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We consider a two-agent single-machine scheduling problem that minimizes the total weighted tardiness of one agent under the
restriction that the second agent is prohibited from having tardy jobs. The actual processing times of all jobs are affected by a sum-
of-processing-times-based aging effect. After showing the NP-hardness of the problem, we design a branch-and-bound (B&B)
algorithm to find an optimal solution by developing dominance properties and a lower bound for the total weighted tardiness to
increase search efficiency. Because B&B takes a long time to find an optimal solution, we propose a genetic algorithm as an efficient,
near optimal solution approach. Fourmethods for generating initial populations are considered, and edge recombination crossover
is adopted as a genetic operator. Through numerical experiments, we verify the outstanding performance of the proposed genetic
algorithm.

1. Introduction

Over the past few decades, much research has focused on
scheduling problems that consider diverse conditions result-
ing from production method and working environment
changes. In particular, in recent years, a multiagent schedul-
ing problem has received more attention. The multiagent
scheduling problem determines the processing order of jobs
that belong to different agents with different objectives. A
proper scheduling method effectively utilizes limited resour-
ces. In this paper, we consider a special case of the multiagent
scheduling problem—a two-agent single-machine schedul-
ing problem, where each agent or decision maker competes
to use a single machine while optimizing their own objective.

Multiagent scheduling is applicable to a variety of indus-
tries. For example, runway scheduling for airplanes is com-
petitive among airlines that want their flights to occupy the
limited runway space first [1]. In this situation, each flight is a
job to be processed, each airline is an agent, and runways are
limited resources. A production line that processes a com-
bination of two product families or the task of creating a
schedule for production and maintenance departments that
commonly use the sameproject resources are two examples of

two-agent problems [2]. In these cases, the two product fam-
ilies or two departments play the role of agents, and the tasks
belonging to each product family or project schedule fulfilled
by each department are the jobs to be processed by the agents.

To solve the two-agent scheduling problem, we can con-
sider a traditional, bicriteria optimization approach. Specif-
ically, because two agents have two different objective func-
tions, (i) an optimal schedule for one objective function can
be found and then subsequently used as a new constraint to
optimize the second objective function, or (ii) a new objective
function can be constructed as a weighted linear combination
of the two objective functions. However, the first method is
not valid because all jobs affect both objective functions at the
same time. The second method is also not reasonable if the
units of measure of each objective function are different.
Therefore, a new efficient and exceptional scheduling frame-
work that reflects the multiagent concept is required.

The concept of multiagent scheduling was suggested by
Cres and Moulin [3] and Baker and Smith [4]. Agnetis et al.
[5] introduced new terminology, namely,multiagent schedul-
ing (MAS). Agnetis et al. [5] studied two-agent scheduling
problems with a single machine or two-machine open shop
environment and proved their complexity. Later, Agnetis et al.
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[6] and Cheng et al. [7] proposed scheduling problems that
contain more than two agents. Leung et al. [8] and Ng et al.
[9] analyzed problems with unknown computational com-
plexity or additional constraints such as precedence. Balasub-
ramanian et al. [10] and Tuong and Soukhal [11] applied the
concept of MAS to various machine environments such as
parallel machines and three-machine flow shop. Lee et al. [12]
constructed a solution framework for the two-agent schedul-
ing problem with NP-hard complexity by applying a branch-
and-bound (B&B) algorithm and simulated annealing. Yin
et al. [13] proposed polynomial or pseudopolynomial solu-
tions for two NP-hard problems to decide the due dates of
one agent while not exceeding themaximum regular function
value or the number of tardy jobs of the other agent.

Workers in real working environments gain job experi-
ence by doing the same tasks repeatedly, which may result in
jobs being completed faster than the normal processing time.
However, the actual execution time of completing a job may
deteriorate if repeated use of machinery causes mechanical
errors to occur or if a delayed start time causes the expected
processing time of a job to increase. The decrease in the
processing time in the former case is called the learning effect,
and the increase in the processing time in the latter case is
called the aging effect. These effects can be represented using
mathematical expressions, where the actual processing times
can be represented using position-based linear or exponential
functions, or the sum-of-processing-times-based functions.

A lot of research has been devoted to the learning and
aging effects in scheduling problems. Linear learning and
aging effects were introduced into the scheduling problem by
Cheng andWang [14], J. N. D. Gupta and S. K. Gupta [15], and
Browne and Yechiali [16]. Cheng andWang [14] considered a
scheduling problem where processing times were affected by
a simple linear learning effect, which revealed the complexity
of the problem. J. N. D. Gupta and S. K. Gupta [15] and
Browne and Yechiali [16] studied scheduling problems with
linear and polynomial aging effects and proposed a heuristic
algorithm to find a near optimal solution. Bachman and
Janiak [17] and Wang and Xia [18], motivated by Cheng and
Wang [14], proposed more simple and generalized learning
functions than those of Cheng and Wang [14]. Moreover,
Mosheiov [19], Sundararaghavan and Kunnathur [20], and
Bachman et al. [21] studied the complexity of scheduling
problems under linear aging effects and suggested solution
algorithms for polynomial solvable cases. Alidaee andWomer
[22] carried out a review of various scheduling problems
with linear aging effects noting their complexity and aging
function form. Yin et al. [23] suggested the single-machine
scheduling problem with linear aging effect under two-agent
consideration and provided the complexity and solvability
information for various combinations of the two agents’
objective functions.

Scheduling problemswith exponential learning and aging
effects were considered by Biskup [24]. Biskup [24] inves-
tigated their complexity and proposed a solution algorithm
to scheduling problems with exponential aging effects. Later,
Mosheiov [25, 26] and Mosheiov and Sidney [27] enriched
the contribution of Biskup [24] by considering several
machine environments and objective functions. Lee and Wu

[28] explored a two-machine flow shop scheduling problem
where each machine had its own learning effect. Cheng et al.
[29] presented a concise survey of scheduling problems
affected by linear, piecewise linear, and nonlinear aging
effects.

It was noted, however, that learning and aging effects
represented by linear or exponential functions cannot reflect
the amount of jobs already processed, which adversely causes
large variations in actual processing time values [30]. To
overcome this limitation, a new learning and aging function
was introduced based on the sum-of-processing-times of
single agent. Yin et al. [31] studied the single-machine
and flowshop scheduling problems with sum-of-processing-
times-based aswell as position-dependent learning effect. Yin
et al. [32] developed some approximation algorithms for
single-machine scheduling problem considering sum-of-
processing-times-based aging effect. In case of two agents, Liu
et al. [33] proposed a polynomial time algorithm under a
sum-of-processing-times-based aging effect and considered
the total completion time and makespan as the objective
functions of the two agents. Wu et al. [34] andWu [35] inves-
tigated a scheduling problem where one agent had a learning
effect and the second agent had an aging effect. The total
weighted completion time and maximum lateness were the
objective functions of the two agents, and they solved the
problemusing ant colony optimization and simulated anneal-
ing, respectively.

