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This paper presents a discrete time-space network model for a dynamic resource allocation problem following an epidemic outbreak
in a region. It couples a forecasting mechanism for dynamic demand of medical resource based on an epidemic diffusion model
and a multistage programming model for optimal allocation and transport of such resource. At each stage, the linear programming
solves for a cost minimizing resource allocation solution subject to a time-varying demand that is forecasted by a recursion model.
The rationale that the medical resource allocated in early periods will take effect in subduing the spread of epidemic and thus impact
the demand in later periods has been incorporated in such recursion model. A custom genetic algorithm is adopted to solve the
proposed model, and a numerical example is presented for sensitivity analysis of the parameters. We compare the proposed medical
resource allocation mode with two traditional operation modes in practice and find that our model is superior to any of them in
less waste of resource and less logistic cost. The results may provide some practical guidelines for a decision-maker who is in charge
of medical resource allocation in an epidemics control effort.

1. Introduction

Over the past few years, the world has grown increasingly
concerned about the threat of different epidemics. Disas-
trous epidemic events such as SARS and HINI significantly
impacted people’s life. The outbreak of infections in Europe
is another recent example. The infection, from a strain of
Escherichia coli, can lead to kidney failure and death and is
difficult to treat with antibiotics. It is now widely recognized
that a large-scale epidemic diffusion can conceivably cause
many deaths and more people of permanent sequela, which
presents a severe challenge to local or regional healthcare
systems.

After an epidemic outbreak, public officials are faced with
many critical issues, the most important of which being how
to ensure the availability and supply of medical resource so
that the loss of life may be minimized and the rescue opera-
tion efficiency maximized. The medicine logistics in an epi-
demics controlling system is often complex and difficult. Hu
et al. [1] compared public-health management mechanisms
in both USA and China from the following three aspects,
organizational structure, management system, and logistics
network, and pointed out some deficient areas in the Chinese

public-health management mechanism. To date, medicine
logistics operation in epidemic control activities in China
has traditionally been done unsystematically and separately,
based on the decision-makers’ experience and disregarding
the interrelationship between the time-varying demand and
the logistics operation planning from a systematic perspec-
tive. Thus, this paramount life-saving and costly logistics
problem opens up a wide range of applications of Operations
Research/Management Science techniques and has motivated
many recent research works.

In this paper, a time-space network model for the medi-
cal resource allocation problem in controlling epidemic dif-
fusion is proposed. It couples a forecasting mechanism for
the dynamic demand of the medical resource based on the
epidemic diffusion pattern of susceptible-exposed-infected-
recovered (SEIR) model [2] and a multistage programming
model for optimal allocation and transport of such resource.
The two dynamic processes are woven together and inter-
actively proceed to model the epidemic diffusion and the
medical resource allocation. Particularly, given the dynamic
demand for the medical resource at each stage predicted by
the forecasting mechanism, the linear programming problem



solves for the cost minimizing resource allocation pattern
subject to related operating constraints. The optimal solution
of the resource allocation will then determine their avail-
ability at each emergent district hospital, upon which the
efficiency of rescuing effort is conditioned (assuming the
other needed healthcare technologies and human resource
are guaranteed). The efficiency of the rescuing effort will
determine the recovering rate of the infected population,
which, in turn, will generate the new forecast of the demand
for medical resource by updating the SEIR diffusion model.
The above described model is expected to be an effective
decision-making tool that can help improve the efficiency of
medicine logistics when an epidemic outbreaks. To the best
of our knowledge, the dynamic and interactive optimization
process has never been reported in the existing works.

The remainder of the paper is organized as follows:
Section 2 is the literature review. Section 3 introduces the
time-space network model, which combines a time-varying
demand forecast model based on the epidemic diffusion rule,
and a multistage programming model for cost minimizing
allocation of the medical resource. The solution procedure for
the optimization model is proposed in Section 4. A numerical
example and a short sensitivity analysis are presented in
Section 5. Finally, Section 6 discusses the limitations of the
proposed approach and suggests future research directions.

2. Literature Review

Considering the relationship between the epidemic diffusion
and the associated medical resource allocation, we review two
streams of recent research efforts here: one is focused on the
epidemic diffusion modeling and the other is related to the
medical resource allocation modeling.

2.1. Epidemic Diffusion Modeling. Most analytical works on
epidemic diffusion are concentrated on the compartmental
epidemic models described by ordinary differential equations
[3-5]. In these models, the total population is divided into
several classes and each class of people is closed into a com-
partment. The sizes of the compartments are assumed to be
large enough and the mixing of members to be homogeneous.

