power
transmission [1, 2], communication [3], economic [4], and
biological [5] networks. A real example of cascading failures
is the well-known Northeast Blackout in 2003 [6]. In this case,
the outage of a generator led to a serve chain reaction of power
blackout, which affected approximately 50 million people in
North America and caused financial losses of about $6 billion.

In order to understand the essential mechanism of cas-
cading failures, a number of cascading models have been
proposed, such as betweenness-based model [7-10], sand-
pile model [11, 12], and fiber-bundle model [13, 14]. In these
models, a node fails when its load exceeds its capacity. The

failure of this node leads to the redistribution of load in net-
work and can cause collapse of a large fraction of the network.
Therefore, the cascading failure process of these models is
highly dependent on the relation between load and capacity.

When the dynamical process of cascading failures ter-
minates in steady state, the network breaks into several
connected subnetworks formed by unfailed nodes. The size of
the largest connected subnetwork (i.e., the giant component)
can be used to measure the severity of cascading failures,
which is critically important for estimating the robustness
of networks [15, 16]. It is intuitive that when the capacity
increases (or the load decreases), the size of cascading failures
in network reduces, which is confirmed by all of those
cascading failure models above. In fiber-bundle and sand-pile
model, with the capacity under a critical value (or load above
a critical value), the giant component disappears, or above
this critical value the size of the giant component dramatically
rises up [13, 17].



This critical value is a very important feature to measure
the robustness of networks. However, to our knowledge,
there is little research on quantitative analysis of the relation
between node capacity and this threshold for the break-out
of cascading failures at present.

In this paper, we provide a cascade of overload failure
model with local load sharing mechanism and then explore
the threshold of node capacity when the large-scale cascading
failures happen and there does not exist a large connected
subnetwork formed by unfailed nodes.

2. Model

Here we provide a cascade of overload failure model with
local load sharing mechanism. In this model, the statuses
of nodes are divided into two categories: the unfailed and
failed. We assume that all nodes in networks are unfailed at
the beginning. A node fails if its load exceeds its capacity
(i.e., overload). When a node fails to work, this node is
considered as transferring a fixed positive load A to each of
its unfailed neighbors and being separated from the giant
component [18-20]. When the cascading failures terminate,
only those nodes in the giant component are supposed to
work. It is natural to assume that the capacity C, of a node
v is proportional to its initial load L, [21, 22] as

C,=(+a)L,, @

where the constant « is the tolerance parameter. The initial
load of each node is randomly distributed following a uni-
form distribution on the interval [L ;., L ... ]. For simplicity,
we set the lower bound of initial load L ;, = 0 and the lower
bound of initial load L,,, = 1 [18, 19]. Then, for arbitrary
node v, the cumulative distribution function ¢(I) of L, is
defined as

0 I<0
P{L,<l}29p()=41 o<lI<1 (2)
1 I>1.

The numerical process of cascading failures with local
load sharing mechanism is summarized as follows.

(1) Initialization. Generate a degree-degree uncorrelated net-
work with N nodes. Assume all nodes are unfailed. The load
of each node is uniformly distributed in [L,;,, L. ], where
welet L, = Oand L = 1. The capacities of nodes are
determined by (1).

max

(2) Beginning. Choose very few nodes randomly in the
network, and set them as failed.

(3) Load Redistribution. In each round, each node which is
failed in the last round transfers a fixed positive load A to each
of its unfailed neighbors. An unfailed node turns out to be
failed if it overloads in this round.

(4) Halt. Repeat step (3) if there exist overloaded nodes in
the network; otherwise, the process halts. Finally, only the
unfailed nodes in the giant component are supposed to work.
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3. Analysis

3.1. Description of Critical Conditions. When the cascading
failure process ends, the unfailed nodes in the network form
several connected subnetworks. The fraction of giant compo-
nent, which is the relative size of the largest connected subnet-
work, can be used as a measure of the network performance
against cascading failures. Figure 1 shows the fraction G of the
giant component as a function of tolerance parameter « in
Erd6s-Rényi (ER) random networks [23] and Barabasi-Albert
(BA) scale-free networks [24]. For each G with different
average degree (k), there exists a critical tolerance parameter
«,, with o under which the giant component disappears and
over which G increases dramatically and approaches 1 finally.
When « < «,, G approximately equals 0, which indicates that
large-scale cascading failures occur and network breaks into
extremely small clusters. There are two conditions to ensure
that G approximately equals 0 when o < «:

(I) Large-scale cascading failures occur in the network;
that is, the failed nodes connect to each other to form
a large connected subnetwork.

(II) When the dynamical process of cascading failures
terminates in steady state, there does not exist a large
connected subnetwork formed by unfailed nodes.

In the rest of this section, we give a theoretical derivation
of ar, with these two conditions above.

