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This paper is concerned with the linear theory of composites modelled as mixtures of two Cosserat elastic continua. First, we present
a minimum principle in the case of equilibrium. Then, we consider the dynamic theory and establish a minimum principle of Reiss

type for a mixed problem.

1. Background

In order to describe adequately the behaviour of some kinds
of mixtures it is necessary to introduce into the continuum
theory terms reflecting the microstructure of the materials.
In a realistic continuum model, each particle of a granular
material or a solid containing microscopic components (e.g.,
nanocomposites) possesses six degrees of freedom. Impor-
tant among such materials are animal bones, solid with
microcracks, and other synthetic materials with pores or
microreinforcements. The origin of the modern theories of
mixtures of materials with microstructure goes back to the
papers of Allen and Kline [1], Twiss and Eringen [2, 3], and
Dunwoody [4]. For a review of the literature on mixtures with
microstructure the reader is referred to [5, 6]. In many papers
the mechanical behaviour of composites is modelled as mix-
tures of interacting continua (see, e.g., [7-10] and references
therein). A general theory of mixtures with microstructure
hasbeen established in [2, 3]. In [3], the nonlinear constitutive
equations for mixtures of micromorphic and micropolar
elastic bodies are derived. The results are used to derive
the linear theory of mixtures composed of two Cosserat
elastic constituents. The equations presented in [2, 3, 6] are
sufficiently general to apply to any constituents, whether solid
or fluid, in eulerian description. A theory of a mixture of
two Cosserat elastic solids in lagrangian description has been
established in [10]. This theory allows us to formulate the
boundary conditions in the reference configuration.

In the present paper we consider the linear theory of
mixture of two Cosserat elastic solids. In Section 2 we present
the notations and the basic equations. Section 3 is devoted to
a minimum principle in the equilibrium theory. In Section 4
we consider the dynamic theory and establish a minimum
principle of Reiss type. Variational characterizations of solu-
tions in nonpolar theories of mixtures have been presented in
various papers (see, e.g., [5, 11-15] and references therein).

2. Methods Mathematical Formulation

We consider a body which is made up of two interpenetrating
elastic solids of Cosserat type s, and s,. We assume that
the body, at some instant, occupies the region B with the
piecewise smooth surface 0B. The motion of the body is
referred to a fixed system of rectangular cartesian axes Ox;
(i = 1,2,3) and to the reference configuration B. We denote
by n the outward unit normal of 0B. Letters in boldface
stand for tensors of an order g > 1, and if v has the order
g, we write v;;.., (q subscripts) for the components of v in
the cartesian coordinate frame. We will employ the usual
summation and differentiation conventions. Latin subscripts
(unless otherwise specified) are understood to range over
the integers (1,2,3), summation over repeated subscripts
is implied, and subscripts preceded by a comma denote
partial differentiation with respect to the corresponding
cartesian coordinate. We use a superposed dot to denote the



partial differentiation with respect to the time t. First, we
consider the linear theory of elastostatics. We assume that
the constituents s; and s, are each elastic solids of Cosserat
type. We consider a theory for binary mixtures where the
typical particles of s; and s, occupy the same position in
the reference configuration. We denote by u and w the
displacement vector fields associated with the constituents
s; and s,, respectively. Let pg be the mass density of the
constituent s, in the reference configuration. We denote
by ¢ and y the microrotation vectors associated with the
constituents s; and s,, respectively. Let t and s denote the
stress tensors associated with the constituents s, and s,,
respectively. Further, let m and p denote the partial couple-
stress tensors associated with s; and s,, respectively. The
equations of equilibrium can be expressed in the form

0 (1) 0 1+(2)
tij—pitpF =0, siijtpitpFi7 =0,

1 0,~(1)
Mjij 5 Eijk (tjk+sjk)_hi+p1G§ =0, 1)