The second stream of research is on the development of
epidemic diffusion models by applying complex network the-
ory to the traditional compartment models [6-8]. Recently,
Jung et al. [9] extended the previous studies on the prevention
of the pandemic influenza to evaluate time-dependent opti-
mal prevention policies, and they found that the quarantine
policy was very important and more effective than the elim-
ination policy, during the disease spread. Wang et al. [10]
presented some suggestions for the epidemic prevention and
infection control in the Wenchuan earthquake areas, Sichuan
Province, China.

The third stream of research is on the development of
epidemic diffusion models by applying simulation methods,
including computer simulation and numerical computation
[11-13]. For example, Samsuzzoha et al. [14] used a diffusive
epidemic model to describe the transmission of influenza.
The equations were solved numerically by using the splitting
method under different initial distribution of population
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density. Further, Samsuzzoha et al. [15] presented a vaccinated
diffusive compartmental epidemic model to explore the
impact of vaccination as well as diffusion on the transmission
dynamics of influenza.

Recently and importantly, a robust data-driven fault
detection approach is proposed with application to a wind
turbine benchmark [16]. The main challenges of the wind
turbine fault detection lie in its nonlinearity, unknown dis-
turbances, and significant measurement noise. Sometimes
the relative data may be missed [17, 18]. These works are con-
structive and helpful to understand and model the epidemic
diffusion process in a very different way.

The above mentioned works represent some of the
research on various differential equation models for epidemic
diffusion and control. Although the emphasis of this paper is
on the efficient allocation of medical resource, a basic com-
ponent of our model, the forecasting mechanism for their
dynamic demand, utilizes one of such epidemic diffusion
models.

2.2. Medical Resource Allocation Modeling. To the best of our
knowledge, a great deal of researches has been published
with the topic on optimal allocation of medical resource [19-
23]. To optimize the process of materials distribution in an
epidemic diffusion system and to improve the distribution
timeliness, Liu and Zhao [24] modeled the emergency mate-
rials distribution problem as a multiple traveling salesman
problem with time window. Wang et al. [25] constructed
a multiobjective stochastic programming model with time-
varying demand for the emergency logistics network based
on the epidemic diffusion rule. A genetic algorithm coupled
with Monte Carlo simulation was adopted to solve the
optimization model. Qiang and Nagurney [26] proposed
a humanitarian logistic model for supply/distribution of
critical needs in a disruption caused by a natural disaster.
They considered a general network structure and disruptions
that may have an impact on both network link capacities
and product demand. The problem was studied in a bicriteria
system optimization framework for network performance.
Recently, Rachaniotis et al. [27] presented a deterministic
resource scheduling model in epidemic control. In their work,
a deterministic model, appropriate for large populations,
where random interactions could be averaged out, was used
for the epidemic’s rate of spread. Besides, a case of the
mass vaccination against HINI influenza in the Attica region,
Greece, and a comparative study of the model’s performance
versus the applied random practice were presented.

To deal with the complexity and difficulty in solving the
medical resource allocation problem, we observe a trend in
solution methodologies, that is, decomposing the original
problem, which can be a multicommodity, multimodal, or
multiperiod model, into several mutually correlated subprob-
lems, and then solve them systematically in same decision
scheme. For instance, Barbarosolu et al. [28] proposed a
bilevel hierarchical decomposition approach for helicopter
mission planning during a disaster relief operation. The
top-level model was formulated to deal with the tactical
decisions, covering the issues of helicopter fleet management,
crew assignment, and the number of tours undertaken by
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FIGURE 1: Operational procedure of the dynamic medicine logistics network.

each helicopter. The base-level model aimed to address
the corresponding operational decisions, including routing,
loading/unloading, and refueling scheduling. References [25,
29] were more recent works following this line.

Furthermore, we note that most of the previous works
were carried out under the assumption that the relief demand
is not time sensitive. While in reality, the demand for medical
resource is dynamic, and the medical resource allocated in
early cycles will affect the demand in later periods. In this
paper, we will use a discrete time-space network to model
the medical resource allocation problem when an epidemic
outbreaks. In each decision cycle, the problem is constructed
as a linear programming model to solve for the cost minimiz-
ing allocation solution subject to the time-varying demand
that is predicted by the epidemic diffusion rule. As such, this
paper attempts to bridge the two streams of literature, the
epidemic diffusion and the medicine logistics, which were
studied separately in existing literature.