3.2. Large-Scale Cascading Failures Occur in the Network.
First, let us consider condition (I) that large-scale cascading
failures occur in the network. This condition equals the
situation that the failed nodes connect to each other to form a
large connected subnetwork. On average, each node fails and
causes more than one of its neighbors to fail when large-scale
cascading failures happen. Consider a node v of degree k, and
any of its neighbors w. The probability that node v fails and
causes node w to fail is

P{Lw+A>(1+a)Lw}:P~{Lw< g}:(p<§>, 3)

where L, is the initial load of node w.

The cascading failures of nodes are a sort of site percola-
tion process. Because of the locally tree-like approximation
in percolation of degree-degree uncorrelated networks, the
probability that node v fails and causes m of its k, — 1 neigh-
bors (subtract the node which causes node v to fail) to fail is

kv -1 AN ) A k,—1-m .
. )G 0 Q) @

Thus, on average, the node v fails and causes its
k

Zlm <kn; 1)(,)(%)'" <1 ) (p(g»kv—l-m

1

5o (8, T O )

m=1
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FIGURE I: The fraction G of giant component changes with increase of tolerance parameter « in ER random and BA scale-free networks.
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neighbors to fail.

Denote p, as the probability that a randomly picked node
has degree k. According to (5), the failure of arbitrary node in
the network causes its 2220 Prk—De(A/a) = ({k)-1)p(A/x)
neighbors to fail. When large-scale cascading failures occur in
the network, the failure of arbitrary node causes more than
one of its neighbors to fail; that is,

bl

©)

(-1 (2) =1 (©)

Thus, for condition (I) that large-scale cascading failures
occur in the network, we have

a < (k) = 1)A. (7)

It is worth noting that there is not any specific assumption
on degree distribution for the result above.

3.3. There Does Not Exist a Large Connected Subnetwork
Formed by Unfailed Nodes. According to the local load
sharing mechanism in our model, there may exist some nodes
that do not propagate cascading failures. These nodes never
fail with large tolerance parameter a, or their failure will not
affect other nodes as all of their neighbors are already failed
nodes. We call these nodes absorbing nodes. Before handling
condition (II), we pay close attention to these absorbing
nodes. Let us consider the situation that a node v of degree k,
does not fail after k, — 1 of its neighbors fail and share loads
(k,—1)A with it. Consequently, no matter whether node v fails

or not, it can not affect other nodes any more. In this situation,
node v has the ability to absorb the loads of all its neighbors by
itself; thus we call this node the independent absorbing node.
The capacity and initial load of an independent absorbing
node v meet the following relation:

L,+(k,-1)A<(1+a)L,. (8)

But this is not the only reason that a node happens to
be an absorbing node. There is another situation for a node
to be an absorbing node whose load does not satisfy (8).
In this situation, considering a node v, m of its neighbors
are absorbing nodes; thus we only need n, > k, — m —
1 to make node v an absorbing node. We call this kind
of nodes dependent absorbing nodes because their ability
to absorb loads depends on the other absorbing nodes of
their neighbors. Dependent absorbing nodes can also prevent
cascading failures locally.

Figure 2 gives two examples of absorbing nodes. In
Figure 2(a), unfailed node 1 has five neighbors and four of
them (nodes 2, 3, 4, and 5) are failed nodes. Assume that if
node 6 does not fail in the following procedure of cascading
failure, then node 1 does not fail either. Or in another case
assume that node 6 fails and transfers a fixed value of load A to
node 1. In the latter case, no matter whether node 1 fails or not,
it can not affect any other node. Thus, node 1 is an indepen-
dent absorbing node. In Figure 2(b), we assume that node 7 is
not an independent absorbing node. It happens to fail if more
than two of its four neighbors fail and transfer loads to it.
Assume node 8 is an absorbing node; thus it never fails. Con-
sequently, no matter whether node 7 fails or not, it can not
share load with any unfailed neighbor. Therefore, node 7 in
Figure 2(b) comes to be a dependent absorbing node because
its ability to absorb loads depends on the absorbing node
8.
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(a) The independent absorbing
nodes

(b) The dependent absorbing nodes

FIGURE 2: Two examples of the absorbing nodes. In the procedure of cascading failures, an unfailed node (o) may turn to be a failed node (+)

when it overloads or does not fail as it is an absorbing node (®).

Then we consider condition (II) that there does not exist
a large connected subnetwork formed by unfailed nodes.
We have explained that absorbing nodes survive and keep
to be unfailed after cascading failures. With increase of
«, each node has higher probability to be assigned with
more capacity and be an absorbing node on average. If
there exist a large number of absorbing nodes, they may
connect to each other to form a large connected subnetwork
which makes G greater than 0. We have divided absorbing
nodes into independent absorbing nodes and dependent
absorbing nodes. Furthermore, we call an absorbing node an
m-absorbing node (m = 0,1,2,...,k), if and only if m of its
neighbors are absorbing nodes. We assume that independent
absorbing nodes are not equivalent to 0-absorbing node.
For an interdependent node, if it has m absorbing nodes
of its neighbors, we still treat this node as an m-absorbing
node.