Note that of the performance measures considered in
these previous works, tardiness is not considered for two-
agent single-machine scheduling based on the sum-of-
processing-times, which is closely related to the due date.
Specifically, when a due date is not met, additional penalties
are accrued by tardiness; therefore, the due date is a crucial
index for a firm to maintain a solid relationship with a client.
As a special case of the tardiness restriction, we solve a
scheduling problem where the total weighted tardiness has a
very high computational complexity as shown in Figure 1
[36]. Here, 𝑤𝑗, 𝐶𝑗, 𝑇𝑗, and 𝑈𝑗 are the weight, completion
time, tardiness, and tardiness indicator of job 𝑗, respectively.
𝐶max and 𝐿max are the makespan and maximum lateness,
respectively. Furthermore, the direction of arrows represents
the difficulty of the objective functions; that is, the objective
function in the arrow head has higher complexity than that
in the arrow end.

Motivated by these remarks, we consider a two-agent
single-machine scheduling problem that minimizes the total
weighted tardiness for the first agent under the restriction that
no tardy job is allowed for the second agent. Moreover, the
actual processing times of all jobs are affected by the sum-
of-processing-times-based aging effect. We prove the NP-
hardness of the problem and design a B&B algorithm to find
an optimal solution by developing dominance properties and
a lower bound for the total weighted tardiness that makes the
search procedure efficient. Because B&B takes a long time to
find an optimal solution, we propose a genetic algorithm as
an efficient, near optimal solution approach. Four methods
to generate initial populations are considered, and edge
recombination crossover is adopted as a genetic operator,
which was suggested by Whitley et al. [37] and specialized
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Figure 1: Complexity hierarchies of objective functions in schedul-
ing problems.

for combinatorial optimization problems.Anumerical exper-
iment is designed and executed to evaluate the performance
of the proposed B&B and genetic algorithm.

The remainder of this paper is organized as follows.
Section 2 defines the problem and suggests a B&B algorithm,
including dominance properties and a lower bound. Section 3
develops an efficient genetic algorithm to obtain near optimal
solutions, and Section 4 evaluates the performance of the
suggested algorithms using a numerical experiment. Finally,
in Section 5, we summarize our results and discuss future
work.

2. Problem Definition and
a Branch-and-Bound Algorithm

2.1. Problem Definition. First, we define the notation used
throughout this paper and formally define the problem. The
notation is as follows:

𝑛: total number of jobs to be processed;
𝑛𝑋: the number of jobs to be processed by agent 𝑋,
where𝑋 ∈ {𝐴, 𝐵}, 𝑛𝐴 + 𝑛𝐵 = 𝑛;
𝐽
𝑋
𝑖 : the 𝑖th job of agent𝑋, where𝑋 ∈ {𝐴, 𝐵};

𝐽
𝐴
= {𝐽
𝐴
1 , 𝐽
𝐴
2 , . . . , 𝐽

𝐴
𝑛𝐴
}: set of jobs to be processed by

agent 𝐴;

𝐽
𝐵
= {𝐽
𝐵
1 , 𝐽
𝐵
2 , . . . , 𝐽

𝐵
𝑛𝐵
}: set of jobs to be processed by

agent 𝐵;

𝑝
𝑋
𝑖 : normal processing time of job 𝐽𝑋𝑖 , where 𝑋 ∈

{𝐴, 𝐵};
𝑤
𝑋
𝑖 : weight of job 𝐽

𝑋
𝑖 to be processed by agent 𝑋 ∈

{𝐴, 𝐵};
𝑝
𝑋
[𝑙]: normal processing time of any job assigned to

position 𝑙 in a sequence, where𝑋 ∈ {𝐴, 𝐵};
𝑝
𝑋
𝑖𝑟 : actual processing time of job 𝐽

𝑋
𝑖 assigned to

position 𝑟 in a sequence, where𝑋 ∈ {𝐴, 𝐵};
𝛼: aging index (0 < 𝛼 < 1);
𝑀: large constant positive value.

The scheduling problem under consideration is a single-
machine scheduling problem with two agents, 𝐴 and 𝐵.
They have jobs affected by a sum-of-processing-times-based
aging effect. The objective function to minimize is the total
weighted tardiness of agent 𝐴 under the restriction that no
tardy jobs are allowed for agent 𝐵. In particular, we focus
on the actual processing time 𝑝𝑋𝑖𝑟 of job 𝐽

𝑋
𝑖 assigned to 𝑟th

position in a sequence; that is,

𝑝
𝑋
𝑖𝑟 = 𝑝

𝑋
𝑖 (1 +

𝑟−1

∑

𝑙=1

𝑝
𝑋
[𝑙])

𝛼

. (1)

We formulate amixed integer programming (MIP)model
for the problem as follows. First, we arrange the jobs of the
two agents:

𝐽𝑖 =

{

{

{

𝐽
𝐴
𝑖 , if 1 ≤ 𝑖 ≤ 𝑛𝐴,

𝐽
𝐵
𝑖−𝑛𝐴

, if 𝑛𝐴 + 1 ≤ 𝑖 ≤ 𝑛𝐴 + 𝑛𝐵.
(2)

By defining a decision variable 𝑥𝑖𝑗, ∀𝑖 < 𝑗, 𝑖 = 1, 2, . . . , 𝑛 − 1
as

𝑥𝑖𝑗 =

{

{

{

1, if 𝐽𝑖 precedes 𝐽𝑗,

0, otherwise,
(3)

we can construct the following MIP model:

Min 𝑍 =

𝑛𝐴

∑

𝑖=1

𝑤
𝐴
𝑖 𝑇𝑖 (4)

subject to 𝑆𝑖 + 𝑝𝑖

⋅
[

[

1 +

𝑖−1

∑

𝑗=1

(𝑝𝑗𝑥𝑗𝑖) +

𝑛

∑

𝑗=𝑖+1

𝑝𝑗 (1 − 𝑥𝑖𝑗)
]

]

𝛼

= 𝐶𝑖,

∀𝑖 =1, 2, . . . , 𝑛

(5)

𝐶𝑖 − 𝑑𝑖 ≤ 𝑇𝑖 ∀𝑖 = 1, 2, . . . , 𝑛𝐴 (6)

𝐶𝑖 − 𝑑𝑖 ≤ 0, ∀𝑖 = 𝑛𝐴 + 1, 𝑛𝐴 + 2, . . . , 𝑛𝐴+𝑛𝐵

(7)

𝐶𝑖 ≤ 𝑆𝑗 +𝑀(1 − 𝑥𝑖𝑗) , ∀1 ≤ 𝑖 < 𝑗 ≤ 𝑛 (8)

𝐶𝑗 ≤ 𝑆𝑖 +𝑀𝑥𝑖𝑗, ∀1 ≤ 𝑖 < 𝑗 ≤ 𝑛 (9)

𝐶𝑖 ≥ 0, 𝑆𝑖 ≥ 0, 𝑇𝑖 ≥ 0, ∀𝑖 = 1, 2, . . . , 𝑛

(10)

𝑥𝑖𝑗 ∈ {0, 1} , ∀𝑖 < 𝑗, 𝑖 = 1, 2, . . . , 𝑛 − 1, (11)

where 𝐶𝑖, 𝑑𝑖, 𝑝𝑖, 𝑆𝑖, and 𝑇𝑖 are the completion time, due
date, normal processing time, starting time, and tardiness of
job 𝐽𝑖, respectively. Equation (4) is the objective function for
minimizing the total weighted tardiness of jobs for agent 𝐴.
Equation (5) represents the completion time of job 𝐽𝑖, which
considers the sum-of-processing-times-based aging effect.
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Specifically, the sum-of-processing-times of jobs already
processed are denoted by ∑𝑖−1𝑗=1(𝑝𝑗𝑥𝑗𝑖) and ∑

𝑛
𝑗=𝑖+1 𝑝𝑗(1 − 𝑥𝑖𝑗)

when 𝑗 < 𝑖 and 𝑗 > 𝑖, respectively. Equation (6) computes the
total tardiness of job 𝐽𝑖 for agent 𝐴, and (7) prevents jobs for
agent 𝐵 from being tardy. Equations (8) and (9) ensure that
the completion times of preceding jobs are less than or equal
to the starting times of subsequent jobs. Equation (10) is the
nonnegativity constraint, and (11) is the binary constraint of
𝑥𝑖𝑗.