1 0,~(2)
Hiij T 5 ik (tjk + 5jk) +h+p, G =0,
on B. Here we have used the following notations: p; is the
diffusive force, h; is the diffusive couple, Fi(“) is the body
force per unit mass acting on the constituent s, & is the
alternating symbol, and G}“) is the body couple per unit mass
acting on the constituent s,. We introduce the functions ¢
€;j» Kij> ij» dj» and &; by

ij>

1
& =Uj; + Esijk (P +vi)»

Kij = Pj,i>
d; =u; —w,
)
1
€ij = Wii T S &ijk (Pr + i) Vi = Vo
§=0i— v
The constitutive equations are
tij = Aijrsers + BijrsKrs + Gijrsers + Hijrs)/rs
+ aijrdr + gijrfr’
Sij = Grsijsrs + ]ijrsKrs + Dijrsers + Eijrsyrs
+ bijrdr + hijrgr’
m;; = Bygjrs + Cijpilns + Jrijers + LijrsVrs
3)

+ Cijrdr + eijrfr’

ti; = Hijr €

ijrs + Lrsinrs + Ersijers + FijrsYrs

s
+ fijrdr + ﬂijrgr’
Pi = Opsi€rs + Grsilys + brsiers + frsins + aijdj + Cz]EJ’

hi = Grsi€rs + grsiKrs + hrsiers + HrsiVrs + Cijdj + bz]&]
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The constitutive coeflicients have the following symmetries:

Aijrs = Arsij’ Cijrs = Crsij’ Dijrs = Drsij’
(4)
Fijrs = Frsij’ a;j = Aji bij = bji'

We assume _that (a) py and p) are strictly positive and
continuous on B; (b) Fi(“) and Gf“), (o = 1,2), are contin-
uous on B; (c) the constitutive coefficients are continuously
differentiable on B and satisty relations (4).

We say that the array w = (u;, w;, ;, ¥;) is an admissible
deformation field on B provided u;, w;, ¢;, y; € C*(B)nC'(B).
An admissible stress field on Bis an ordered array of functions
(tij» sij» mij» pij» P> h;) with the properties £, s, myj> tij Py

1 0p 0(R
h; € C(B)nC’(B) and_ tiij» Sjij» Mjijp Hij € C(B). By
an admissible state on B we mean an ordered array s =
(145> Wi, P Wis E5j> €455 Kijo Vijo A & Lo Sijo My o Pis 1) with the
following properties:

(a) (4;, w;, 9;, y;) is an admissible deformation on B;
(ﬁ) 8,‘]', e,‘j, Kij’ Yij’ di’ E,‘ € CI(B) n CO(E);
() (tj> i myj5 thij Pi ;) is an admissible stress field on B.

If we define addition and multiplication of an admissible
state by a scalar through

s+s = (ui+u;,wl-+wi',...,h,~+h;),
(5)
As = (Ay;, Aw;, ..., ARy),

then the set of all admissible states is a linear vector space.

We say that s = (u,w;, 9, ¥ &) €555 Kij» Vipp din §io 5
Sij> Mijs Uij> P> h;) is an elastic state on B corresponding to the
body loads (Fi(l), Fi(z), Gfl), GEZ) ) if s is an admissible state that
satisfies (1)-(3) on B. Let S,, (v = 1,2, 3,4), be the subsets of
OB so thatS, US, = S;US, =3B, S, NS, = S,NS, = 0.
By an external data system on B we mean an ordered array
L= (Fi(l)’Fi(Z)’ Ggl)’ Gz@’ iy, Ty P> Ui b 1, d3, &) with the
following properties: Fi(l), Fi(z), Ggl), G;Z) € CO(E); u;,w; €
C°(S,); T; are piecewise regular on S,; £; and d; are continuous
on S,; §;, ; € C°(S;); 7, are piecewise regular on S; 77, and
d, are continuous on S,.

The mixed problem of the equilibrium theory consists in
finding an elastic state that corresponds to the body loads

(Fl.(l), Fi(z), Ggl), ng)) and satisfies the boundary conditions

u; = i, w,=w; on S,
(tﬁ + sﬁ)nj =1, d;=d, onS,,
i S (6)
P = P> Y;=y; on S,
(mji + .“ji) n; =m;, &= Ei on S,

We note that a rigid deformation field is characterized by
¢ =Y; =B, ™)

where A; and B; are arbitrary constants.

u,=w; =A; + sijkBjxk,
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3. Minimum Principle

In this section we establish a minimum principle of elasto-
statics which characterize the solution of the mixed problem.

