
Research Article
Extremum Seeking Based Fault-Tolerant Cooperative
Control for Multiagent Systems

Fu Jiang, Xiaoyong Zhang, Wentao Yu, Heng Li, Jun Peng, and Yong He

School of Information Science and Engineering, Central South University, Changsha 410075, China

Correspondence should be addressed to Xiaoyong Zhang; zhangxy@csu.edu.cn

Received 18 July 2014; Revised 17 October 2014; Accepted 27 October 2014

Academic Editor: Fanglai Zhu

Copyright © 2015 Fu Jiang et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We propose a novel fault-tolerant cooperative control strategy for multiagent systems. A set of unknown input observers for
each agent are constructed for fault detection. Then a real-time adaptive extremum seeking algorithm is utilized for adaptive
approximation of fault parameter. We prove that the consensus can be still reached by regulating the interconnection weights
and changing the connection topology of the fault agent. A numerical simulation example is given to illustrate the feasibility and
effectiveness of the proposed method.

1. Introduction

Recent years have seen a growing interest in the coop-
erative control of multiagent systems [1, 2]. Cooperative
multiagent system refers to the concept that multiple agents
work together to complete a task or achieve a target state
according to the cooperative control law [3]. With the rapid
development of embedded systems, complex algorithms can
be effectively implemented in multiagent systems.

In multiagent systems, a fault occurring in any agent may
have an impact on other agents, which is different from the
traditional faults occurring in isolated systems [4]. Moreover,
when faults occur to agents, the topology of the multiagent
system may change [5]. Therefore, fault detection should
perform fast detecting to avoid affecting other agents, and
fault-tolerant control should make the system has endurance
to the failures while keeping the topology structure.

Fault detection ofmultiagent systems has to be completed
before fault tolerance. In the last decade, scholars proposed
different methods for fault detection, such as observer-based
methods [6, 7], parity equation [8], and the identification-
based method [9]. Shames et al. derived sufficient conditions
for the existence of unknown input observers for second-
order linear time invariant systems [6], which constituted
the basis of the current study. Then, they extended these
conditions to imprecise models [7]. For parity space method,

residual errors are obtained by collecting system input and
output. Chan et al. developed a parity space-based estimator,
which is sensitive to specific faults [8]. The literature [9]
overviewed the problem of identifying. The identification-
based method means that residuals for output variables
are generated with adaptive nonparametric or parametric
models. However, all these methods need a great amount
of computations and long computing time when the system
has large numbers of agents, which are not acceptable for
practice.

Once a faulty agent is detected, fault-tolerant control
is taken for handling faults. In this paper, fault-tolerant
control is divided into two steps, namely, fault parameter
approximation and adjusting some interconnection weights.
Adaptive fault parameter approximation is developed on the
basis of parameter estimation. Generally, fault parameters
are estimated using the nonlinear neural network [10, 11].
We transform the fault parameter approximation problem
into the optimization problem by using extremum seeking.
Compared with the classical neural network method, the
advantages of the proposed approach are that the approxima-
tion is real-time and online without any offline training.

Moreover, the extremum seeking based parameter appro-
ximation is significantly simplified. The design process of
extremum seeking does not call for the understanding of the
input and output characteristics of the system [12, 13].
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In step two, the faulty system is recovered by adjust-
ing some weights of the cooperative protocol. There have
been several studies in recovering faulty multiagent sys-
tems. Semsar-Kazerooni and Khorasani [14] and Azizi and
Khorasani [15] used fault-tolerant control algorithms to
recover an actuator fault detected by FDI. Furthermore, Azizi
and Khorasani put forward a two-level architecture which
contains partial recovery and cooperative recovery [15]. Yang
et al. proposed a cooperative protocol to adjust fault parame-
ters for a target aggregation problem of nonlinear multiagent
systems [5]. However, in these studies, the cooperative fault-
tolerant control was used to adjust interconnection weights
without isolating out the faulty agent, which leads to a lot of
calculation when faulty agent has a number of neighbors.

The rest of the paper is organized as follows. Section 2
provides some preliminary knowledge and formulates the
problems. Section 3 focuses on fault detection. In Section 4,
an adaptive fault parameter approximation algorithm using
extremum seeking is proposed. In Section 5, the cooperative
fault-tolerant control of multiagent systems is discussed.
In Section 6, an example of a multiagent team is given to
demonstrate the effectiveness of the proposed scheme. In
Section 7, conclusion is drawn.