To facilitate our discussion, we define the following
notations.

𝑑
𝑋
𝑖 : Due date of job 𝐽

𝑋
𝑖 to be processed by agent 𝑋 ∈

{𝐴, 𝐵}.
𝑇
𝐴
𝑖 : Tardiness of job 𝐽

𝐴
𝑖 to be processed by agent 𝐴,

where 𝑇𝐴𝑖 = max{𝐶𝐴𝑖 − 𝑑
𝐴
𝑖 , 0}.

𝐶
𝑋
𝑖 : Completion time of job 𝐽𝑋𝑖 to be processed by

agent𝑋 ∈ {𝐴, 𝐵}.

𝑈
𝐵
𝑗 : Tardiness index of job 𝐽

𝐵
𝑗 to be processed by agent

𝐵, where

𝑈
𝐵
𝑗 =

{

{

{

1, if 𝑇𝐵𝑗 > 0

0, if 𝑇𝐵𝑗 = 0.
(12)

Graham et al. [38] proposed a classification scheme
consisting of three fields,Ψ1 | Ψ2 | Ψ3, for various scheduling
problems. In this notation, Ψ1 is the machine environment
such as single-machine, flow shop, or job shop, Ψ2 is the
detailed information about the characteristics of jobs (e.g.,
precedence, preemption, and learning/aging effect), and the
last fieldΨ3 represents the objective function to be optimized.
Furthermore, Agnetis et al. [5] extended this notation into a
new scheme, Ψ1 | Ψ2 | Ψ

𝐴
3 : Ψ

𝐵
3 , to denote two objective

functions for two-agent scheduling problems. Based on this
notation, the scheduling problem considered in this paper
can be expressed as

1 | 𝑝
𝑋
𝑖𝑟 = 𝑝

𝑋
𝑖 (1 +

𝑟−1

∑

𝑙=1

𝑝
𝑋
[𝑙])

𝛼

|

𝑛𝐴

∑

𝑖=1

𝑤
𝐴
𝑖 𝑇
𝐴
𝑖 :

𝑛𝐵

∑

𝑗=1

𝑈
𝐵
𝑗 ≤ 0.

(13)

We now discuss the complexity of this problem. Leung
et al. [8] proved theNP-hardness of the problem 1 || ∑𝑛𝐴𝑖=1 𝐶

𝐴
𝑖 :

∑
𝑛𝐵
𝑗=1𝑈
𝐵
𝑗 ≤ 0, which is a special case of the problem 1 ||

∑
𝑛𝐴
𝑖=1 𝑇
𝐴
𝑖 : ∑

𝑛𝐵
𝑗=1𝑈
𝐵
𝑗 ≤ 0 subject to the condition that all

jobs of agent 𝐴 have the same due date, namely, 0. Moreover,
1 || ∑

𝑛𝐴
𝑖=1 𝑇
𝐴
𝑖 : ∑

𝑛𝐵
𝑗=1𝑈
𝐵
𝑗 ≤ 0 is a special case of 1 ||

∑
𝑛𝐴
𝑖=1 𝑤
𝐴
𝑖 𝑇
𝐴
𝑖 : ∑
𝑛𝐵
𝑗=1𝑈
𝐵
𝑗 ≤ 0 subject to the condition that all jobs

of agent 𝐴 have the same weight equal to 1. Thus, from the
NP-hard complexity of 1 || ∑𝑛𝐴𝑖=1 𝐶

𝐴
𝑖 : ∑

𝑛𝐵
𝑗=1𝑈
𝐵
𝑗 ≤ 0, we can

infer the NP-hardness of 1 || ∑𝑛𝐴𝑖=1 𝑇
𝐴
𝑖 : ∑

𝑛𝐵
𝑗=1𝑈
𝐵
𝑗 ≤ 0 and

1 || ∑
𝑛𝐴
𝑖=1 𝑤
𝐴
𝑖 𝑇
𝐴
𝑖 : ∑

𝑛𝐵
𝑗=1𝑈
𝐵
𝑗 ≤ 0, indicating that the problem

expressed in (13) also has NP-hard complexity.
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Figure 2: Two schedules 𝑆 and 𝑆󸀠 that include two adjacent jobs 𝐽𝑋𝑖
and 𝐽𝑋𝑗 .

2.2. A Branch-and-Bound Algorithm. Because the complexity
of the scheduling problem under consideration is NP-hard,
we first develop a B&B algorithm to find an optimal solution.
This B&B algorithm has the advantage of being able to obtain
the global optimal solution despite high complexity and
despite its poor computational efficiency resulting from a full
enumeration-based search process.Therefore, additional cri-
teria such as dominance properties and a lower bound must
be established to efficiently obtain an optimal solution. Baker
and Trietsch [39] defined dominance properties for combi-
natorial optimization problems as standards for excluding a
redundant subset suspected of not containing the optimal
solution; dominance properties can distinguish only a valu-
able subset containing the optimal solution from all subsets
in the solution space. Jouglet and Carlier [40] carried out a
literature review of a variety of dominance properties, cate-
gorized by characteristics and organized them according to
their utility in combinatorial optimization problems.

Motivated by these observations, in this section, we
propose two kinds of dominance properties based on opti-
mality and feasibility conditions to increase the speed of the
search process of the B&B algorithm. By comparing two
schedules, the optimality-based dominance property can
provide a standard to identify a superior schedule whose total
weighted tardiness is smaller than that of the other schedule.
The feasibility-based dominance property can be used to dis-
card infeasible schedules that contain tardy jobs for agent 𝐵.
As a result, through these optimality- and feasibility-based
dominance properties, an optimal solution can be acquired
without generating all possible branches and nodes.

In this paper, dominance properties are derived using a
pairwise interchange method applied to two adjacent jobs.
We assume that schedule 𝑆 includes two jobs, 𝐽𝑋𝑖 and 𝐽

𝑋
𝑗 , that

are scheduled consecutively in the 𝑟th and (𝑟 + 1)th positions
as shown in Figure 2. Furthermore, we consider another
schedule 𝑆󸀠 generated by interchanging jobs 𝐽𝑋𝑖 and 𝐽𝑋𝑗 in
schedule 𝑆. Partial sequences 𝜋 and 𝜋󸀠 are the scheduled and
unscheduled jobs, respectively. The starting times of 𝐽𝑋𝑖 in
schedule 𝑆 and the starting times of 𝐽𝑋𝑗 in schedule 𝑆󸀠 are set
to be equal to 𝑡.