Let s = (upw, @ Wi &) €55 Kijs Vi Ais §io 1o Sijp M55 Wi
Pi»h;) be an admissible state on B. The internal energy density
corresponding to s is defined by

I]TSSI]KTS + Cz]rus]Krs

&€+ B:

ijrs<ijcrs

Wi(s) = ;A

+Dee+E

ijrs ijrs 1]Yrs FijrsYinrs

+ Gz]rssljers + H]TSSI]YTS + ]1]7'5 ij Krs

+L; +a;.¢&:d +be.d +c. k.d ~ (8)

ijrs I]YTS ijr&ij“r ijreij“r ijrij“r

+ fz]r))z]dr + gz]rezjg + hz]r IJE

1
+ eierijgr + ”ijr)’ijfr + Eaijdidj
1
+ Ebijfifj + Cijdifj-

The strain energy corresponding to s is

Us) = L W (s) dv. )

By a kinematically admissible state we mean an admissible
state that satisfies (2) and the boundary conditions

u; = i, w; =w; on S,
d;=d; onS,,
(10)
% D> V’i = V’: on 53’
& =El. on S,.

Theorem 1. Assume that the internal energy is a positive def-
inite form. Let K denote the set of all kinematically admissible
states, and let A(-) be the functional on K defined by

A =UE - [ (E u+ plEw, 4 G,
+p3Gyy) dv (an

_lj E(ui+wi)da_lj m; (¢; + v;) da,
2 2 Js

2 4

for every s = (u, w;, 93, Y, &ij> €ij> Kij> Vij» di &, Lijs Sijs Mo Hijs
pi»h;) € K. Further, let s be a solution of the mixed problem.
Then

A(s) < A(s"), (12)

for every s* € K, and equality holds only if s* = s modulo a
rigid displacement.

Proof. Lets, s € K and define
s =5 —s (13)

! ! ! ! o ! ! ! !
Then s* = (u, w;> 9> Y3 & € Kijp Vo di’Ez’t si mz]’!‘z;
P: , h;) is an admissible state with the properties

r o1 ( , /)
sij—”‘j,iJrisijk P T Vi)>

I d=u ’
Kij = Pji> i =W - W (14)
14
o +l ( - r)
€j = Wi+ Sk P T Vi)
! ! ! ! !
Yij = Vi § =9 —vis
u; =0, w, =0 on S, d; =0 on S,
(15)
I I I
@; =0, y; =0 on S, & =0 on S,

It follows from (4), (8), (9), (11), and (13) that

A(s")=A(s) + E(s')
+ J (t 81] + Sz]eq + mUKU + /41])/1] + pid; + W& )
J (Pl ” +P2F(2)w +PlG(l)(Pz
0GPy v

I fi(u;+wi')da—%J- ; (¢ +v/)da.

Si Sy

| =

(16)
If we take into account (14) and use (1), then we obtain

t; + mljicl] + pt,]yl] + pid; + W&

11811 5ij€ 11
! !

(tjzuz +S LU + m]l(Pi +Mji1//i))j

( Jij P’)

1
- [mji,j 5 Eirk (e + 5000) = hi] ¢! (17)

(Sﬁ,j +p)w
1 ’
M]l j 1r] (trj + Srj) + hi Wi
_ ' ’ ' '
= (fji”i +S5W; +mp; + nujil//i))j

0 (1 2 1 02
+P1Fi( )” +P2F( )w +P1G( )‘Pz +P2GE )‘//i,-



By using the divergence theorem, (15), and (17) we get

J. (t]z 1] ] z] + mz]KU + nuz])}z] * pldl + hE )

- % LB [t 5j0)my (w ) + (2= 5)

