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This paper is concernedwith the linear theory of compositesmodelled asmixtures of twoCosserat elastic continua. First, we present
a minimum principle in the case of equilibrium.Then, we consider the dynamic theory and establish a minimum principle of Reiss
type for a mixed problem.

1. Background

In order to describe adequately the behaviour of some kinds
of mixtures it is necessary to introduce into the continuum
theory terms reflecting the microstructure of the materials.
In a realistic continuum model, each particle of a granular
material or a solid containing microscopic components (e.g.,
nanocomposites) possesses six degrees of freedom. Impor-
tant among such materials are animal bones, solid with
microcracks, and other synthetic materials with pores or
microreinforcements. The origin of the modern theories of
mixtures of materials with microstructure goes back to the
papers of Allen and Kline [1], Twiss and Eringen [2, 3], and
Dunwoody [4]. For a review of the literature onmixtures with
microstructure the reader is referred to [5, 6]. Inmany papers
the mechanical behaviour of composites is modelled as mix-
tures of interacting continua (see, e.g., [7–10] and references
therein). A general theory of mixtures with microstructure
has been established in [2, 3]. In [3], the nonlinear constitutive
equations for mixtures of micromorphic and micropolar
elastic bodies are derived. The results are used to derive
the linear theory of mixtures composed of two Cosserat
elastic constituents. The equations presented in [2, 3, 6] are
sufficiently general to apply to any constituents, whether solid
or fluid, in eulerian description. A theory of a mixture of
two Cosserat elastic solids in lagrangian description has been
established in [10]. This theory allows us to formulate the
boundary conditions in the reference configuration.

In the present paper we consider the linear theory of
mixture of two Cosserat elastic solids. In Section 2 we present
the notations and the basic equations. Section 3 is devoted to
a minimum principle in the equilibrium theory. In Section 4
we consider the dynamic theory and establish a minimum
principle of Reiss type. Variational characterizations of solu-
tions in nonpolar theories of mixtures have been presented in
various papers (see, e.g., [5, 11–15] and references therein).

2. Methods Mathematical Formulation

We consider a body which is made up of two interpenetrating
elastic solids of Cosserat type 𝑠

1
and 𝑠

2
. We assume that

the body, at some instant, occupies the region 𝐵 with the
piecewise smooth surface 𝜕𝐵. The motion of the body is
referred to a fixed system of rectangular cartesian axes 𝑂𝑥

𝑖

(𝑖 = 1, 2, 3) and to the reference configuration 𝐵. We denote
by n the outward unit normal of 𝜕𝐵. Letters in boldface
stand for tensors of an order 𝑞 ≥ 1, and if k has the order
𝑞, we write V

𝑖𝑗⋅⋅⋅𝑟
(𝑞 subscripts) for the components of k in

the cartesian coordinate frame. We will employ the usual
summation and differentiation conventions. Latin subscripts
(unless otherwise specified) are understood to range over
the integers (1, 2, 3), summation over repeated subscripts
is implied, and subscripts preceded by a comma denote
partial differentiation with respect to the corresponding
cartesian coordinate. We use a superposed dot to denote the

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2015, Article ID 789570, 8 pages
http://dx.doi.org/10.1155/2015/789570



2 Mathematical Problems in Engineering

partial differentiation with respect to the time 𝑡. First, we
consider the linear theory of elastostatics. We assume that
the constituents 𝑠

1
and 𝑠
2
are each elastic solids of Cosserat

type. We consider a theory for binary mixtures where the
typical particles of 𝑠

1
and 𝑠

2
occupy the same position in

the reference configuration. We denote by u and w the
displacement vector fields associated with the constituents
𝑠
1
and 𝑠

2
, respectively. Let 𝜌0

𝛼
be the mass density of the

constituent 𝑠
𝛼
in the reference configuration. We denote

by 𝜑 and 𝜓 the microrotation vectors associated with the
constituents 𝑠

1
and 𝑠
2
, respectively. Let t and s denote the

stress tensors associated with the constituents 𝑠
1
and 𝑠

2
,

respectively. Further, let m and 𝜇 denote the partial couple-
stress tensors associated with 𝑠

1
and 𝑠

2
, respectively. The

equations of equilibrium can be expressed in the form

𝑡
𝑗𝑖,𝑗
− 𝑝
𝑖
+ 𝜌
0

1
𝐹
(1)