2. Preliminary Knowledge

Agents and their link topology are mapped based on the
graph theory [16]. We consider a system constituted by 𝑛
agents; 𝐺(V, 𝜀) is an undirected graph with vertex set V and
edge set 𝜀, where 𝑖 ∈ V represents agent 𝑖. The edge (𝑗, 𝑖) ∈ 𝜀
denotes a connection between agent 𝑗 and agent 𝑖, and 𝑎

𝑖𝑗

is the weight of the interconnection. The set 𝑁
𝑖
= {𝑗 ∈

V : {𝑖, 𝑗} ∈ 𝜀} represents all the neighboring agents that are
interconnected with 𝑖. Agent 𝑖 is supposed to have a double-
integrator dynamics:

𝑝̇
𝑖 (
𝑡) = 𝑞𝑖 (

𝑡) ,

̇𝑞
𝑖 (
𝑡) = 𝑢𝑖 (

𝑡) ,

(1)

where 𝑝
𝑖
(𝑡) ∈ 𝑅 and 𝑞

𝑖
(𝑡) ∈ 𝑅 are the position and velocity of

agent 𝑖 and 𝑢
𝑖
is the controlled input based on the following

formula:

𝑢
𝑖 (
𝑡) = ∑

𝑗∈𝑁𝑖

𝑎
𝑖𝑗
[(𝑝
𝑗 (
𝑡) − 𝑝𝑖 (

𝑡)) + 𝛾 (𝑞𝑗 (
𝑡) − 𝑞𝑖 (

𝑡))]

+ 𝛽
𝑖
(𝑡 − 𝑇

𝑖
) 𝑓
𝑖
.

(2)

Formula (2) achieves the position and velocity consensus.The
term 𝛽

𝑖
(𝑡 − 𝑇

𝑖
) characterizes the time jump function of an

actuator fault, 𝑇
𝑖
denotes faulty time of agent 𝑖, if 𝑡 ≥ 𝑇

𝑖
, 𝛽
𝑖
=

1, else 𝛽
𝑖
= 0. The variable 𝑓

𝑖
∈ 𝑅 is the fault parameter of

agent 𝑖. The system dynamics in the presence of a fault are
written as follows:

𝑥̇ (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑓
𝑓,

𝑦 (𝑡) = 𝐶𝑥 (𝑡) ,

(3)

where 𝑥 = [𝑝
1
, 𝑝
2
, . . . , 𝑝

𝑁
, 𝑞
1
, 𝑞
2
, . . . , 𝑞

𝑁
]
T, 𝑓 = [𝑓

1
, 𝑓
2
, . . . ,

𝑓
𝑁
] ∈ 𝑅

𝑛, 𝐴,𝐶 ∈ 𝑅
2𝑛×2𝑛, 𝐵

𝑓
∈ 𝑅
2𝑛×2𝑛, 𝑥, 𝑦 ∈ 𝑅

2𝑛, and

𝑓 ∈ 𝑅
2𝑛. We designed 𝐶 = 𝐼

2𝑛
(𝐼
𝑛
means an identity matrix

with the dimension 𝑛 × 𝑛) to observe all the states of the
multiagent system. The following text gave some details of 𝐴
for the velocity consensus and position consensus problems:

𝐴 = [

0
𝑛

𝐼
𝑛

−𝐿 −𝐵
] , or 𝐴 = [

0
𝑛

𝐼
𝑛

−𝐿 −𝛾𝐿
] , (4)

where 𝐵 = diag(𝑏, 𝑏, . . . , 𝑏) ∈ 𝑅𝑛×𝑛; 𝐿 is the Laplacian matrix
of the graph, where 𝑙

𝑖𝑗
= −𝑎
𝑖𝑗
, if (𝑗, 𝑖) ∈ 𝜀, 𝑖 ̸= 𝑗 (otherwise,

𝑙
𝑖𝑗
= 0), and 𝑙

𝑖𝑖
= −∑

𝑖 ̸=𝑗
𝑙
𝑖𝑗
. By this definition, every row sum

of the matrix 𝐿 is zero, so the Laplacian matrix always has
a zero eigenvalue, right eigenvector V = (1, 1, . . . , 1)

T, and
rank(𝐿) ≤ 𝑛 − 1.