To derive the dominance conditions between schedules 𝑆
and 𝑆󸀠, we can compute the following:

𝐶𝑖 (𝑆) = 𝑡 + 𝑝
𝑋
𝑖 (1 +

𝑟−1

∑

𝑙=1

𝑝
𝑋
[𝑙])

𝛼

,
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𝐶𝑗 (𝑆) = 𝑡 + 𝑝
𝑋
𝑖 (1 +

𝑟−1

∑

𝑙=1

𝑝
𝑋
[𝑙])

𝛼

+ 𝑝
𝑋
𝑗 (1 +

𝑟−1

∑

𝑙=1

𝑝
𝑋
[𝑙] + 𝑝

𝑋
𝑖 )

𝛼

,

𝐶𝑗 (𝑆
󸀠
) = 𝑡 + 𝑝

𝑋
𝑗 (1 +

𝑟−1

∑

𝑙=1

𝑝
𝑋
[𝑙])

𝛼

,

𝐶𝑖 (𝑆
󸀠
) = 𝑡 + 𝑝

𝑋
𝑗 (1 +

𝑟−1

∑

𝑙=1

𝑝
𝑋
[𝑙])

𝛼

+ 𝑝
𝑋
𝑖 (1 +

𝑟−1

∑

𝑙=1

𝑝
𝑋
[𝑙] + 𝑝

𝑋
𝑗 )

𝛼

.

(14)

Then, we establish the following three conditions that are
necessary to support the dominance of 𝑆 over 𝑆󸀠:

(a) 𝐶𝑗 (𝑆) < 𝐶𝑖 (𝑆
󸀠
) (15)

(b) ∑

𝑥∈{𝑖,𝑗}:𝐽𝐴
𝑥
∈𝐽𝐴

𝑤
𝐴
𝑥𝑇
𝐴
𝑥 (𝑆) ≤ ∑

𝑥∈{𝑖,𝑗}:𝐽𝐴
𝑥
∈𝐽𝐴

𝑤
𝐴
𝑥𝑇
𝐴
𝑥 (𝑆
󸀠
) (16)

(c) 𝐶𝐵𝑥 (𝑆) ≤ 𝑑
𝐵
𝑥 , for 𝑥 ∈ {𝑖, 𝑗} : 𝐽𝐵𝑥 ∈ 𝐽

𝐵
. (17)

Condition (a) guarantees that the sum of weighted tardiness
of jobs in 𝜋󸀠 for schedule 𝑆 is smaller than that of schedule 𝑆󸀠.
Condition (b) represents the dominance of schedule 𝑆 over
schedule 𝑆󸀠 with respect to the sum of weighted tardiness of
jobs 𝐽𝑋𝑖 and 𝐽

𝑋
𝑗 in 𝐽

𝐴. Condition (c) is the feasibility of the due
dates for jobs 𝐽𝑋𝑖 and 𝐽

𝑋
𝑗 in schedule 𝑆 for agent 𝐵.

Rudek [41] showed that the problem 1 | 𝑝𝑖𝑟 = 𝑝𝑖[1 +

∑
𝑟−1
𝑙=1 𝑓(𝑝[𝑙])]

𝛼
| 𝐶max is optimally solvable by scheduling jobs

in nonincreasing order of 𝑝𝑖 (i.e., longest processing time
(LPT) rule) if 0 < 𝛼 < 1 and 𝑑2𝑓/𝑑𝑝[𝑙]

2
≤ 0. For the

scheduling problem under consideration, 𝑓(𝑝[𝑙]) = 𝑝[𝑙] and
𝑑
2
𝑓/𝑑𝑝[𝑙]

2
= 0, which means that 𝐶max can be minimized by

arranging jobs according to the LPT rule; that is, (15) holds if
the processing times of jobs 𝐽𝑋𝑖 and 𝐽

𝑋
𝑗 satisfy𝑝

𝑋
𝑖 > 𝑝

𝑋
𝑗 . Based

on these arguments, the following dominance properties,
based on optimality and feasibility, hold.

Property 1. For schedule 𝑆 with two tardy jobs 𝐽𝐴𝑖 and 𝐽𝐴𝑗
scheduled in the 𝑟th and (𝑟 + 1)th positions, 𝑆 dominates 𝑆󸀠
if

(i) 𝑝𝐴𝑖 > 𝑝
𝐴
𝑗 ,

(ii) 𝑤𝐴𝑖 𝑝
𝐴
𝑖 /((1 + ∑

𝑟−1
𝑙=1 𝑝
𝑋
[𝑙] + 𝑝

𝑋
𝑖 )
𝛼
− (1 + ∑

𝑟−1
𝑙=1 𝑝
𝑋
[𝑙])
𝛼
) >

𝑤
𝐴
𝑗 𝑝
𝐴
𝑗 /((1 + ∑

𝑟−1
𝑙=1 𝑝
𝑋
[𝑙] + 𝑝

𝑋
𝑗 )
𝛼
− (1 + ∑

𝑟−1
𝑙=1 𝑝
𝑋
[𝑙])
𝛼
),

(iii) 𝑤𝐴𝑖 /𝑝
𝐴
𝑖 > 𝑤

𝐴
𝑗 /𝑝
𝐴
𝑗 .

Proof. Taken together, (i) of Property 1 and the results of
Rudek [41] imply 𝐶𝑗(𝑆) < 𝐶𝑖(𝑆

󸀠
). Moreover,

𝑤
𝐴
𝑗 𝑇
𝐴
𝑗 (𝑆
󸀠
) + 𝑤
𝐴
𝑖 𝑇
𝐴
𝑖 (𝑆
󸀠
) − 𝑤
𝐴
𝑖 𝑇
𝐴
𝑖 (𝑆) − 𝑤

𝐴
𝑗 𝑇
𝐴
𝑗 (𝑆)

= 𝑤
𝐴
𝑖 𝑝
𝐴
𝑗 (1 +

𝑟−1

∑

𝑙=1

𝑝
𝑋
[𝑙])

𝛼

− 𝑤
𝐴
𝑗 𝑝
𝐴
𝑖 (1 +

𝑟−1

∑

𝑙=1

𝑝
𝑋
[𝑙])

𝛼

+ 𝑤
𝐴
𝑖 𝑝
𝐴
𝑖 [(1 +

𝑟−1

∑

𝑙=1

𝑝
𝑋
[𝑙] + 𝑝

𝐴
𝑗 )

𝛼

− (1 +

𝑟−1

∑

𝑙=1

𝑝
𝑋
[𝑙])

𝛼

]

− 𝑤
𝐴
𝑗 𝑝
𝐴
𝑗 [(1 +

𝑟−1

∑

𝑙=1

𝑝
𝑋
[𝑙] + 𝑝

𝐴
𝑖 )

𝛼

− (1 +

𝑟−1

∑

𝑙=1

𝑝
𝑋
[𝑙])

𝛼

] ≥ 0

(18)

because

𝑤
𝐴
𝑖 𝑝
𝐴
𝑖

(1 + ∑
𝑟−1
𝑙=1 𝑝
𝑋
[𝑙]
+ 𝑝
𝑋
𝑖 )
𝛼
− (1 + ∑

𝑟−1
𝑙=1 𝑝
𝑋
[𝑙]
)

𝛼

>

𝑤
𝐴
𝑗 𝑝
𝐴
𝑗

(1 + ∑
𝑟−1
𝑙=1 𝑝
𝑋
[𝑙]
+ 𝑝
𝑋
𝑗 )
𝛼
− (1 + ∑

𝑟−1
𝑙=1 𝑝
𝑋
[𝑙]
)

𝛼 ,

𝑤
𝐴
𝑖

𝑝
𝐴
𝑖

>

𝑤
𝐴
𝑗

𝑝
𝐴
𝑗

.