+(’”ﬁ+P‘ﬁ)”j (of +v!) + (mj — ;) & da

J u +p2F(2)w +pp G(l)(p +p2G(2)1//1)dv
J i+ s

u +w)da

j (m+ 1)y (9] + 9] da

(1) li (2) I)

”"’PzF()w +p G 9l + PGy

(18)
In view of (18), relation (16) can be written as

A(s") = A(s) +E(s')

A )] o v

Since s is a solution of the mixed problem, (19) implies
A(s*)—A(s):E(s'). (20)

Since the internal energy is positive definite, we obtain
A(s) < A(s"). (21)
Moreover, A(s) = A(s") only if ei']. =0, el{j =0, Kfj =0,

yl.'j =0, d: =0, and fl' = 0. Thus, A(s) = A(s") only if s* = s
modulo a rigid displacement. O

Theorem 1 extends the principle of minimum potential
energy from the classical elasticity (see, e.g., [16]).
4. Dynamic Theory

In this section we establish a minimum principle of Reiss type
(see [17,18]) in the dynamic theory. The equations of motions
are

0 (1) .
tiij = Pt piE; = piidy,
0.2) _ 0.
Sjij T P+ P ET = pw;,
1 oG W) (22)
Mjij S Eijk (tjk+5jk)_hi+P1 =Jij ¢
1 02 _ 7(2) .
Hiij T Eijk (tjk + Sjk) +hi+p, G =)
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on B x I, where ]l.(.1 ) and ]i(;) are coefficients of inertia and
I = (0, 00). To the field equations (22), (2), and (3) we must
add boundary conditions and initial conditions. The initial
conditions are

u; (x,0) = u) (x), i (x,0) =) (%),

w; (x,0) = w) (x), w; (x,0) = @’ (x),

(23)
9,0 =9/ x), ¢x0={x,
Y0 =y (0,  ¥x0=x ®,

0 .0 0 0 0 »0 0 0 :
where u;, v;, w;, w;, ¢;5 ¢;, ¥;, and y; are prescribed

functions. We consider the boundary conditions

u; = U, w,=w, on S xI
(tji + S]i) n] = E;, dz = dl on 82 X1
) (24)
$i=¢» Y=y on S;xI,
(mj,- + [’l]l) nj = mi; Ei = Ei on S4 X I’

where i;, W;, t;, d;, §;, ¥;, Mm;, and &; are given.
We assume that

i) F F(z) G. ,and G(z) are continuous on B X [0, 00);

2 .0 .00
(ii) PpPz’ ]1] ]1] > Ups Vi Wy wi’(Pi’ i)‘/’w and Xi are
continuous on B;

(iii) the constitutive coeflicients are continuously differen-
tiable on B;

(iv) the constitutive coefficients satisfy relations (4), and
the coeflicients of inertia are symmetric;

0 0 ; i B (1) (2)
(v) p, and p, are strictly positive on B, and J;;* and J;;
are positive definite tensors on B;
(vi) ;, W; are continuous on S, x I, and @;, ; are contin-
uous on S; x I;
(vii) d; and EI are continuous on S, x I and S, x I,
respectively;
(viii) Z; and 777, are continuous in time and piecewise regular

on S, x I and S, x I, respectively.

Let M and N bo nonnegative integers. We say that F is
of class C™N on B x I if F is continuous on B x I and the

functions
()
0x;0x; -+ 0x, \ Ot" ’

25
nef0,1,2,...,N}, (25)

mef0,1,2,..., M},
m+n < max {M, N}
exist and are continuous on B x I. We denote C*N by CM.

We say that w = (u;, w;, ¢;, ¥;) is a dynamically admissible
deformation field on B x I provided that («) u;, w;, ¢;, y; €
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CZ(B) ﬂCl(E); (/3) lii’ az’ ui]’ wj, w wz]’ Pi> (Pz’ (Pzﬁ Vi 1/’1’ 1//11
are continuous on B x [0,00). By a dynamically admissible
stress field on B x I we mean an ordered array of func-
tions (¢, s;j> M) hij> Pi> ;) with the following properties: (a)
tij» Sij>myj, and p;; are of class C* on Bx I; (b) p,h; € C°
on B x I; (¢) tijltji,j,sij,sﬁ‘j, Mij M > Wi Wji j» Pis and h; are
continuous on B x [0,00).