𝑖
= 0, 𝑠

𝑗𝑖,𝑗
+ 𝑝
𝑖
+ 𝜌
0

2
𝐹
(2)

𝑖
= 0,

𝑚
𝑗𝑖,𝑗
+

1

2

𝜀
𝑖𝑗𝑘
(𝑡
𝑗𝑘
+ 𝑠
𝑗𝑘
) − ℎ
𝑖
+ 𝜌
0

1
𝐺
(1)

𝑖
= 0,

𝜇
𝑗𝑖,𝑗
+

1

2

𝜀
𝑖𝑗𝑘
(𝑡
𝑗𝑘
+ 𝑠
𝑗𝑘
) + ℎ
𝑖
+ 𝜌
0

2
𝐺
(2)

𝑖
= 0,

(1)

on 𝐵. Here we have used the following notations: 𝑝
𝑖
is the

diffusive force, ℎ
𝑖
is the diffusive couple, 𝐹(𝛼)

𝑖
is the body

force per unit mass acting on the constituent 𝑠
𝛼
, 𝜀
𝑖𝑗𝑘

is the
alternating symbol, and𝐺(𝛼)

𝑖
is the body couple per unit mass

acting on the constituent 𝑠
𝛼
. We introduce the functions 𝜀

𝑖𝑗
,

𝑒
𝑖𝑗
, 𝜅
𝑖𝑗
, 𝛾
𝑖𝑗
, 𝑑
𝑖
, and 𝜉

𝑖
by

𝜀
𝑖𝑗
= 𝑢
𝑗,𝑖
+

1

2

𝜀
𝑖𝑗𝑘
(𝜑
𝑘
+ 𝜓
𝑘
) , 𝜅

𝑖𝑗
= 𝜑
𝑗,𝑖
,

𝑑
𝑖
= 𝑢
𝑖
− 𝑤
𝑖
,

𝑒
𝑖𝑗
= 𝑤
𝑗,𝑖
+

1

2

𝜀
𝑖𝑗𝑘
(𝜑
𝑘
+ 𝜓
𝑘
) , 𝛾

𝑖𝑗
= 𝜓
𝑗,𝑖
,

𝜉
𝑖
= 𝜑
𝑖
− 𝜓
𝑖
.

(2)