3. Fault Detection and Isolation

In this paper, a set of state observers are constructed for
the second-order system using the unknown input observer
(UIO) method. UIO refers to a robust fault diagnosis scheme
for multiagent systems. Once an actuator failure is detected,
residual errors are used to locate the faulty agent. In order
to reduce the amount of calculation, only neighbors are
observed for each agent. We rewrite (3) as

𝑥̇ (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑓−𝑖
𝑓
−𝑖 (
𝑡) + 𝑏𝑓𝑖

𝛽
𝑖
(𝑡 − 𝑇

𝑖
) 𝑓
𝑖 (
𝑡) ,

𝑦 (𝑡) = 𝐶𝑥 (𝑡) ,

(5)

where 𝐵
𝑓−𝑖

is 𝐵
𝑓
with the 𝑖th column deleted, 𝑏

𝑓𝑖
is the 𝑖th

column of 𝐵
𝑓
, 𝑓
−𝑖
(𝑡) is 𝑓 with the 𝑖th component deleted,

and 𝑓
𝑖
(𝑡) is the 𝑖th component of 𝑓. Suppose graph 𝐺(V, 𝜀)

is interconnected and the topology of the system is fixed.
A full-order observer for system (5) is described by

̇𝜒 (𝑡) = 𝐹𝜒 (𝑡) + 𝑇𝐵𝑓−𝑖
𝑓
−𝑖 (
𝑡) + 𝐾𝑦 (𝑡) ,

𝑥 (𝑡) = 𝜒 (𝑡) + 𝐻𝑦 (𝑡) .

(6)

Choosing the matrixes 𝐹, 𝑇, 𝐾, and𝐻 satisfies the following
conditions:

𝐹 = 𝐴 − 𝐾
1
𝐶 − 𝐻𝐶𝐴, 𝑇 = 𝐼 − 𝐻𝐶,

𝐾 = 𝐾
1
+ 𝐾
2
, 𝐾

2
= 𝐹𝐻, (𝐻𝐶 − 𝐼) 𝐵𝑓−𝑖

= 0.

(7)

Then, there exists a UIO [7] for agent 𝑖 as follows:

̇𝜒
𝑖 (
𝑡) = 𝐹𝑖

𝜒
𝑖 (
𝑡) + 𝑇𝑖

𝐵
𝑓−𝑖
𝑓
−𝑖 (
𝑡) + 𝐾𝑖

𝑦 (𝑡)

𝑥
𝑖 (
𝑡) = 𝜒𝑖 (

𝑡) + 𝐻𝑖
𝑦 (𝑡) ,

(8)

where 𝑥
𝑖
(𝑡) ∈ 𝑅

2𝑛 and 𝜒
𝑖
(𝑡) ∈ 𝑅

2𝑛 are the estimated
state and the observer’s state for agent 𝑖 and 𝐹

𝑖
, 𝑇
𝑖
, 𝐾
𝑖
, and

𝐻
𝑖
are unknown matrices of appropriate dimension, which

must be designed such that 𝑥
𝑖
will asymptotically converge

to 𝑥. The unknown input observer is constructed to achieve
the decoupling from 𝑓

𝑖
(𝑡), by designing matrixes 𝐹

𝑖
, 𝑇
𝑖
, 𝐾
𝑖
,
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and 𝐻
𝑖
. Matrix 𝐹

𝑖
is a stability matrix; that is, it has all its

eigenvalues in the left-hand side of the complex plane.
Thus, we can obtain the observer error and residual

dynamics as
̇𝑒
𝑖 (
𝑡) = 𝐹𝑖

𝑒
𝑖 (
𝑡) − 𝑇𝑖

𝐵
𝑓−𝑖
𝑓
−𝑖 (
𝑡)

𝑟
𝑖 (
𝑡) = 𝐶𝑒𝑖 (

𝑡) ,

(9)

where 𝑒
𝑖
(𝑡) = 𝑥(𝑡) − 𝑥

𝑖
(𝑡) is the observer error and 𝑟

𝑖
(𝑡) is

the corresponding residual, which is a fault indicator function
that satisfies

󵄩
󵄩
󵄩
󵄩
𝑟
𝑖 (
𝑡)
󵄩
󵄩
󵄩
󵄩
= 0 ⇐⇒

󵄩
󵄩
󵄩
󵄩
𝑓
−𝑖 (
𝑡)
󵄩
󵄩
󵄩
󵄩
= 0. (10)

The detection and isolation condition for fault 𝑓
𝑖
(𝑡) are

given as follows:
󵄩
󵄩
󵄩
󵄩
𝑟
𝑖 (
𝑡)
󵄩
󵄩
󵄩
󵄩
< 𝜃
𝑓𝑖
,

󵄩
󵄩
󵄩
󵄩
󵄩
𝑟
𝑗 (
𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩
≥ 𝜃
𝑓𝑗
,

(11)

where 𝜃
𝑓𝑖

and 𝜃
𝑓𝑗

are isolation thresholds. If the above
condition is satisfied, we can conclude that there is a fault
affecting the system’s 𝑖th component.