(19)

We do not consider (17) because both 𝐽𝐴𝑖 and 𝐽
𝐴
𝑗 are jobs of

agent 𝐴. Therefore, 𝑆 dominates 𝑆󸀠.

Property 2. For schedule 𝑆with two jobs 𝐽𝐴𝑖 and 𝐽
𝐵
𝑗 scheduled

in the 𝑟th and (𝑟 + 1)th positions, 𝑆 dominates 𝑆󸀠 if

(i) 𝑝𝐴𝑖 > 𝑝
𝐵
𝑗 ,

(ii) 𝑡 + 𝑝𝐴𝑖 (1 + ∑
𝑟−1
𝑙=1 𝑝
𝑋
[𝑙])
𝛼
+ 𝑝
𝐵
𝑗 (1 + ∑

𝑟−1
𝑙=1 𝑝
𝑋
[𝑙] + 𝑝

𝐴
𝑖 )
𝛼
< 𝑑
𝐵
𝑗 .

Proof. It follows from (i) of Property 2 that 𝐶𝑗(𝑆) < 𝐶𝑖(𝑆
󸀠
).

Moreover,

𝑤
𝐴
𝑖 𝑇
𝐴
𝑖 (𝑆
󸀠
) − 𝑤
𝐴
𝑖 𝑇
𝐴
𝑖 (𝑆)

= 𝑤
𝐴
𝑖 max[𝑡 + 𝑝𝐵𝑗 (1 +

𝑟−1

∑

𝑙=1

𝑝
𝑋
[𝑙])

𝛼

+ 𝑝
𝐴
𝑖 (1 +

𝑟−1

∑

𝑙=1

𝑝
𝑋
[𝑙] + 𝑝

𝐵
𝑗)

𝛼

− 𝑑
𝐴
𝑖 , 0]

− 𝑤
𝐴
𝑖 max[𝑡 + 𝑝𝐴𝑖 (1 +

𝑟−1

∑

𝑙=1

𝑝
𝑋
[𝑙])

𝛼

− 𝑑
𝐴
𝑖 , 0] ≥ 0.

(20)

From (ii) of Property 2, 𝐶𝑗(𝑆) − 𝑑
𝐵
𝑗 = 𝑡 + 𝑝

𝐴
𝑖 (1 + ∑

𝑟−1
𝑙=1 𝑝
𝑋
[𝑙])
𝛼
+

𝑝
𝐵
𝑗 (1+∑

𝑟−1
𝑙=1 𝑝
𝑋
[𝑙]+𝑝
𝐴
𝑖 )
𝛼
−𝑑
𝐵
𝑗 ≤ 0.Therefore, 𝑆 dominates 𝑆󸀠.

Property 3. For schedule 𝑆with two jobs 𝐽𝐵𝑗 and 𝐽
𝐴
𝑖 scheduled

in the 𝑟th and (𝑟 + 1)th positions, 𝑆 dominates 𝑆󸀠 if

(i) 𝑝𝐵𝑖 > 𝑝
𝐴
𝑗 ,

(ii) 𝑡 + 𝑝𝐵𝑖 (1 + ∑
𝑟−1
𝑙=1 𝑝
𝑋
[𝑙])
𝛼
+ 𝑝
𝐴
𝑗 (1 + ∑

𝑟−1
𝑙=1 𝑝
𝑋
[𝑙] + 𝑝

𝐴
𝑖 )
𝛼
< 𝑑
𝐴
𝑗 ,

(iii) 𝑡 + 𝑝𝐵𝑖 (1 + ∑
𝑟−1
𝑙=1 𝑝
𝑋
[𝑙])
𝛼
< 𝑑
𝐵
𝑖 .
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Proof. From (i) of Property 3, 𝐶𝑗(𝑆) < 𝐶𝑖(𝑆
󸀠
). Furthermore,

𝑤
𝐴
𝑗 𝑇
𝐴
𝑗 (𝑆
󸀠
) − 𝑤
𝐴
𝑗 𝑇
𝐴
𝑗 (𝑆)

= 𝑤
𝐴
𝑗 max[𝑡 + 𝑝𝐴𝑗 (1 +

𝑟−1

∑

𝑙=1

𝑝
𝑋
[𝑙])

𝛼

− 𝑑
𝐴
𝑗 , 0]

− 𝑤
𝐴
𝑗 max[𝑡 + 𝑝𝐵𝑖 (1 +

𝑟−1

∑

𝑙=1

𝑝
𝑋
[𝑙])

𝛼

+ 𝑝
𝐴
𝑗 (1 +

𝑟−1

∑

𝑙=1

𝑝
𝑋
[𝑙] + 𝑝

𝐵
𝑖 )

𝛼

− 𝑑
𝐴
𝑗 , 0] = 0,

(21)

which is a consequence of (ii) of Property 3. In addition,
𝐶𝑖(𝑆) − 𝑑

𝐵
𝑖 = 𝑡 + 𝑝

𝐵
𝑖 (1 + ∑

𝑟−1
𝑙=1 𝑝
𝑋
[𝑙])
𝛼
− 𝑑
𝐵
𝑖 ≤ 0 since 𝑡 + 𝑝

𝐵
𝑖 (1 +

∑
𝑟−1
𝑙=1 𝑝
𝑋
[𝑙])
𝛼
< 𝑑
𝐵
𝑖 . Therefore, 𝑆 dominates 𝑆󸀠.

Property 4. For schedule 𝑆with two jobs 𝐽𝐵𝑖 and 𝐽
𝐵
𝑗 scheduled

in the 𝑟th and (𝑟 + 1)th positions, 𝑆 dominates 𝑆󸀠 if

(i) 𝑝𝐵𝑖 > 𝑝
𝐵
𝑗 ,

(ii) 𝑡 + 𝑝𝐵𝑖 (1 + ∑
𝑟−1
𝑙=1 𝑝
𝑋
[𝑙])
𝛼
< 𝑑
𝐵
𝑖 ,

(iii) 𝑡 + 𝑝𝐵𝑖 (1 + ∑
𝑟−1
𝑙=1 𝑝
𝑋
[𝑙])
𝛼
+ 𝑝
𝐵
𝑗 (1 + ∑

𝑟−1
𝑙=1 𝑝
𝑋
[𝑙] + 𝑝

𝐵
𝑖 )
𝛼
< 𝑑
𝐵
𝑗 .