The constitutive equations are

𝑡
𝑖𝑗
= 𝐴
𝑖𝑗𝑟𝑠
𝜀
𝑟𝑠
+ 𝐵
𝑖𝑗𝑟𝑠
𝜅
𝑟𝑠
+ 𝐺
𝑖𝑗𝑟𝑠
𝑒
𝑟𝑠
+ 𝐻
𝑖𝑗𝑟𝑠
𝛾
𝑟𝑠

+ 𝑎
𝑖𝑗𝑟
𝑑
𝑟
+ 𝑔
𝑖𝑗𝑟
𝜉
𝑟
,

𝑠
𝑖𝑗
= 𝐺
𝑟𝑠𝑖𝑗
𝜀
𝑟𝑠
+ 𝐽
𝑖𝑗𝑟𝑠
𝜅
𝑟𝑠
+ 𝐷
𝑖𝑗𝑟𝑠
𝑒
𝑟𝑠
+ 𝐸
𝑖𝑗𝑟𝑠
𝛾
𝑟𝑠

+ 𝑏
𝑖𝑗𝑟
𝑑
𝑟
+ ℎ
𝑖𝑗𝑟
𝜉
𝑟
,

𝑚
𝑖𝑗
= 𝐵
𝑟𝑠𝑖𝑗
𝜀
𝑟𝑠
+ 𝐶
𝑖𝑗𝑟𝑠
𝜅
𝑟𝑠
+ 𝐽
𝑟𝑠𝑖𝑗
𝑒
𝑟𝑠
+ 𝐿
𝑖𝑗𝑟𝑠
𝛾
𝑟𝑠

+ 𝑐
𝑖𝑗𝑟
𝑑
𝑟
+ ℓ
𝑖𝑗𝑟
𝜉
𝑟
,

𝜇
𝑖𝑗
= 𝐻
𝑖𝑗𝑟𝑠
𝜀
𝑟𝑠
+ 𝐿
𝑟𝑠𝑖𝑗
𝜅
𝑟𝑠
+ 𝐸
𝑟𝑠𝑖𝑗
𝑒
𝑟𝑠
+ 𝐹
𝑖𝑗𝑟𝑠
𝛾
𝑟𝑠

+ 𝑓
𝑖𝑗𝑟
𝑑
𝑟
+ 𝜂
𝑖𝑗𝑟
𝜉
𝑟
,

𝑝
𝑖
= 𝑎
𝑟𝑠𝑖
𝜀
𝑟𝑠
+ 𝑐
𝑟𝑠𝑖
𝜅
𝑟𝑠
+ 𝑏
𝑟𝑠𝑖
𝑒
𝑟𝑠
+ 𝑓
𝑟𝑠𝑖
𝛾
𝑟𝑠
+ 𝑎
𝑖𝑗
𝑑
𝑗
+ 𝑐
𝑖𝑗
𝜉
𝑗
,

ℎ
𝑖
= 𝑔
𝑟𝑠𝑖
𝜀
𝑟𝑠
+ ℓ
𝑟𝑠𝑖
𝜅
𝑟𝑠
+ ℎ
𝑟𝑠𝑖
𝑒
𝑟𝑠
+ 𝜂
𝑟𝑠𝑖
𝛾
𝑟𝑠
+ 𝑐
𝑖𝑗
𝑑
𝑗
+ 𝑏
𝑖𝑗
𝜉
𝑗
.

(3)

The constitutive coefficients have the following symmetries:

𝐴
𝑖𝑗𝑟𝑠
= 𝐴
𝑟𝑠𝑖𝑗
, 𝐶

𝑖𝑗𝑟𝑠
= 𝐶
𝑟𝑠𝑖𝑗
, 𝐷

𝑖𝑗𝑟𝑠
= 𝐷
𝑟𝑠𝑖𝑗
,

𝐹
𝑖𝑗𝑟𝑠
= 𝐹
𝑟𝑠𝑖𝑗
, 𝑎

𝑖𝑗
= 𝑎
𝑗𝑖
, 𝑏

𝑖𝑗
= 𝑏
𝑗𝑖
.

(4)

We assume that (a) 𝜌0
1
and 𝜌0

2
are strictly positive and

continuous on 𝐵; (b) 𝐹(𝛼)
𝑖

and 𝐺(𝛼)
𝑖
, (𝛼 = 1, 2), are contin-

uous on 𝐵; (c) the constitutive coefficients are continuously
differentiable on 𝐵 and satisfy relations (4).

We say that the array 𝜔 = (𝑢
𝑖
, 𝑤
𝑖
, 𝜑
𝑖
, 𝜓
𝑖
) is an admissible

deformation field on𝐵 provided 𝑢
𝑖
,𝑤
𝑖
,𝜑
𝑖
,𝜓
𝑖
∈ 𝐶
2
(𝐵)∩𝐶

1
(𝐵).

An admissible stress field on𝐵 is an ordered array of functions
(𝑡
𝑖𝑗
, 𝑠
𝑖𝑗
, 𝑚
𝑖𝑗
, 𝜇
𝑖𝑗
, 𝑝
𝑖
, ℎ
𝑖
) with the properties 𝑡

𝑖𝑗
, 𝑠
𝑖𝑗
, 𝑚
𝑖𝑗
, 𝜇
𝑖𝑗
, 𝑝
𝑖
,

ℎ
𝑖
∈ 𝐶
1
(𝐵) ∩ 𝐶

0
(𝐵) and 𝑡

𝑗𝑖,𝑗
, 𝑠
𝑗𝑖,𝑗

, 𝑚
𝑗𝑖,𝑗

, 𝜇
𝑗𝑖,𝑗

∈ 𝐶
0
(𝐵). By

an admissible state on 𝐵 we mean an ordered array 𝑠 =

(𝑢
𝑖
, 𝑤
𝑖
, 𝜑
𝑖
, 𝜓
𝑖
, 𝜀
𝑖𝑗
, 𝑒
𝑖𝑗
, 𝜅
𝑖𝑗
, 𝛾
𝑖𝑗
,𝑑
𝑖
, 𝜉
𝑖
, 𝑡
𝑖𝑗
, 𝑠
𝑖𝑗
, 𝑚
𝑖𝑗
,𝜇
𝑖𝑗
, 𝑝
𝑖
, ℎ
𝑖
)with the

following properties:

(𝛼) (𝑢
𝑖
, 𝑤
𝑖
, 𝜑
𝑖
, 𝜓
𝑖
) is an admissible deformation on 𝐵;

(𝛽) 𝜀
𝑖𝑗
, 𝑒
𝑖𝑗
, 𝜅
𝑖𝑗
, 𝛾
𝑖𝑗
, 𝑑
𝑖
, 𝜉
𝑖
∈ 𝐶
1
(𝐵) ∩ 𝐶

0
(𝐵);

(𝛾) (𝑡
𝑖𝑗
, 𝑠
𝑖𝑗
, 𝑚
𝑖𝑗
, 𝜇
𝑖𝑗
, 𝑝
𝑖
, ℎ
𝑖
) is an admissible stress field on𝐵.