The proposed approach in this section is feasible if a
single additive fault exists. In order to isolate multiple faults,
one can repeat the abovementioned fault detection procedure
for each of the potential fault combinations. We can derive
similar observers for all faults and then adopt the detection
and isolation condition to isolate each of them.

4. Extremum Seeking for Approximating
Fault Parameters

4.1. Single Faulty Agent Case. The fault detection scheme
makes use of observers called unknown input observer, as
described in the previous section. Then residuals and their
thresholds are designed to generate false alarms, which is
used for fast network fault location. Under the assumption of
only one faulty agent in the network (suppose the𝑚th agent is
faulty), the proposed extremum seeking framework is shown
in Figure 1.

Theorem 1. Let 𝐽 : 𝑅𝑛 → 𝑅 be a sufficiently smooth objective
function, and suppose the changing rate of fault parameter
estimation ̂

𝑓
𝑚
is much faster than the changing rate of fault

parameter 𝑓
𝑚
:

𝐽 (
̂
𝑓
𝑚
) =

󵄩
󵄩
󵄩
󵄩
󵄩
𝐵
−1

𝑓
(
̇
𝑥̃ (𝑡) − 𝐴𝑥 (𝑡))

󵄩
󵄩
󵄩
󵄩
󵄩

2

, (12)

where 𝐽 has a global minimum ( ̂𝑓∗
𝑚
= 𝑓
𝑚
). Then with the

fault parameter estimation scheme shown in Figure 1, ̂𝑓
𝑚
will

converge to the extremum point ̂𝑓∗
𝑚
.

Proof. Define the error between estimate state and real state
by 𝑥(𝑡) = 𝑥(𝑡) − 𝑥(𝑡):
̇
𝑥̃ (𝑡) = 𝑥̇ (𝑡) −

̇
𝑥̂ (𝑡) = 𝐴 (𝑥 (𝑡) − 𝑥 (𝑡)) + 𝐵𝑓

(𝑓 (𝑡) −
̂
𝑓 (𝑡))

= 𝐴𝑥 (𝑡) + 𝐵𝑓
̃
𝑓 (𝑡) .

(13)

−
s

s + h

1

s + 1
−
k

s

sin𝜔t

a

f̂m

fm

yseekJ(̂fm) =
󵄩󵄩󵄩󵄩󵄩󵄩
B−1
f (𝜒̂ − A𝜒̂(t))󵄩󵄩󵄩󵄩󵄩󵄩

2

Figure 1: Structure of fault parameter estimation with extremum
seeking.

Then we obtain

𝐽 (
̂
𝑓
𝑚
) =

󵄩
󵄩
󵄩
󵄩
󵄩
𝐵
−1

𝑓
(
̇
𝑥̃(𝑡) − 𝐴𝑥(𝑡))

󵄩
󵄩
󵄩
󵄩
󵄩

2

=

󵄩
󵄩
󵄩
󵄩
󵄩

̃
𝑓(𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩

2

= (
̂
𝑓
1
− 𝑓
1
) + ⋅ ⋅ ⋅ (

̂
𝑓
𝑛
− 𝑓
𝑛
) =

𝑛

∑

𝑖=1

(
̂
𝑓
𝑖
− 𝑓
𝑖
)

2

.

(14)

From the definition above we have 𝐽(𝑓
𝑚
) = 0, 𝐽󸀠󸀠 = 2, and

there is only one faulty agent in the network: 𝑓
𝑖
= 0 if 𝑖 ̸= 𝑚.

Then formula (14) can be rewritten as

𝐽 (
̂
𝑓
𝑚
) =

𝑛

∑

𝑖=1

(
̂
𝑓
𝑖
− 𝑓
𝑖
)

2

= 𝐽 (𝑓
𝑚
) +

𝐽
󸀠󸀠

2

(
̂
𝑓
𝑚
− 𝑓
𝑚
)

2

. (15)

Denote the estimation error of ̂𝑓
𝑚
as ̃𝑓
𝑚
= 𝑓
𝑚
−𝑓
𝑚
, so we

have
̃
𝑓
𝑚
= 𝑓
𝑚
−
̂
𝑓
𝑚
− 𝑎 sin (𝜔𝑡) . (16)

The dynamic model of the system can be summarized as
follows:
̂
𝑓
𝑚
= 𝑓
𝑚
+ 𝑎 sin (𝜔𝑡) , 𝜉 = [𝑎 sin (𝜔𝑡)] 𝑠

𝑠 + ℎ

𝑦seek,

(17)

where [𝑎 sin(𝑤𝑡)]means the Laplace transforms of 𝑎 sin(𝑤𝑡).
Then we have

𝐽 (
̂
𝑓
𝑚
) = 𝐽 (𝑓

𝑚
) +

𝐽
󸀠󸀠

2

(𝑎 sin (𝜔𝑡) − ̃
𝑓
𝑚
)

2

. (18)

Then we have

𝐽 (
̂
𝑓
𝑚
) = 𝑓
𝑚
+

𝐽
󸀠󸀠 ̃
𝑓
2

𝑚

2

− 𝑎𝐽
󸀠󸀠 ̃
𝑓
𝑚
sin (𝜔𝑡) + 𝑎

2
𝐽
󸀠󸀠sin2 (𝜔𝑡)
2

.