3. The Mathematical Model

Epidemic diffusion process can be divided according to its
development into three stages [30]. The first stage is the
inception of the epidemic in very limited population, which
if noticed in time and treated properly can be controlled
effectively without causing a wide spread. In the second stage,
the epidemic has broken out into a widespread diffusion. An
important part of epidemic control and rescue campaign is
to ensure the timely delivery of the needed medical resource
according to the dynamic demand as determined by the
progress of the epidemic spread. In the third stage, the
epidemic diftusion has been controlled and the demand for
medical resource has significantly declined. Liu et al. [31]
proposed a model for studying medical resource distribution
in the first stage. In this paper, we will concentrate on the
logistics problem of medical resource allocation in the second
stage. Particularly, we will study how the area distribution
centers (ADC) should supply the district distribution centers
(DDC) and how the DDCs should deliver the needed medical
resource to the emergency designated hospitals (EDH) in the
most efficient and cost-effective way. Here we assume there
are several ADCs in the epidemic spread area, which can
be divided into several municipal districts or towns. Each
district will have one or more DDCs which supply the needed
medical resource to the EDHs in that district.
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Since demand from each EDH is determined by the num-
ber of patients hospitalized there and varies according to
the progress of epidemic diffusion, the allocation of medical
resource need to chase the demand over time. Figure 1 below
gives a diagram of operations outlining the execution of the
proposed model. The sequential operational routine contin-
ues until the epidemic diffusion gets under control. As Fig-
ure 1 shows, medical resource allocation process is decom-
posed into #n decision-making cycles. Each decision-making
cycle includes three phases: epidemic diffusion analysis,
demand forecasting, and medical resource allocation. These
three phases are executed iteratively. The effect of the medical
resource allocation is analyzed, and the number of infected
people is updated at each cycle during the entire distribution
process.

In the sequel, we will introduce SIERS model, a well-
recognized epidemic diffusion model, in Section 3.1, propose
a forecasting model for the dynamic demand for the medical
resource during the epidemic diffusion in Section 3.2, and
a linear programming model for distribution of medical
resource according to the forecasted dynamic demand.

3.1. SEIRS Epidemic Diffusion Model. The SEIR model has
been widely adopted by researchers to study epidemic diffu-
sion. It is based on small-world network theory and provides
a good match to the actual social network [2]. Generally,
the total population is divided into four classes, susceptible
people (S), exposed people (E), infected people (I), and
recovered people (R), and each class of people is closed into a
compartment. Tham [32] showed that some of the recovered
people who were discharged from hospitals might be rein-
fected. Figure 2 shows, without consideration of migration,
the natural birth rate and death rate of the population, the
epidemic process can be described by a SEIRS model based
on a small-world network [25].



The dynamic system for the SEIRS diffusion model can be
rewritten by the following ordinary differential equations:

ds

=" — BkS(t) I (t) + yR(t),

Z—f = BKS(O)I(t) - BKS(t - D) I (t— 1),

dI v
b =PkSEt-1)I(t—1)— (@ +8)I (1),

dR

i SI(t) — yR(t).

In the above system of equations, S(t), E(t), I(t), and R(t)
represent, respectively, the number of susceptible people, the
number of exposed people, the number of infected people,
and the number of recovered people. k is the average degree of
distribution for this small-world network, which can be inter-
preted as the average contact number of susceptible people of
each infected person; f3 is the propagation coefficient of the
epidemic; vy is the rate of the recovered people who are not
immune and thus may be reinfected; § is the recovery rate;
« is the death rate; T represents the incubation period of the
disease. Consider k, 3,7, 6, o, 7 > 0.

ODE (1) states the following: (i) the growth rate of
the susceptible population is determined by the returning
population who are recovered but not immune and the
losing population who actually get exposed to the disease
and thus are counted towards the class of E(t). The latter is
in proportion to the propagation coeflicient f3, the average
contact number of susceptible people of each infected person,
k, and both of the current mass of the susceptible population
and the current mass of the infected population. (ii) The
growth rate of the exposed population is determined by
the difference between the entering population, those of
susceptible people who actually get exposed to the disease,
and the exiting population, those of exposed population who
get sick after the incubation period of the disease; (iii) the
growth rate of the infected population is determined by the
difference between the entering population, those of exposed
population who get sick, and the exiting population who are
either recovered or dead; and, finally (iv) the growth rate
of the recovered population is determined by the difference
between the joining population of the newly recovered and
the losing population of the reinfected people.