Proof. From (i) of Property 4, 𝐶𝑗(𝑆) < 𝐶𝑖(𝑆
󸀠
). Moreover,

𝐶𝑖(𝑆) − 𝑑
𝐵
𝑖 = 𝑡 + 𝑝

𝐵
𝑖 (1 + ∑

𝑟−1
𝑙=1 𝑝
𝑋
[𝑙])
𝛼
− 𝑑
𝐵
𝑖 ≤ 0 since 𝑡 +

𝑝
𝐵
𝑖 (1+∑

𝑟−1
𝑙=1 𝑝
𝑋
[𝑙])
𝛼
< 𝑑
𝐵
𝑖 . Furthermore, from (iii) of Property 4,

𝐶𝑗(𝑆)−𝑑
𝐵
𝑗 = 𝑡+𝑝

𝐵
𝑖 (1+∑

𝑟−1
𝑙=1 𝑝
𝑋
[𝑙])
𝛼
+𝑝
𝐵
𝑗 (1+∑

𝑟−1
𝑙=1 𝑝
𝑋
[𝑙]+𝑝
𝐵
𝑖 )
𝛼
−𝑑
𝐵
𝑗 ≤

0. Note that (17) is not considered because both 𝐽𝐵𝑖 and 𝐽
𝐵
𝑗 are

jobs of agent 𝐵. As a result, 𝑆 dominates 𝑆󸀠.

Property 5. If there is any unscheduled job 𝐽𝐵𝑖 with 𝑑
𝐵
𝑖 < 𝑡,

the schedule is infeasible.

Proof. Since 𝑑𝐵𝑖 < 𝑡, job 𝐽𝐵𝑖 becomes tardy even though
it is processed immediately. Therefore, the schedule is not
feasible.

Property 6. If there are two jobs 𝐽𝑋𝑖 and 𝐽𝐵𝑗 scheduled in the
𝑟th and (𝑟 + 1)th positions, respectively, and job 𝐽𝐵𝑗 satisfies
𝑡 + 𝑝
𝑋
𝑖 (1 + ∑

𝑟−1
𝑙=1 𝑝
𝑋
[𝑙])
𝛼
> 𝑑
𝐵
𝑗 , the schedule is infeasible.

Proof. Since 𝑡+𝑝𝑋𝑖 (1+∑
𝑟−1
𝑙=1 𝑝
𝑋
[𝑙])
𝛼
> 𝑑
𝐵
𝑗 , job 𝐽

𝐵
𝑗 becomes tardy.

Therefore, the schedule is not feasible.

A lower bound (LB) is also important to support an
efficient search process for the B&B algorithm. The LB of
a node is the expected minimum value of the objective
function, which can be obtained by exploring the node.When
the incumbent solution of the total weighted tardiness is
𝑧𝑐, an objective value better than 𝑧𝑐 cannot be obtained by
branching any node whose lower bound is larger than 𝑧𝑐

(a criteria for fathoming). To calculate the LB of a certain
node for the scheduling problem under consideration, we
suggest the following procedure. For any node with partially
scheduled and unscheduled jobs,

Step 1. Compute the total weighted tardiness of jobs already
scheduled for agent 𝐴 and denote this quantity by LB PS.

Step 2. Let the largest due date of the unscheduled jobs for
agent 𝐴 be 𝑑.

Step 3. Consider a subproblem consisting of all unscheduled
jobs for agent 𝐴 with the objective of minimizing the total
weighted tardiness, where the due dates are fixed to the
common value 𝑑. If we do not consider aging effects, this
subproblem can be optimized by scheduling jobs using the
weighted shortest processing time (WSPT) rule [36]. Let
LB US denote the total weighted tardiness for the optimal
solution. If there is no job for agent 𝐴, let LB US = 0.

Step 4. For the node under consideration, let LB = LB PS +
LB US.

3. Genetic Algorithm

Even though the efficiency of the B&B algorithm can be
improved using the dominance properties and LB, its com-
putational efficiency is relatively low because it is based on
enumeration search. Thus, we propose an efficient genetic
algorithm (GA) that is a metaheuristic for finding a near
optimal solution. GAs are generally used to find solutions
by mimicking the evolution process of an organism; they
artificially contain the selection, crossover, andmutation pro-
cedures that occur in the course of evolution. The details of
the suggested GA are discussed in the following subsections.

3.1. Representation Scheme of a Chromosome. Thefirst step of
solving an optimization problem using a GA is to represent
the genes on a chromosome. The most common binary
encoding scheme uses 0 and 1, which is not suitable for our
scheduling problem because a scheduling problem solution
is a sequence of jobs. Therefore, we adopt permutation
encoding designed for combinatorial optimization problems
such as the travelling salesman problem [42]. Permutation
encoding employs a structure of chromosomes as depicted
in Figure 3, where one job corresponds to one gene. The
positions of genes denote the orders of jobs in a sequence
represented by the corresponding chromosome. To make the
sequence feasible, we only consider schedules that include no
tardy jobs for agent 𝐵.

3.2. Initial Population. Metaheuristic solution algorithms,
including GAs, have global search strategies that are signifi-
cantly affected by the initial population. By using an appro-
priate initial population, a good solution can be obtained
with a good fitness value or decreased computation time. We
consider four different kinds of initial populations of size 𝑄.
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Position 2 Position 3 Position 4 Position nPosition 1

Job 3 Job 7 Job 2 Job n· · ·Job 5

Figure 3: Representation of a chromosome using permutation
encoding.

Initial Population 1. All jobs are scheduled randomly.

Initial Population 2. Jobs of agent𝐵 are arranged first using the
earliest due date (EDD) rule, and continually jobs of agent 𝐴
are arranged randomly.

Initial Population 3. Jobs of both agents 𝐴 and 𝐵 are arranged
using the EDD rule, while considering the jobs of agent 𝐵
first.

Initial Population 4. Jobs of agent 𝐵 are arranged first using
the EDD rule, and continually jobs of agent 𝐴 are arranged
using the weighted EDD (wEDD) rule.

3.3. Fitness Function. Our goal is to pass down a solution
with promising features to the next generation to achieve
continuous improvements; resultantly, repeated iterations
from generation to generation are advantageous. A fitness
function is used to evaluate GA solutions and measure how
they satisfy the objective of the problem. A superior solution
should have a larger fitness function value than all other
solutions. Therefore, we define the fitness function inversely
proportional to the total weighted tardiness of agent 𝐴 as

𝑓 value = 𝐾

Total Weighted Tardiness
, (22)

where𝐾 is a constant.

3.4. Crossover Operation. A crossover operation is a genetic-
type process used to produce newoffspringwhere the features
of two parent chromosomes are combined. The various
crossover operators can be classified according to where the
crossover occurs andwhose traits are passed down. For exam-
ple, a crossover operator, using one or two points, exchanges
genes by choosing the corresponding points of parent chro-
mosomes; in contrast, a uniform crossover operator makes
offspring inherit features uniformly from parents. However,
a general crossover operator is not suitable for the encoding
scheme employed in this paper because duplication of jobs
can occur in offspring.Thus,we apply the edge recombination
operator (ERO), which can effectively generate a feasible
solution to the TSP and other scheduling problems. The
ERO generates offspring based on an edge map consisting
of information for the edges between two adjacent jobs. The
procedure for generating a new child is as follows [37]. Note
that two offspring are generated from two parents.

Step 1. The edge map is constructed by analyzing two parent
chromosomes and storing the edge information from two
adjacent jobs. A schedule of offspring is generated based on

the edge map. For example, consider two chromosomes P1:
2-3-1-4-5-6 and P2: 1-5-2-4-3-6. The edge map is derived as
follows:

Job 1: 3-4-5
Job 2: 3-5-4
Job 3: 2-1-4-6
Job 4: 1-5-2-3
Job 5: 4-6-1-2
Job 6: 5-3

Step 2. The first job in the schedule is chosen randomly and
removed from the edge map. If Job 1 is chosen as the first job,
it is eliminated from the edge map.