(19)

Then the signal which is processed with high-pass filter 𝑠/(𝑠+
ℎ) can be denoted as

𝑠

𝑠 + ℎ

[𝐽 (
̂
𝑓
𝑚
)]

= [

𝐽
󸀠󸀠 ̃
𝑓
2

𝑚

2

− 𝑎𝐽
󸀠󸀠 ̃
𝑓
𝑚
sin (𝜔𝑡) + 𝑎

2
𝐽
󸀠󸀠sin2 (𝜔𝑡)
2

] .

(20)
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So we have

𝜉 =

𝐽
󸀠󸀠 ̃
𝑓
2

𝑚

2

sin (𝜔𝑡) − 𝑎𝐽󸀠󸀠 ̃𝑓𝑚sin
2
(𝜔𝑡) +

𝑎
2
𝐽
󸀠󸀠sin3 (𝜔𝑡)
2

,

𝑓
𝑚
= (−

𝑘

𝑠

)

1

𝑠 + 1

𝜉.

(21)

From ̃
𝑓
𝑚
= 𝑓
𝑚
− 𝑓
𝑚
, we obtain

̇
̃
𝑓
𝑚
= −

̇
𝑓
𝑚
= −𝑠 ((−

𝑘

𝑠

)

1

𝑠 + 1

𝜉) =

𝛽

𝑠 + 1

𝜉. (22)

We arrive at

̇
̃
𝑓
𝑚
=

𝑘

𝑠 + 1

(

𝐽
󸀠󸀠 ̃
𝑓
2

𝑚

2

sin (𝜔𝑡) − 𝑎𝐽󸀠󸀠 ̃𝑓𝑚

×(

1 − cos (2𝜔𝑡)
2

sin2 (𝜔𝑡) + 𝑎
2
𝐽
󸀠󸀠sin3 (𝜔𝑡)
2

))

≈ −

𝑘

2

𝑎𝐽
󸀠󸀠 ̃
𝑓
𝑚
= −𝑘𝑎

̃
𝑓
𝑚
.

(23)

From formula (23), we find that the convergence rate is
governed by the excitation signal gain 𝑎, integration time
𝑘, and the estimation error ̃𝑓

𝑚
. However, to implement the

algorithm, some suitable parameters have to be designed; for
example, 𝜔 is designed large relative to 𝑘, 𝑎.

Remark 2. The principle of extremum seeking has been
reported in the literature [12]. Since Wang and Krstic proved
the stability of extremum seeking in 2000 [17], scholars have
shown increasing interest in extremum seeking. In addition,
sin𝜔𝑡 (excitation signals) can be replaced by other excitation
signals [13]. The assumption that the changing rate of ̂𝑓

𝑚

is much faster than 𝑓
𝑚

can be fulfilled if the gain 𝑎 and
frequency 𝜔 of excitation signal are chosen large enough.

Remark 3. There are many other self-adapting algorithms
to estimate fault parameters. However, comparing with
extremum seeking, most of the algorithms are more difficult
to design.

4.2. Multiple Faulty Agents Case. Theorem 1 gives the con-
dition of parameter estimation when there is only a faulty
agent in the network. When there are multiple faulty agents
in the network, a multivariable extremum seeking param-
eter estimation scheme is proposed, which is concluded in
Theorem 4.

Theorem 4. Replace the excitation signals 𝑎 sin𝜔𝑡 and sin𝜔𝑡
with excitation signals vector 𝑆(𝑡) and𝑀(𝑡) in the structure of
fault parameter estimation in Figure 1:

𝑆 (𝑡) = [𝑎
1
sin𝜔
1
𝑡 ⋅ ⋅ ⋅ 𝑎
𝑛
sin𝜔
𝑛
𝑡]
𝑇
,

𝑀 (𝑡) = [

2

𝑎
1

sin (𝜔
1
𝑡) ⋅ ⋅ ⋅

2

𝑎
𝑛

sin (𝜔
𝑛
𝑡)] ,

(24)

where 𝜔
𝑖
̸= 𝜔
𝑗
and 𝜔

𝑖
+ 𝜔
𝑗

̸= 𝜔
𝑘
, 𝐽 has a global minimum

( ̂𝑓 = 𝑓), and ̂
𝑓 will converge to the extremum vector ̂𝑓∗.