Particularly, as we noted in (iii), the number of infected
people, I(t), is determined by the population of the recovered
people and the onset exposed people at the end of the
incubation period. Hence, improving the recovery rate, 6,
and reducing the propagation coefficient, 3, are the two
effective measures to take in suppressing the growth of
I(t). In the context of epidemic controlling operation, that
means sufficient medical resource should be allocated to the
emergent designated hospitals (EDH).

3.2. The Forecasting Model for the Time-Varying Demand.
Demand for medical resource has been studied in a variety
of forms in the literature, such as a time-varying value
[33] or obeying some stochastic distribution [29]. However,
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FIGURE 3: Diagrammatic sketch of the time-varying demand.

the impact of earlier resource allocation to the demand in
later periods has basically been ignored in these approaches.

To address this deficiency, we propose the following linear
relationship between the demand for medical resource and
the number of infected people at time ¢ based on the SEIRS
epidemic diffusion model:

d,=al(t), (2)

where d, refers to the demand for medical resource at time
t and a is the proportionality coefficient. In our interviews
with the public-healthcare administrative personnel about
controlling the epidemic spread, we found this linear fore-
casting function is the one they commonly adopted. Here we
define it as the traditional demand (TD). However, a lag effect
of earlier medicine allocation should be taken into account
in the current demand forecast. As shown in Figure 3, the
horizontal axis represents the decision-making cycle, and
the vertical axis stands for demand in an epidemic area.
The dotted line is a trajectory of (2), and the solid curve is
the expected demand (ED). For instance, if the demand for
medical resource at cycle t is d;, and according to (2), the
demand at cycle t+1 would have been d, . However, a certain
amount of medical resource, p,, had been allocated to the
disaster area during cycle t, and it would be taking effect in
cycle t + 1 in curing the infected patients in hospitals and
thus subduing the diffusion. Hence, the expected demand for
medical resource at cycle t + 1 should be d,,,, instead of d}, ;.
The following growth factor is introduced by the above

observation to account for the lag effect:
df, —df

t+1 ~ Yt
= . 3

Herein, the growth factor #, can be either positive
(increasing demand) or negative (decreasing demand) and
may vary in different cycles for the different demand d;. As
mentioned before, part of the recovered people who are dis-
charged from the healthcare department may be reinfected.
Thus, we define the effective cure rate as 6 as the percent
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of recovered people who are not reinfected. Considering
that each infected person needs a period of time to receive
treatment and get cured, herein we denote the treatment cycle
as I'and we assume it to be an integral multiple of the decision
cycle. Then, the commuted effective cure rate in each decision
cycle can be obtained as 6/T. Such an assumption would be
feasible if the decision cycle is small enough, for example, one
day. Hence, it helps us get the following recursion formulas:

whent=1, d, :(1+110)<1—§>d0;
0
when t =2, d2=(1+rh)<1—f>d1

0 2
~en) () (1-3) ds @

whent=n, d,= (1+11,-)<1—12> d,.

Herein, [Ty (1 + 1) = (1 + 7)1 + 1)+ (1 + 7,_y).
d, = al(0) is the initial demand for medical resource in
the epidemic area, and I(0) is the initial number of infected
people in the epidemic area. Recursion formulas (4) are
our prescribed forecast model for the demand of medical
resource. In what follows, we will propose a medicine logistics
operation model to minimize the total allocation cost based
on the forecasting model.

3.3. Time-Space Network of the Medicine Logistics. In this
subsection, a multistage programming model for cost min-
imizing allocation of the medical resource is built upon a
time-space network. Figure 4 is the schematic diagram of the
network. The vertical axis represents the time duration. The
horizontal axis represents the area distribution center (ADC),
the district distribution center (DDC), and the emergency
designated hospital (EDH), respectively. The allocation arcs
are defined as follows: (a) represents that medical resource is
transported from ADC to DDC; (b) stands for that medical
resource is allocated from DDC to EDH in the same district;
(¢) refers to that medical resource is allocated from DDC to
EDH in the other district; (d)~(f) are time duration arcs for
different departments.