Then, we let the probability that a node of degree k hap-
pens to be an absorbing node be a;.. The probability that node

v happens to be an m-absorbing node is a](cm). Then we have
k
a=Y a. )
m=0

In a degree-degree uncorrelated network, consider a node
v of degree k and any of its neighbors w. The probability
of node w with degree j is jp;/ Y,;ip; = jp;/(k). Node w
happens to be an absorbing node with the probability a;.

Then, the probability of node v’s arbitrary neighbor being an
absorbing node is

by,
0, = ;ﬁ (10)

According to (10), the probability that exactly m of node
v’s neighbors are absorbing nodes is

k k-m
( ) o (1-0,) . (11)
m

Node v is an m-absorbing node if it stays unfailed with
k—m—1 neighbors fail and transfer loads to it. Therefore, the
probability is that node v comes to be an m-absorbing node
with probability

m k m k_
i = () )=o)

“P{L,+(k-m-1)A<(1+a)L,} (12)

() = (10 (B2

We substitute (12) into (9) and get the probability that
node v (i.e., arbitrary node of degree k) happens to be an
absorbing node as

k-1 /& o
ak=cr§+ ( )af(l—aa)km<l—<p<—(k mn 1)A>>
m=0 m @

( . k-1 (k) f
oy + " (1-a,) 77”(1
a = m a
O's +

m=k—1-[a/A]

a

(k-1DA . ko, A ok A
« a a

m

m=k—1-[a/A]

ki (,1:1)02"(1 —Ga)kf”‘(l - W)

= 1 k-1
e 3 (F)ara-ay(i- temeng)

_ (k—m——DA> k< E] 1
o A
elsewhere (13)
if k < 3] +1
A
elsewhere.
«
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FIGURE 3: Validation of the analytical predictions of threshold «. where the giant component G exists in ER random networks. With increase
of tolerance parameter «, we draw each simulated G of 50 realizations, respectively. The threshold «, is marked by solid triangle (a).

According to the cascade condition [25, 26], the absorbing
nodes can not connect to each other to form a large connected
subnetwork with the following condition:

1 o0
%I;k (k1) peag < 1, (14)

where p; is probability that a randomly picked node has
degree k and gy is the probability that a node with degree k
happens to be an absorbing node.

Now we complete the derivation by (7), (10), (13), and
(14). These four equations depend on each other. We can get
the threshold of tolerance parameter «, with the following
iteration process:

(1) Assign ((k) — 1)A as an initial value to tolerance
parameter « according to (7).

(2) Get g, via (10) and (13) with the current value of
tolerance parameter «.

(3) Substitute a; into (14). If the inequality of (14) is
invalid, discount a very small value from «, and then
repeat step (2); otherwise, let «. = « and finish the
iteration process.

4. Simulation

We validate the analytical prediction of threshold «, in ER
random and BA scale-free networks with N = 5000 nodes
and varied average degree (k) = 8,10, 12. The load of each
node is uniformly distributed on the interval [0,1]. We
randomly set very few nodes to fail as the beginning of the
dynamical procedure. When a node fails, it transfers a fixed
load A = 0.01 to each of its unfailed neighbors. Figures 3
and 4 present the giant component G with different &, and
the threshold «, for G rises from zero to nonzero. Note that
different values of A only change the scale of abscissa. For
each subfigure in Figures 3 and 4, each of 50 independent
simulation results is drawn, respectively. The theoretical
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FIGURE 4: Validation of the analytical predictions of threshold «. where the giant component G exists in BA scale-free networks. With increase
of tolerance parameter «, we draw each simulated G of 50 realizations, respectively. The threshold «, is marked by solid triangle (a).

threshold «, is marked by the solid triangle. e, is exactly at
the moment when G rises from zero to nonzero. Therefore,
our theoretical predictions are in good agreement with the
simulation results. It also can be seen in both ER and BA
networks that, with higher value of average degree (k), the
value of threshold «, increases and the networks turn out
to be robuster against cascading failure. This appearance is
consistent with previous studies on cascading failure.

5. Conclusion

In this paper, we provide a cascade of overload failure model
with local load sharing mechanism and then explore the
threshold «, of tolerance parameter for capacity, when the
giant component G formed by unfailed nodes rises from
zero to nonzero. We provide two conditions to ensure that G
approximately equals zero when « < «,, which are as follows:
(I) the large-scale cascading failures occur; (II) unfailed
nodes in steady state cannot connect to each other to form

a large connected subnetwork. With these two conditions,
we get the theoretical derivation of «. in degree-degree
uncorrelated networks and validate the effectiveness of this
theoretical derivation in simulations. We believe that when
creating a network and assigning load with local load sharing
mechanism, threshold «, provides us with a guidance to
improve the network robustness under the premise of limited
capacity resource, especially for telecommunication networks
and power grid networks.
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