Proof. From formula (14),

𝐽 (
̂
𝑓
𝑚
) =

𝑛

∑

𝑖=1

(
̂
𝑓
𝑖
− 𝑓
𝑖
)

2

. (25)

The first derivative and second derivative of cost function
are

𝜕𝐽

𝜕
̂
𝑓
𝑖

= 2 (
̂
𝑓
𝑖
− 𝑓
𝑖
) ,

𝜕
2
𝐽

𝜕
̂
𝑓
2

𝑖

= 2,

𝜕
2
𝐽

𝜕
̂
𝑓
𝑖
𝜕
̂
𝑓
𝑗

= 0. (26)

The Hessian matrix is𝐻
𝑒
= diag(2, 2, . . . , 2), and formula

(25) can be rewritten as

𝐽 (
̂
𝑓) = 𝐽 (𝑓) +

1

2

(
̂
𝑓 − 𝑓)

T
𝐻
𝑒
(
̂
𝑓 − 𝑓) . (27)

Denote the estimation error of ̂𝑓 as ̃𝑓 = 𝑓 − 𝑓, and we
have

𝑦seek =
𝑛

∑

𝑖=1

(
̃
𝑓
𝑖
− 𝑎
𝑖
sin𝜔
𝑖
𝑡)

2

=

𝑛

∑

𝑖=1

(
̃
𝑓
2

𝑖
− 2𝑎
𝑖
sin𝜔
𝑖
𝑡 + 𝑎
2

𝑖
sin2𝜔
𝑖
𝑡)

2

.

(28)

Then we obtain

𝜉 = 𝑀 (𝑡)

𝑠

𝑠 + ℎ

𝑦seek

= [

2

𝑎
1

sin (𝜔
1
𝑡) 𝑦seek, . . . ,

2

𝑎
𝑛

sin (𝜔
𝑛
𝑡) 𝑦seek] ,

𝜉
𝑖
=

2

𝑎
𝑖

sin (𝜔
𝑖
𝑡) 𝑦seek

=

2

𝑎
𝑖

sin (𝜔
𝑖
𝑡)

𝑛

∑

𝑖=1

̃
𝑓
2

𝑖
− 4

̃
𝑓
𝑖
sin2 (𝜔

𝑖
𝑡) + 2𝑎

𝑖
sin2 (𝜔

𝑖
𝑡) .

(29)

We have

𝑓
𝑖
=

𝑘

𝑠

⋅

1

𝑠 + 1

𝜉
𝑖

=

𝑘

𝑠

⋅

1

𝑠 + 1

× [

2

𝑎
1

sin (𝜔
1
𝑡)

𝑛

∑

𝑖=1

̃
𝑓
2

𝑖
− 4

̃
𝑓
𝑖
sin2 (𝜔

𝑖
𝑡) + 2𝑎

𝑖
sin2 (𝜔

𝑖
𝑡)]

≈ −4
̃
𝑓
𝑖

𝑘

𝑠

,

(30)

̇
̃
𝑓 = −4𝑘

̃
𝑓
𝑖
. (31)

From (31), we find that the convergence rate is governed
by the integration time 𝑘 and the estimation error ̃𝑓.
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5. Cooperative Weight Accommodation for
Fault Tolerance

In this section, we primarily focus on the design of cooper-
ative fault-tolerant control laws for multiagent systems. The
system contains 𝑁 agents with fixed connection topology.
The connection matrix can be formulated as a Laplacian
matrix, and the velocity of the 𝑖th agent is influenced by
connection weight 𝑎

𝑖𝑗
. When the unknown input observers

detect a failure in the network, we can improve the influence
of its nonfaulty neighbors on the faulty agent by adjusting the
weight.