3.3.1. Assumptions. The following assumptions are needed to
facilitate the model formulation in the following sections.

(1) In the event of an epidemic outbreak, it is paramount
for the government and the entire society to control
the spread and rescue the infected. Thus it is rea-
sonable to assume that the government can ensure
the adequate supply of the needed medical resource
either from domestic pharmaceutical companies or
imported. Hence, there is enough medical resource in
ADCs during the entire operation process.

(2) Once an epidemic outbreak, the government will take
strict control measures so that each epidemic area
can be isolated from other areas to avoid the cross
spread of the disease. In each epidemic area, the
government will appoint a hospital to be the EDH, to
be responsible for the rescue work in such an isolated
area.

(3) Medical resource in this paper is an assembled prod-

uct, which may include water, vaccine, antibiotic, and
so forth.

3.3.2. Notations. Notations used in the following program-
ming model are specified as follows:

c¢;;: unit transportation cost of medical resource from

ADCito DDC j,

cry;: unit transportation cost of medical resource from

DDC i to EDH j,

es;;: the available quantity of medical resource in ADCi in
decision cycle t,

zr,: quantity of medical resource allocated to DDC i in
decision cycle t,

ije- medical resource transported from ADC i to DDC j
in decision cycle t,

Yijr+ medical resource transported from DDC i to EDH j
in decision cycle t,

d;: demand for medical resource in EDH i in decision
cyclet,

T set of decision cycles,
C: set of ADCs,

R: set of DDCs,
H

: set of EDHs.

3.3.3. Model Formulation. Let F(x, y) be the objective func-
tion of the total cost of medical resource allocation. Based
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on the above assumptions and descriptions, the proposed
problem can be formulated as follows:

Min  F(x,y)= Z Z injtccij + Z Z Z)’ijtc”ij

teT ieC jeR teT i€R jeH

(5)

s.t. inﬁ =zry, VjeR teT (6)
ieC

inﬁ <esy;, VieC,teT @)
JjER

zyijt:djt’ VjeH, teT (8)
i€R

Zyijt <zry, VieR, teT )
jeEH

dgy=al;(0), VieH (10)

t-1 0\*
d, - (1+7,A)<1 - -) d,,
it g it T i (11)
Vie H, t € {T,t # 0}
Xijp 20, VieC, jeR teT (12)
Yijx 20, VieR, jeH, teT. (13)

In this optimization model, x;;, and y;;, are the decision
variables. The objective function (5) is to minimize the total
cost of medical resource allocation, which is the transporta-
tion cost for delivering the medical resource from ADCs to
DDCs and from DDCs to EDHs. Constraints (6)~(9) are
the flow conservation equations. Particularly, constraint (6)
suggests that each DDC can obtain medical resource from
all ADCs. Constraint (7) ensures that the total shipments
from any ADC cannot exceed the available amount of the
resource in this ADC. Constraint (8) states that the period
demand generated by the forecasting model in Section 3.2 at
each EDH must be satisfied. That is, the shipments from all
DDCs to each EDH must be equal to the demand at this EDH.
Constraint (9) implies that the total shipments from any DDC
cannot exceed the available stock in this DDC. Constraints
(10)-(11) are forecasting model for the time-varying demand
(Section 3.2). Herein, #;, is the growth factor (can be either
positive or negative) of the demand for medical resource
in EDH i in decision cycle t. Finally, (12) and (13) are the
nonnegativity of the flows. Such model is a dynamic and
multistage programming model.

4. Solution Methodology

To solve the above optimization model, (10)-(12) are adopted
to calculate the time-varying demand firstly. After that, to
Vt € T, the research model can be converted as a two-
stage linear programming model. The feature of such a two-
stage programming problem is that both the input quantity
and the output quantity of the medical resource in the
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TABLE 1: Values of parameters in the SEIRS model.
ADC1 ADC2
DDC1 DDC2 DDC3 DDC 4

EDH1 EDH 2 EDH 3 EDH 4 EDH 5 EDH 6 EDH 7 EDH 8
S(0) 5x 10° 4.5x10° 5.5 x 10° 5x10° 6 x 10° 4.8 x10° 5.2 x 10° 4% 10°
E(0) 30 35 30 40 25 40 50 45
1(0) 5 6 7 8 4 7 9 10
R(0) 0
B 5x107°
(k) 6
o 0.3
d 1x107°
y 1x107°
T 5

DDCs are unknown. There are many available techniques for
solving such a problem, and a genetic algorithm is commonly
used. Hence, a genetic algorithm coupled with MATLAB 7.0
mathematical programming solver is adopted to solve the
model.