Step 3. The next job is selected based on the connection
information of the currently considered job in the edge map.
If Job 1 was selected, Job 3, 4, or 5 can be selected as the next
job. If there is no job that can be selected on the edge map,
an arbitrary node can be accepted. However, before accepting
one job, two mutation operators are applied sequentially,
which are explained below.

Step 4. Steps 2 and 3 are repeated until there is no unsched-
uled job.

3.5. Mutation. Sometimes in nature an offspring chromo-
some is affected by mutations in the genetic process. A muta-
tion is an unintended change of a genetic feature that results
in the occurrence of new offspring with different features
than the parental generation. This alteration can be a source
of maintaining diversity in a species or as the foundation
for evolution. A mutation operator, such as changing the
generated sequence or causing a bit inversion, artificially
imitates the real genetic operation occurring in nature. Using
a simulated mutation operator can prevent a GA from
converging to a local optimum.We develop the following two
mutation operators occurring with a probability of 𝑝𝑚 (0 <
𝑝𝑚 < 1) that take the chromosomal structure and crossover
operator into account, that is, mutation occurs when a ran-
domly generated number is less than or equal to𝑝𝑚.Mutation
1 is to consider a job not in the edge map and mutation 2 is to
choose another job by rejecting the selected job.

Mutation 1.An edge not in the edgemapmay be selected even
though the edge map of the current job is not empty.

Mutation 2.The selected job is rejected and one of remaining
jobs is selected randomly.

3.6. Population Renewal and Termination Criteria. After a
new generation with size 𝑄 is produced using the crossover
and mutation operations, the fitness of each chromosome is
evaluated. As a result, a new population of size 𝑄 is created
by selecting chromosomes with high fitness values from
the current population and newly generated offspring. The
crossover and mutation operations are applied to the initial
and newpopulation by choosing parent chromosomes, where
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Figure 4: Ranges of due dates generated by two and three parameters.

a roulette wheel selection is performed by assigning selection
probability values to chromosomes according to their fitness
values. As a result, the solution space can be efficiently
explored, and species diversity can be preserved.

Meanwhile, if an iteratively obtained solution meets
predefined standards for stopping, the GA terminates since
additional executions are insignificant. Examples of stopping
conditions include reaching a fixed number of iterations
or depleting the allocated computing capacity. We propose
terminating the iterative process when there are no enhance-
ments for 𝑁 consecutive generations. This proposed termi-
nation condition uses the available computing power more
flexibly than other criteria [43].

4. A Numerical Experiment

4.1. Experimental Design. We designed a numerical experi-
ment to evaluate the performance of the proposed B&B algo-
rithm and GA. Parameters for the scheduling problem under
consideration were generated as follows. We set the value of
the aging index 𝛼 to 0.05 and considered three cases for the
number of jobs; that is, 𝑛 = 8, 10, 12. The normal processing
time 𝑝𝑋𝑖 and weight 𝑤𝑋𝑖 for job 𝐽𝑋𝑖 were generated using
random integer values between 1 and 20, and both agents
𝐴 and 𝐵 processed the same number of jobs. An integer-
valued due date 𝑑𝑋𝑖 for job 𝐽

𝑋
𝑖 was selected from a uniform

distribution in the range

𝑇 − (𝜏 +

𝑅

2

)𝑇 ≤ 𝑑
𝑋
𝑖 ≤ 𝑇 − (𝜏 −

𝑅

2

)𝑇, (23)

where 𝑇 is the sum of normal processing times of all jobs,
𝜏 is the tardiness factor, and 𝑅 is the due date range factor.
Both 𝜏 and 𝑅 are real numbers randomly generated between
0 and 1. From (23), we can generate a scheduling problemwith
jobs whose due dates are not too small or large.Moreover, due
dates generated using three parameters (𝑇, 𝜏, and 𝑅) permit
more various time windows including asymmetric regions
that can be explored; this is not the case for time windows
generated using only two parameters (𝜆 and 𝑇) as shown in
Figure 4. As a result, we are able to consider dynamic due date
situations.

We planned a total of 3 × 2 × 4 = 24 experiments; in
particular, we considered three cases of 𝑛 (𝑛 = 8, 10, 12), two
tardiness factors (𝜏 = 0.2, 0.4), and four due date range
factors (𝑅 = 0.2, 0.4, 0.6, 0.8). The reason for using only two
levels of 𝜏 and four levels of 𝑅 is that due dates generated

using large values of 𝜏 are so tight that a job of agent
𝐵 inevitably becomes tardy, which violates the feasibility
condition. We randomly generated 30 problem instances for
each configuration (𝑛, 𝜏, 𝑅). Additional parameters of the GA
were determined experimentally; that is, 𝑄 = 30, 𝑝𝑚 = 0.01,
𝐾 = 100, and𝑁 = 5.

Performance of the B&B algorithm was analyzed by
recording the average and standard deviation of the number
of explored nodes and the elapsed execution time. However,
the computational efficiency of the B&B algorithm was very
low despite its ability to find an optimal solution. Thus, we
assessed how effectively the proposed dominance properties
and LB support the search process of the B&B algorithm.
Despite its ability to execute in a short period of time, the
GA cannot assure a global optimal solution. Since the quality
of the obtained solution and computing efficiency are impor-
tant, we evaluated the solution obtained using the proposed
GA based on its proximity to the optimal solution; specifi-
cally, we used the mean and standard deviation of the error
rate defined by

Error rate (%) =
𝑉 − 𝑉𝑂

𝑉𝑂

× 100 (%) , (24)

where𝑉 is the total weighted tardiness of agent𝐴 obtained by
theGA and𝑉𝑂 is the optimal total weighted tardiness of agent
𝐴 obtained by the B&B algorithm. The computing efficiency
of the GA was also recorded.

4.2. Analysis of Experimental Results. We implemented the
B&B algorithm and GA using MATLAB R2012 and per-
formed the experiments on a PC platform with 16GB RAM
and an Intel(R) Core(TM) i5-3570 CPU 3.40GHz. Table 1
summarizes the results of the experiment. Thirty problem
instances were applied to each (𝑛, 𝜏, 𝑅) configuration, and we
computed the mean and standard deviation of the execution
time, the number of generated nodes for the B&B algorithm,
and the error rate of the GA. We considered four different
methods to generate an initial population GA𝑖 (𝑖 = 1, 2, 3, 4),
corresponding to the initial population 𝑖 (𝑖 = 1, 2, 3, 4) in
Section 3.2.

TheB&B algorithm suggested in this paper found optimal
solutions in a reasonable amount of time. For example, for a
scheduling problem with eight jobs, there exist 8! = 40,320
possible cases; the proposed B&B algorithm was able to
find an optimal solution by exploring approximately 2,500–
6,000 nodes, which is only 6–16% of all possible cases. This
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ratio (i.e., the proportion of nodes explored to the total
number of possible nodes), decreased as the number of jobs
increased. Even for a scheduling problem with 12 jobs, which
is the largest job size among the experimental configurations,
the optimal solution could be found by visiting only 1%
of all possible cases. These results imply that the suggested
dominance properties and LB successfully support the search
process of the B&B algorithm.