5.1. Single Faulty Agent Case. Weights 𝑎
𝑚𝑗

and 𝑏
𝑚
are both

positive constants. Based on (2), all agents asymptotically
converge to the same velocity and reach the same position
if there is no faulty agent. Agent 𝑚 turns faulty at 𝑇

𝑚
and it

was first isolated from the system.The new networked system
without faulty agent can be written as a linear time invariant
dynamical system as

𝑥̇
−𝑚
= 𝐴
−𝑚
𝑥,

𝑦
−𝑚
= 𝐶
−𝑚
𝑥
−𝑚
,

(32)

where 𝑥
−𝑚
= [𝑝
1
, 𝑝
2
, . . . , 𝑝

𝑚−1
, 𝑝
𝑚+1

, . . . , 𝑝
𝑁
, 𝑞
1
, 𝑞
2
, . . . , 𝑞

𝑚−1
,

𝑞
𝑚+1

, . . . , 𝑞
𝑁
]
T, 𝐴
−𝑘
, 𝐶
−𝑘
∈ 𝑅
2(𝑛−1)×2(𝑛−1), and 𝑥, 𝑦 ∈ 𝑅2(𝑛−1).

All the eigenvalues of the matrix 𝐴
−𝑘

less than 0 guarantee
the convergence to the target point. We defined the state
of each agent as 𝑥

𝑖
= [𝑝

𝑖
, 𝑞
𝑖
], 𝑥
𝑡
∈ 𝑅
2 as the target

state. We defined 𝑝
𝑖
= 𝑝
𝑖
− 𝑝
0
, 𝑞
𝑖
= 𝑞
𝑖
− 𝑞
0
and 𝑥 =

[𝑝
1
, 𝑝
2
, . . . , 𝑝

𝑛−1
, 𝑞
1
, 𝑞
2
, . . . , 𝑞

𝑛−1
], and we have

̇
𝑝̃
𝑖
= 𝑝̇
𝑖
− 𝑝̇
0
= 𝑞
𝑖
− 𝑞
0
= 𝑞
𝑖
,

̇
𝑞̃
𝑖
= ̇𝑞
𝑖
− ̇𝑞
0
= −𝑏𝑞

0
+ ∑

𝑗∈𝑁𝑖

𝑎
𝑖𝑗
(𝑝
𝑗
− 𝑝
𝑖
) − ∑

𝑗∈𝑁0

𝑎
0𝑗
𝑝
𝑗
− 𝑓
0
.

(33)

The networked systemwithout faulty agent can bewritten
as a linear time invariant dynamical system:

𝑥 = 𝐴
1
𝑥 − 𝐴

2
𝑥 − 𝑓
𝑒
. (34)

The following text gives some details of 𝐴
1
and 𝐴

2
:

𝐴
1
= [

0 𝐼
𝑛−1

−𝐿̃ −𝑏

] , 𝐴
2
=

[

[

[

[

[

0
(𝑛−1)(𝑛−1)

𝑑

.

.

.

𝑑

]

]

]

]

]

, (35)

where 𝑑 ∈ 𝑅
𝑛−1, 𝑑 = [𝑑

1
, 𝑑
2
, . . . , 𝑑

𝑛−1
], and 𝑓

𝑒
= [0, 0, . . . ,

0, 𝑓
0
, 𝑓
0
, . . . , 𝑓

0
]
T.

Lemma 5. The new system (34) achieves consensus asymptot-
ically if and only if 𝐴

−𝑚
has exactly two zeros and all other

eigenvalues have negative real parts, specifically,

𝑝
𝑒 (
𝑡) =

1

𝑛 − 1

𝑛−1

∑

𝑖=1

𝑝
𝑖
(𝑇
𝑚
) +

1

𝑛 − 1

(𝑡 − 𝑇
𝑚
)

𝑛−1

∑

𝑖=1

𝑞
𝑖
(𝑇
𝑚
) ,

𝑞
𝑇𝑚
=

1

𝑛 − 1

𝑛−1

∑

𝑖=1

𝑞
𝑖
(𝑇
𝑚
) .

(36)

Theorem 6. The faulty agent has an equilibrium state ̇𝑞
0
= 0

when

∑

𝑗∈𝑁0

𝑎
0𝑗
𝑝
𝑗
= −𝑓
0
, (37)

where 𝑎min ≤ 𝑎0𝑗 ≤ 𝑎max.

Proof. The new multiagent system is still able to converge to
the target state 𝑥

𝑡
= [𝑝
𝑡
, 𝑞
𝑡
] after the faulty agent is isola-

ted. For a faulty agent under 𝑢
𝑖
, the Lyapunov function is

constructed as

𝑉
0
=

1

2

∑

𝑗=𝑁0

𝑎
0𝑗
(𝑝
𝑒
− 𝑝
𝑗
− 𝑝
0
)

2

+

1

2

𝑞
2

0 (38)

and the time derivative of 𝑉
0
is

𝑉̇
0
= − ∑

𝑗∈𝑁0

𝑎
0𝑗
(𝑝
𝑒
− 𝑝
𝑗
− 𝑝
0
) 𝑞
0

+ 𝑞
0
[

[

−𝑏𝑞
0
+ ∑

𝑗∈𝑁0

𝑎
0𝑗
(𝑝
𝑗
− 𝑝
0
) + 𝑓
0
]

]

= ∑

𝑗∈𝑁0

𝑎
0𝑗
𝑝
𝑗
𝑞
0
− 𝑏𝑞
2

0
+ 𝑞
0
𝑓
0
.