4.1. Chromosome Coding and Population Initializing. The first
step of a genetic algorithm is to define the coding method of
the chromosome. As is well known, the real number coding
is superior to the binary coding in both aspects of quality and
efficiency of the solution. Besides, the real number coding is
closer to the actual problem findings and easier to interpret
in the real world problem. Herein, the real number coding is
adopted. For Vt € T, each chromosome contains R bit gene,
where R is the number of DDC. The value of each bit refers
to the available amount of medical resource in each DDC,
which is also the quantity of medical resource replenished
from all ADCs. Each individual in the initial population
is generated by a random method, subject to the related
resource constraints in the programming model.

4.2. Fitness Definition. The fitness of each individual is
obtained by computing the objective function

F(x,y)= Z Z injtccij + Z Z Zyijtcrij'

(14)
teT ieC jeR teT i€R jeH

Herein, the fitness function contains two parts. The first
part is the total transportation cost between ADCs and
DDCs. The second part is the total transportation cost
between DDCs and EDHs. Obviously, the lower the total cost
is, the better the fitness of the individual is.

4.3. Selection Operator. The best individual copy strategy is
adopted in selection section. That means, each time when
selection operator is iterated, the worst chromosome in the
population will be replaced by the best one.

4.4. Crossover Operator. A crossover operator is one of the
most important operators in a genetic algorithm. Different
crossover operators are suitable for different kinds of chro-
mosomes. According to the real number coding in this paper,

an arithmetic crossover is adopted. Let P, and P, represent the
two parent chromosomes, and P.; and P,, stand for the two
children chromosomes, respectively. The linear relationship
between the parent and the children chromosomes can be
formulated as follows:

P, =uP +(1-u)P,

Py =(1-p) P, +ub,.

(15)

Herein, ¢ = U(0,1) is a uniform random number
between 0 and 1. Note that both of these two children
chromosomes automatically satisfy the resource constraints
in the multistage programming model. The range of the
crossover probability p, is 0.2~0.8.

4.5. Mutation Operator. A mutation operator is intended to
simulate genetic mutation during biological evolution. Muta-
tion is operated on some bits of individuals at a probability of
P,,- This probability is generally very small and is set in the
range 0.001 < p,, < 0.1. When mutating, we exchange a pair
of genes in the individual.

4.6. Termination Condition. As the optimal result is unpre-
dictable, a max iteration is given for the termination.

5. Numerical Tests

5.1. A Numerical Example. We present a numerical example
to illustrate the efficiency of the proposed model. Assume
there is a smallpox outbreak in a city, which has two ADCs
and four DDCs. Two hospitals are designated in each district,
and each EDH can service a certain amount of patients. The
values of the parameters in the epidemic diffusion model are
given in Table 1.

Figure 5 depicts a numerical simulation of the epidemic
model at EDHI in this effected region. The four curves,
respectively, represent the number of four groups of people
(S,E, I, R) over time. As mentioned in Section 3, the process
of epidemic diffusion is divided into three stages and our
work in this paper is focused on the second stage. According
to Figure 5, such a stage can be ranged from the 10th day
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(decision-making cycle t = 0) to the 40th day (decision-
making cycle t = 30). Of course, when different emergency
outbreak happens, the result can be adjusted correspondingly.

To facilitate the calculate process in the following sec-
tions, the decision-making cycle is assumed to be one day. Let
a = 1; MATLAB 7.0 mathematical programming solver
coupled with (1) and (2) is adopted to calculate the TD
for medical resource in each EDH. Furthermore, given that
0 = 90% and I' = 15 (days), the growth factor #;, in each
decision-making cycle can be obtained. Then, the ED for
medical resource in each EDH in each decision cycle can be
forecasted according to (12)-(13). Taking EDH1 as an example,
the demand for medical resource in each decision-making
cycle by these two different methods is compared as shown
in Figure 6.
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One can observe in Figure 6 that ED is way below TD,
suggesting that the allocation of medical resource in the early
periods will significantly reduce the demand in the following
periods. The second observation is that both curves exhibit
similar trends; namely, the demand will first increase along
with the spreading the epidemic and then will decrease after
the epidemic is brought under control.

We now proceed to illustrate the optimal allocation of the
resource at each EDH. Table 2 shows the unit operation cost
of medicine between two different departments.