An admissible process on B x I is an ordered array P =
(1 Wy, @5 Wi &ij» €ij> Kij> Vij» d;, &, Lij> Sijs Mijs Wij> P> h;) with the
following properties:

(1) (u;, w;, ;> y;) is a dynamically admissible deforma-
tion field;

(2) & ’Yij> d,‘,Ei € Cl’o on B x I;

ij? zj’Kij
(3) &> €, k;j» v;j> d;> and §; are continuous on B x [0, 00);

(4) (tj> sijmyj5 hij> Pihy) is @ dynamically admissible
stress field on B x I.

We say that P = (uz’wz’(Pl’v/P ij> 1]’ Kl] yz]’dt’gz’tzj’
Sij» Mijs i p,,h,) is an elastic process corresponding to the
body loads (F F(Z) G(l) Gi )) if P is an admissible pro-
cess that satisﬁes (22) ( ), and (3) on B x I. Given an
external data system (F,F®,G",G?, &, @,, 3, ¥, T;, 7
c?,-,fi,u?,v?,w?,w?,(p?,@,v/i,Xi) on B x I, the dynamlc
problem consists in finding an elastic process corresponding
to the body loads (Fi(l),Fi(z),Gfl),ng)) which satisfies the
initial conditions (23) and the boundary conditions (24). We
call such an elastic process a solution of the mixed problem.

Let k be the function defined by

k(t)=t, te[0,00). (26)

Let F and G be functions on B x I that are continuous in
time. We denote by F * G the convolution of F and G:

t
[F*G](x,t)zj F(x,t—-1)G(x,7)dr, Xx€B, tel
0

(27)
We define the functions f; () f.(z), gfl) and gEz) on B x
[0, 00) by
f(l) pik * F,(l) +p; (tv? + u?) ,
f(z) pok Fi(z) +p) (tw? + w?) )
(28)

Following [16] we can prove the following.

5

Theorem 2. Let u;, w;, ¢;, y; t,],szj,ml],yi] e C,
0

pi-h; € C°. Then u;, w;, ¢;, v, tU,sU,mU,yU p;» and h; satisfy

(22) and the initial conditions (23) if and only if

k (]l] pt)+f P?uﬂ

2 0
k (Sji,j + Pz‘) + fi( )= Py Wi

1
k*[ +2%m@ﬁ+%ﬂ h]+¢” I 9n  (9)
1
k * |:‘[/lﬂ)1 + zsijk (t]k + Sjk) + h1:| + gl(Z)

= ]i(jz)y/j on B x [0,00).

The next theorem gives an alternative characterization
of the mixed problem in which the initial conditions are
incorporated into the field equations. This result is useful in
the derivation of minimum principle.

Theorem 3. Let P be an admissible process. Then P is a
solution of the mixed problem if and only if P satisfies (2), (3),
and (29) on B x [0, 00) and the boundary conditions (24).

In what follows we denote by H or ZH the Laplace
transform with respect to the time of the function H:

A (p) =i (p) = [ ePHOd (py<p<),
(30)

for some p, > 0.

In addition to the assumptions made previously, we
assume that

1) Q@) ~1) ~2) ~ =
(Al) Fi ’Fi ’Gi ’Gi ’ui’wl
sess Laplace transforms;

t;,d;, 3> i, ;, and & pos-

(A,) the internal energy W is

&> €ij> Kij> Vijp dj» and &

positive for any

We say that f is bounded at infinity if lim, ,  f(x,1)
exists for each x in the domain of definition of f. We will
assume that the functions used to describe the mixed problem
are bounded at infinity.