In terms of parameters, we observed that the number of
nodes explored to derive an optimal solution decreased in
configurations with a high value of 𝜏, if the number of jobs
remained constant. For 𝑛 = 10 and 𝑅 = 0.2, the scheduling
problems with 𝜏 = 0.2 required an average of 241,133 visited
nodes to obtain an optimal solution, whereas scheduling
problems with 𝜏 = 0.4 required 25,389 visited nodes, that is,
10% of the former case. Increasing 𝜏 shortens the due date in
(23). A tight due date reduces the number of nodes that must
be visited sincemany nodes violate the dominance properties
of feasibility, rendering them fathomed.

We also observed the influence of 𝑅 on the outcome of
configuration (𝑛, 𝜏) = (10, 0.2). As 𝑅 increased from 0.2
to 0.8, the standard deviation of the number of nodes and
execution times by the B&B increased by a factor of 2.5, that
is, 43,947 to 110,233. This is because 𝑅 and 𝜏 determine the
due date, especially its deviation as in (23). Therefore, large
values of 𝑅 generate jobs with largely deviated due dates
compared to jobs generated by low values of𝑅.This deviation
of due dates causes a significant difference in the standard
deviation of the number of nodes even though the average
number of nodes is similar. We observed the deviation was
maximized in configuration (𝑛, 𝜏) = (8, 0.4); specifically, the
largest standard deviation of the number of explored nodes
was 10 times larger than the smallest one. This means that
the number of nodes visited varies depending on the com-
bination of parameters (𝜏, 𝑅) although the number of jobs
𝑛 remains the same. As a result, there is a close relationship
between the performance of the B&B algorithm and param-
eters (𝜏, 𝑅), which strongly influences the due dates.

We also determined that the GA was more efficient than
the B&B algorithm because it took only less than 3 seconds,
even in the worst case, and had a low error rate of approx-
imately 1%. Furthermore, the GA was rarely affected by
variations in parameters (𝜏, 𝑅); on the other hand, the mean
and standard deviation of the B&B algorithmwere drastically
affected by the values of (𝜏, 𝑅). As the number of jobs 𝑛
increased, the execution time of the GA increased robustly
from 0.76 to 1.11 and 2.12 seconds, whereas those of the B&B
algorithm increased from 1.68 to 66.91 and 979.81 seconds.
The execution times of the GA were only affected by the
number of jobs 𝑛, that is, changes in (𝜏, 𝑅) had no effect. The
error rates of GA𝑖 (𝑖 = 1, 2, 3, 4)maintained a stable tendency
around 1% and were independent of configuration changes.

We applied the paired 𝑡-test to statistically verify the
performance differences of the four proposedGAs in terms of
their error rates.Wedefined the variable𝑑𝑖 as the difference of
the 𝑖th paired values of error rates of two corresponding
GAs and computed the sample mean difference 𝑑 and sample
standard deviation 𝑠𝑑 as follows:

𝑑 =

1

𝑛

𝑛

∑

𝑖=1

𝑑𝑖,

Table 2: Results of paired 𝑡-test between two GAs.

Comparison target 𝑡-statistic Acceptance of𝐻0
GA1 versus GA2 1.2103 Accept (|𝑡| < 2.045)
GA1 versus GA3 2.8579 Reject (|𝑡| > 2.045)
GA1 versus GA4 3.8179 Reject (|𝑡| > 2.045)
GA2 versus GA3 2.3929 Reject (|𝑡| > 2.045)
GA2 versus GA4 3.5189 Reject (|𝑡| > 2.045)
GA3 versus GA4 1.6627 Accept (|𝑡| < 2.045)

𝑠𝑑 =
√
∑
𝑛
𝑖=1 (𝑑𝑖 − 𝑑)

2

𝑛 − 1

,

(25)

where 𝑛 = 30. We established the following hypothesis set

𝐻0 : 𝜇𝑑 = 0,

𝐻1 : 𝜇𝑑 ̸= 0,

(26)

where hypothesis𝐻1means that the performance of twoGAs
under consideration is significantly different. Because 𝑑 has
a normal distribution with an unknown variance, using the
Central LimitTheorem [44], the test 𝑡-statistic can be defined
with 29 degrees of freedom as

𝑡 =

𝑑

𝑠𝑑/√𝑛
. (27)

For a 95% confidence level, the rejection region of this test
is |𝑡| > 𝑡0.025,29 = 2.045; the 𝑡-statistics calculated for the
error rates are given in Table 2. From the acceptance and
rejection results in Table 2, we observed that there are two
groups of GAs, (GA1,GA2) and (GA3,GA4), with similar
error rates, whereas (GA1,GA2) and (GA3,GA4) have signif-
icant differences.

We also determined if the error rate for one group of GAs
was larger than that of another group of GAs. We considered
additional paired 𝑡-test and established a hypothesis set based
on the experimental result such that 𝑑 = 𝑋1 − 𝑋3 > 0 as
follows:

𝐻0 : 𝜇
13
𝑑 ≤ 0,

𝐻1 : 𝜇
13
𝑑 > 0,

(28)

where𝐻1 : 𝜇
13
𝑑 > 0means that the error rate of GA1 is larger

than that of GA3. We compared two GAs using a one-tailed
𝑡-test with the rejection region 𝑡 > 𝑡0.05,29 = 1.699. The 𝑡-
statistic calculated for the difference between GA1 and GA3
was 𝑡 = 2.8579 as shown in Table 2, which is in the rejection
region. Thus, we reject 𝐻0 and conclude that (GA3,GA4) is
superior to (GA1,GA2).

The experimental results imply that the accuracy and
performance of the GA can be enhanced by using an initial
population that is more suitable to the target problem.
More specifically, a superior GA could be developed to find
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a suitable solution to the scheduling problem under consid-
eration by assigning jobs of agent 𝐵 first according to the
EDD rule and continually the jobs of agent 𝐴 according to
either the EDDorwEDD rules.TheEDDandwEDD rules are
advantageous scheduling policies with respect to the due date
and tardiness, which positively affects the objective function
considered in this paper.

5. Conclusion

We considered a single-machine scheduling problem with
two competing agents and a sum-of-processing-times-based
aging effect.The objective function was to minimize the total
weighted tardiness for the first agent under the restriction that
no tardy jobs are permitted for the second agent. We sug-
gested a B&B algorithm with efficient dominance properties
and LB to find an optimal solution. Because this scheduling
problem is NP-hard, we also developed an efficient GA by
designing an appropriate representation structure of chro-
mosomes, valuable initial populations, and crossover and
mutation operators. To verify the performance of the sug-
gested algorithms, we conducted a numerical experiment
using randomly generated problem instances.

To date, very little research has been conducted on per-
formance measures that consider tardiness for a two-agent,
single-machine scheduling based on the sum-of-processing-
times.This kind of scheduling problem is closely related to the
due date and additional penalties accrued on top of existing
costs. The due date is a crucial index for a firm to maintain
a solid relationship with a client. Therefore, we anticipate
that these results will be used to construct a new solution
framework for scheduling problems with sum-of-processing-
times-based aging effects in actual industrial fields such as
rolling mill and metallurgical processes in the steel industry
or remedying an epidemic process.

In the future, we will consider flow-shop, parallel
machines, or a combination of other objective functions.
Moreover, learning or aging effects with different functions
will be considered as additional options. Furthermore, wewill
consider other metaheuristics such as simulated annealing or
particle swarmoptimization as potential solution approaches.
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