Let n = 200, p, = 0.75, and p,, = 0.01. The algorithm is
set to terminate in 200 generations. Taking the allocation at
cyclet = 0 as the initial example, we solve the above program-
ming model (7)-(15) according to the solution procedure. The
convergent allocation scheme is reported in Table 3 and the
total operation cost is 2663.22.

To test the accuracy and stability of the algorithm, the
computation process has been repeated for six times indepen-
dently. As shown in Table 4, the convergent results in these
six times are very close and the deviation is less than 0.065%.
This proves the proposed algorithm is stable and accurate. We
execute the solution procedure (Table 1) to find the dynamic
allocation result of medical resource and show in Figure 7 the
total cost at each decision-making cycle.

Comparing Figure 7 with Figure 6, one can find that the
curve of the total operation cost matches well the demand
curves in their variation pattern, suggesting that the cost of
medical resource allocation mainly depends on the demand.
The characteristics also reflect the hysteresis effect in an epi-
demic controlling system that medicine logistics lags behind
the epidemic diffusion.

In next subsection, we will compare the proposed model
with the two traditional allocation measurements that have
been used in practice.

5.2. Model Comparison. Based on our interviews with the
public healthcare administrative personnel in China, there
are two traditional measurements in practice to predict
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TABLE 2: Unit operation cost between two different departments (Unit: $).

Cost ADC1 ADC2 EDH1 EDH2 EDH3 EDH4 EDH5 EDH6 EDH7 EDHS8
DDC1 3.5 2 1 2 4 2.5 5 5 2.5 1.5
DDC2 1.5 2 2 2.5 2 3 5 4 2.5 2
DDC3 3 1.5 2.5 3 5 2 1 3 1.5 4
DDC4 2.5 3 4 4 1.5 2.5 3 2 2 1.5
TABLE 3: Medical resource allocation result at decision-making cycle ¢ = 0 (Unit: §).
DDC1 DDC2 DDC3 DDC4

ADC1 0 186.6901 0 163.759
ADC2 188.8323 0 191.9134 0

EDHI1 EDH2 EDH3 EDH4 EDH5 EDH6 EDH7 EDHS
DDC1 671588 43.0695 0 31.1464 0 0 0 47.4576
DDC2 0 23.5330 82.9355 22.1931 0 0 31.4635 26.5650
DDC3 0 0 0 38.6671 74.9403 0 78.3061 0
DDC4 0 0 28.1169 14.6546 0 86.9697 18.6328 15.3849

TaBLE 4: Total cost in cycle t = 0 (Unit: $). x10*

Run 1 2 3 4 5 6
TOt?l 2664.97 2663.22 2663.22 2663.22 2664.97 2663.22
cos

the demand for medical resource in case of an epidemic
outbreak. Both of them utilize (2) as the basic forecasting
method. In the first traditional measurement, referred as
Traditional 1, the medical resource will only be allocated
through administrative distribution. That is, an ADC will
only service the DDCs in its own area, and a DDC will only
service the EDHs in its own district. For instance, as Table 1
shows, ADC 1 will only service DDC1 and DDC2, and DDCl
will only replenish medical resource to EDH1 and EDH2. The
second traditional measurement, referred here as Traditional
2, is based on the same forecasting method of (2) but allows

Total cost

Time, t

o Tees . —_— 1
cross area distribution. The total costs of these three different - %‘;ﬁgizl .
models are compared and illustrated in Figure 8. Traditional 2

Several interesting observations can be drawn from Fig-
ure 8. First, the total operation costs by model Traditional 2
are all time lower than those by Traditional 1, although the
difference is not large, suggesting that cross area distribution
has a definite advantage in saving allocation cost, which is
of course not surprising from an optimization perspective.
Secondly, the two cost curves by Traditional 1 and Traditional
2 behave consistently in their rising and falling trend and
arrive at their maximum at the exact same time t = 26.
This is because these two traditional models are based on
the same demand forecasting mechanism for the medical
resource, and the allocation cost is mainly determined by the
allocation volume, that is, the demand. Thirdly, the cost curve
generated by our time-space network model is the all time
minimum and much lower than that by the two traditional
measurements. The allocation cost generated by our model is
obvious less than the traditional methods in most of the time.
We attribute this significant cost reduction to our proactive
forecasting that takes into account the positive impact of

FIGURE 8: Total cost in three different patterns (Unit: $).

the early allocation of medical resource to the demand in
following periods. Finally and most importantly, one can
notice that the cost curve by our model reaches its maximum
at t = 24.5, comparing the two traditional measurements
at t = 26. This suggests that by using our proposed model
we can get control of the epidemic spread earlier, which
stands for an invaluable social merit on top of the economic
savings. To conclude our findings in this example, the cross
area distribution that features our proposed model and Tra-
ditional 2 can reduce the logistic part of the allocation cost.
The proactive forecasting model coupled with our time-space
optimal allocation programming proposed in this paper can
subdue the epidemic diffusion and thus significantly reduce
the demand for the medical resource, resulting greater saving
in the total operation cost.
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making cycle.