We write fI"! for the nth derivative of f with respect to
t holding x fixed. Following [17] we introduce the set I' of
admissible weight functions. We say that g € T if g is a
function on [0, co) with the following properties:

() fooo IOOO g[k] (t + s)dt ds exists for k > 0;
(B) g(t) = [,” G(p)e Pdp, t € [0,00),
where G is a continuous and positive function on [0, c0) and

has a finite limit at infinity. An example of a weight function
isgt) =+ 2)7® with 2G(t) = 2 exp(-2t) (cf. [17]).



By a kinematically admissible process we mean an admis-
sible process that satisfies (2) and the boundary conditions

u; = U, w,=w, on S xI,
d;=d;, on S,xI,
B (31)
%= P yi=y; on §xI,
§=& on S xL

Let % denote the set of all kinematically admissible
processes P such that the functions of P and their first
derivatives with respect to cartesian coordinates possess
Laplace transforms.

Theorem 4. Assume that hypotheses (A,) and (A,) hold. Let
@, (") be the functional on K defined by

=] [ [

A(A sk * &) (1) &5 (%, 9)
+ 2 (Byjuak # K,) (%,1) £ (%, 5)
+ (C,-jmnk * Km,,) (x, 1)K (x, )
+ (Dyjik  €) (%:1) 5 (%, )
+2 (Eijmnk * an) (x,t) €;j (X, 5)
+ (Fijpank * Vo) (5,8) 5 (x,9)
+2(Gijpank * €s) (1) £ (%, )
+ 2 (Hyjpk # Vo) (%:1) &5 (%, )
+ 2 Tk * Ko ) (5, 1) €5 (%, 9)
+ 2 (Lijnk * Vo) (%, 1) 555 (%, 5)
+2(ayk «d ) (x,1) &; (%, 9)

+2(b;

ijm

k = dm) (x.t)e; (x,5)

+2(fijmk * dyy) (58) 13 (%,5)

2 gljmk w &) (x,1) &;j (x,)

“+

2(h; k*

“+

iim m) (X 1) e (%, 5)

§
C. k*&

ijm

2

+

m) (% 1) K (X, 5)

(
(
(
(
(
(
+2 Gk + d,) (%, 1) &
(
(
(
(
(

)
)
)
)

+2(Mmk * &, ) (1) ;5 (%, 5)
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( k*d)(x,t)di(x,s)
+(bk + &) (% 1) & (x,9)
2

+2 gk + &) (x,1)d; (x,5)

+

127 ) (x, ) u; (x,5)
+(pw ,) (x, ) w; (x,5)

G
(2

+ (](1) )(x, ) @; (%, )
(

+ ](2)%) (x, 1) v; (x, s)} dtdsdv,

2] [ aer
. [fi(l) (%0 u; (x,8) + fi(z) (x, ) w; (x,)

+ g (% 1) ¢; (x,9)
+g7 (x,1)y; (x,5)| dt dsdv,

_ J-sz LOO J-OOO gt+s) (k=) x1t) (u+w,)

- (x,s)dtdsda,

- J-s J-o Io g(t+s) (k= m;) (x,1) (¢; + ;)
-(x,s)dtdsda,,
(32)

for every P € K. Further, let P be a solution of the mixed
problem. Then

@, (P) <@, (P"), (33)
for every P* € .

Proof. We consider P, P*

€ X and introduce P’ by P’ =
P* — P. If we denote P’ =

! ! ! ! ! ! ! ! ! !
(u; Wi P> Vs &j» €555 Ky Vi d;» &

1] l]’AMl] , P> h;) then we have

! ! ! !
TR (‘Pk + ‘/’k)’

! ! !
d;, =u; —w;,

I
Kij = Pjio

2 = w' (/ I)
€ = W;; T & \Pr T Vi )»

(34)
Y; = l//;,i’ & =9~
u, =0, w, =0 on S,
¢ =0, v, =0 on S, £&=0 ons§,.
We note that
Z (M % N) = (Zk)(p)=p>. (35
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If we use the definition of the weight functions we get

L Loo Loo gt +s)Hx1)Qxs)dtdsdv,

SR

0
By using (35) and (36) the functional CDg(~) can be expressed
in the form

(36)
(x,p)Q(x, p)dpdv,.

o, )= [ j:o PG (p)