(39)

Then we have

𝑉̇
0
= ∑

𝑗∈𝑁0

𝑎
0𝑗
𝑝
𝑗
𝑞
0
− 𝑏𝑞
2

0
+ 𝑞
0
𝑓
0
= −𝑏𝑞

2

0
≤ 0. (40)

5.2. Multiple Faulty Agent Case. As described above, all the
faulty agents are isolated from the system. The faulty set
is defined by 𝑚 = [𝑚

1
, 𝑚
2
, . . . , 𝑚

𝑛𝑓
], where there are 𝑛

𝑓

faulty agents in the network. We defined 𝑝
𝑖𝑚𝑘

= 𝑝
𝑖
− 𝑝
𝑚𝑘
,

𝑞
𝑖𝑚𝑘

= 𝑞
𝑖
− 𝑞
𝑚𝑘

and 𝑥
𝑚𝑘

= [𝑝
2𝑚𝑘
, 𝑝
2𝑚𝑘
, . . . , 𝑝

(𝑛−𝑛𝑓)𝑚𝑘
, 𝑞
1𝑚𝑘
,

𝑞
2𝑚𝑘
, . . . , 𝑞

(𝑛−𝑛𝑓)𝑚𝑘
]. Then we have the following theorem.

Theorem 7. For multiple faulty agents case, each faulty agent
has an equilibrium state ̇𝑞

𝑚𝑘
= 0 when

∑

𝑗∈𝑁𝑚𝑘

𝑎
𝑚𝑘𝑗
𝑝
𝑗𝑚𝑘

= −𝑓
𝑚𝑘
, (41)

where 𝑎min ≤ 𝑎𝑚𝑘𝑗 ≤ 𝑎max.

Proof. See Theorem 6.
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Figure 2: Initial positions and desired positions of 7 agents.
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Figure 3: The consensus process of seven agents.

6. Simulation

In this study, a cooperative multiagent team example is
given to illustrate the feasibility and effectiveness of the
proposed method. Seven agents communicate with each
other to aggregate the consensus position. First, we build a
set of unknown input observers for each agent. Then, we
utilize extremum seeking to adaptively approximate the fault
parameter. Finally, we use the fault tolerance method to
recover the system.

As shown in Figure 2, seven agents will converge to the
consensus state in 𝑥-label, where the position in 𝑦-label is
fixed.The start position of the seven agents is 10∗random(1),
where the start velocity is zero. The initialization parameters
are 𝑎
𝑖𝑗
= 1, 𝑏 = 1, and 𝛾 = 1, so the second maximum

eigenvalue of matrix A for the position consensus problem

is Re(𝜆) = −0.5. At 𝑇
2
= 16 s, agent 2 gets faulty, and the

faulty parameter is f 2 = 2,5. Figure 3 shows the 𝑥-position
and velocity of seven agents, and all agents achieve target
state consensus by cooperative control law. The final state of
position is mean value of the initial positions, and the final
state of velocity is zero for the initial velocity. When 𝑡 > 𝑇

2
=

16 s, there was a deviation between real state and estimate
state. In extremum seeking, we choose 𝜔 = 10, 𝑘 = 0.001,
and 𝑎 = 0.1. The seeking process is shown in Figure 4.

7. Conclusion

This paper proposes a new framework of fault detection
and fault-tolerant control of multiagent systems. This paper
mainly studies fault parameter approximation using extre-
mum seeking and cooperative fault-tolerant control using



Mathematical Problems in Engineering 7

0 500 1000

0

1

Time (s)

a = 0.01a = 0.04a = 0.08

−0.2

0.2

0.4

0.6

0.8

1.2

1.4

1.6

0 500 1000

0

1

Time (s)

−0.2

0.2

0.4

0.6

0.8

1.2

1.4

1.6

0 500 1000

0

1

Time (s)

−0.2

0.2

0.4

0.6

0.8

1.2

1.4

1.6

Figure 4: The search process of extremum seeking.

interconnection weights adjusting. Fault parameter approxi-
mationusing extremumseeking simplifies the design process.
Then, by adjusting some interconnection weights based on
Lyapunov potential-energy function, we show that the target
state is still reached.
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