5.3. Sensitivity Analysis. In this section, a sensitivity analysis
of the three key parameters (1, 6 and I') in the time-
varying demand forecast model is conducted. According to
the definition in Section 3.2, the parameter # is closely related
to the decision-making cycle. In this paper, the decision-
making cycle is set to be one day (24 hours); so we get a
total of 240 77 and 7680 arcs in the experiment. Figure 9 shows
the relationship between the scale of the problem and the
decision-making cycle (Unit: hour).

In practice, the decision-maker can choose the decision-
making cycle according to the actual situation. Generally
speaking, the shorter the cycle is, the better the forecast
accuracy is, but the larger the scale of the problem and its
complexity is. On the other hand, if the decision-making
cycle is set too short to let the actual distribution opera-
tions uncomplete, then the accuracy of the model might
be adversely affected. Therefore, the decision-making cycle
should be selected appropriately in a practical problem.

As total cost of the proposed medicine logistics network
mainly depends on the demand for medical resource, these
two variables get a similar variation tendency. Thus, taking
EDHI as an example, we can hold all the parameters fixed, as
in the numerical example given in Section 5.1, and let 6 and
I take on five different values, respectively. The demand for
medical resource in each decision-making cycle is shown in
Figures 10 and 11.

As Figure 10 shows, 0 takes on five values ranging from
60% to 100%. The larger 0 is, the lower the demand is. Accord-
ingly, the lower the total cost would be. As Figure 11 shows,
I' takes on five values ranging from 10 to 20. The shorter
[ is, the lower the demand is, and thus the lower the total
cost would be. The above analysis confirms that both of these
two key parameters play important roles in medical resource
allocation decisions. For a small change of 6 and T, the final
allocation decisions and the total operation cost in each cycle
can change significantly. Unfortunately, the precise values for
these two parameters in an epidemic control are difficult
to get. As the accuracy of these two parameters is vital to
the success of medicine logistics operation, it calls for more
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research work to scientifically estimate these two parameters
for different epidemics.

6. Conclusions

In this paper, we develop a discrete time-space network
model to study the medical resource allocation problem in
an epidemic outbreak. In each decision-making cycle, the
allocation of medical resource across the region from ADCs
through DDCs to EDHs is determined by a linear program-
ming model with the dynamic demand that is forecasted
by an epidemic diffusion rule. The novelty of our model
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against the existing works in literature is characterized by the
following three aspects.

(1) While most research on medical resource allocation
studies a static problem which takes no consideration
of the time evolution and dynamic nature of the
demand, the model proposed in this paper addresses
a time-series demand that is forecasted in match of
the course of an epidemic diffusion.

(2) The model couples a multistage linear programming
for optimal allocation of medical resource with a
proactive forecasting mechanism cultivated from the
epidemic diffusion dynamics. The two dynamic pro-
cesses are woven together and interactively proceed
to model the epidemic diffusion and the medical
resource allocation. The rationale that the medical
resource allocated in early periods will take effect in
subduing the spread of the epidemic spread and thus
impact the demand in later periods has been for the
first time incorporated into our model.

(3) The computational results show that the proposed
model remarkably outperforms the traditional mea-
surements in both terms of cost reduction and epi-
demic control. Our model can significantly reduce the
total operation cost of the medical resource allocation
and may get the epidemic diftusion in control earlier
than the traditional measurements.

Furthermore, the medicine logistics operation problem
has been decomposed into several mutually correlated sub-
problems and then been solved systematically in the same
decision scheme. Thus, the result will be much more suitable
for areal operation. As the limitation of the model, it is devel-
oped for the medical resource allocation in a geographic area
where an epidemic disease has been spreading and it does not
consider possible cross area diffusion between two or more
geographic areas. We assume that once an epidemic outbreak
exists, the government has effective means to separate the
epidemic areas so that cross area spread can be basically
prevented. However, this cannot always be guaranteed in
reality.
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