[ AijnBnE + 2Bijpnons

ijmn*mn<ij ijmn"mn®ij

+ Cl]mnKmnK1] + Dt]mn mn eij

+2E;. e.+F

ijmn Ymn tjmnymn Yij

e &.+2H. 1y €

ijmn“mn<ij ijmnYmn€ij

+2G;;

+2].. K, E:+2L 3

ijmn"mn<ij z]mn)/mn ij

mEij

5

+2a,,d, & + 2b;j,,

zjmdeq + Zfzjm inj

+ 2gijm£m§ij +2h;;,,

m€ij

Naal

+ 2€,]mfm i+ 2n,]mfm%]

vadd +bEE + 208 d

+p* (V3 + YD, + T 9,6,
](Z)w]wl)] dp dV

-2 L L G(p) [FVa + fPw + 3, + 370 ] dp dv,

[ [ rew) @ @) () dpda,

, Jo
- [ [ 6w @+ 7 (zm) dpda,

(37)

where, for convenience, we have suppressed the argument x.

If we take the Laplace transform of relations (29) and use
(35) we get

7 (38)
)41 -
p [2”]1] + Sl]k (tlk + S]k) + 2/]:11] + zgl(Z) — 2]1(]2){/;]

In view of (3), (4), (34), and (38), we have

~ o~

~ A ZB ~ ~  ~
ijmn (smnsij + smnsij) + ij Kpn€ij T K i‘)

A

C ~ ~/ ~ A ~ ~
+ ijmn \"mn"ij mn emneij+emneij

)
L
L

)
)

mneij + mneij) + Fijmn ( mn)/z] * Ymn))z]

+2a,~jm(c? g +d, §)+2b (d e +d ])

ijm \@mCij
+ 265 (il + Ay 35) + 2 i (AP + 75
+ 2, (8l + E,8;) + 2y, (885 + 6,8
Rij) + 205 (8 + &%)
+b; (88 +&8) + 26, (§d; +Eid;)
= 2 (B8, + 58, + iy + By + pid, + hiE))

=2 [(t],u, +$,W0] + P, + ﬁjilpi,))j

D! f(z)

+p2

~(2) =1 ozAA

+p gz VII plp uu

+p’f} @+ 5

0,2~ ~/
PZP wlwl

](2)

P10, - P15 9,9

(39)

With the aid of the divergence theorem and taking into
account that P is a solution of the problem, from (32), (37),
(39), and (34) we find that

D, (s) =D, (s)

S

-[A g

ijmn€mn z]

,J
1]mn Kinn z]

£.+2B.

+Cppnk &+ D;;

ijmn®mn z] z]mn mn 1]

+ 2E; .+ F;

ymnymn ijmn Ymnyz]

~
]mn ymn l]

+2G,., & & +2H;;

ijmn~mn%ij

~
l]mnymn ij

+ 2] g +2L

1]mn Kn ij
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dmsij + Zbijmdmeij
+ 2Ct]rndm ij + 2ft]m myU
+ zgzjmfm ij + 2hl]m£m ij

+ 2€,Jm§m i+ Zn,JmﬁmyU

b, + 26,84,

+alJ ] z

O/I

+P2 (Pl”

ST dpdv,

~I ~I

+ pzw w; +I(1)(p] ¢;

(40)

From (40) and hypotheses (A,) and (v) we conclude that (33)
holds. O

In a similar way we can establish a minimum principle
for the problem characterized by the following boundary
conditions:

u; = U, w,=w;, on S xI,
tﬂn] = ti’ S]ln] = gl on SZ X I,
(41)
@ = Pi> y;=y; on S3xI,
mn; = m;, Yjinj = =i on §;x1I,

5. Conclusions

In the present work, a theory of composites modelled as
mixtures of two elastic Cosserat continua is investigated. A
counterpart of the principle of minimum potential energy
of the classical elastostatics is presented. In the dynamic
theory, the solution of the boundary-initial-value problem
is characterized by equations which incorporate the initial
conditions. A minimum principle for the solution of dynamic
problems is established.
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