If we define addition and multiplication of an admissible
state by a scalar through

𝑠 + 𝑠

= (𝑢
𝑖
+ 𝑢


𝑖
, 𝑤
𝑖
+ 𝑤


𝑖
, . . . , ℎ

𝑖
+ ℎ


𝑖
) ,

𝜆𝑠 = (𝜆𝑢
𝑖
, 𝜆𝑤
𝑖
, . . . , 𝜆ℎ

𝑖
) ,

(5)

then the set of all admissible states is a linear vector space.
We say that 𝑠 = (𝑢

𝑖
, 𝑤
𝑖
, 𝜑
𝑖
, 𝜓
𝑖
, 𝜀
𝑖𝑗
, 𝑒
𝑖𝑗
, 𝜅
𝑖𝑗
, 𝛾
𝑖𝑗
, 𝑑
𝑖
, 𝜉
𝑖
, 𝑡
𝑖𝑗
,

𝑠
𝑖𝑗
, 𝑚
𝑖𝑗
, 𝜇
𝑖𝑗
, 𝑝
𝑖
, ℎ
𝑖
) is an elastic state on 𝐵 corresponding to the

body loads (𝐹(1)
𝑖
, 𝐹
(2)

𝑖
, 𝐺
(1)

𝑖
, 𝐺
(2)

𝑖
) if 𝑠 is an admissible state that

satisfies (1)–(3) on 𝐵. Let 𝑆
𝑟
, (𝑟 = 1, 2, 3, 4), be the subsets of

𝜕𝐵 so that 𝑆
1
∪ 𝑆
2
= 𝑆
3
∪ 𝑆
4
= 𝜕𝐵, 𝑆

1
∩ 𝑆
2
= 𝑆
3
∩ 𝑆
4
= 0.

By an external data system on 𝐵 we mean an ordered array
𝐿 = (𝐹

(1)

𝑖
, 𝐹
(2)

𝑖
, 𝐺
(1)

𝑖
, 𝐺
(2)

𝑖
, �̃�
𝑖
, 𝑤
𝑖
, 𝜑
𝑖
, �̃�
𝑖
, �̃�
𝑖
, �̃�
𝑖
,
̃
𝑑
𝑖
,
̃
𝜉
𝑖
) with the

following properties: 𝐹(1)
𝑖
, 𝐹(2)
𝑖
, 𝐺(1)
𝑖
, 𝐺(2)
𝑖

∈ 𝐶
0
(𝐵); �̃�

𝑖
, 𝑤
𝑖
∈

𝐶
0
(𝑆
1
); �̃�
𝑖
are piecewise regular on 𝑆

2
; �̃�
𝑖
and ̃𝑑

𝑖
are continuous

on 𝑆
2
; 𝜑
𝑖
, �̃�
𝑖
∈ 𝐶
0
(𝑆
3
); �̃�
𝑖
are piecewise regular on 𝑆

4
; �̃�
𝑖
and

̃
𝑑
𝑖
are continuous on 𝑆

4
.

The mixed problem of the equilibrium theory consists in
finding an elastic state that corresponds to the body loads
(𝐹
(1)

𝑖
, 𝐹
(2)

𝑖
, 𝐺
(1)

𝑖
, 𝐺
(2)

𝑖
) and satisfies the boundary conditions

𝑢
𝑖
= �̃�
𝑖
, 𝑤

𝑖
= 𝑤
𝑖

on 𝑆
1
,

(𝑡
𝑗𝑖
+ 𝑠
𝑗𝑖
) 𝑛
𝑗
= �̃�
𝑖
, 𝑑

𝑖
=
̃
𝑑
𝑖

on 𝑆
2
,

𝜑
𝑖
= 𝜑
𝑖
, 𝜓

𝑖
= �̃�
𝑖

on 𝑆
3
,

(𝑚
𝑗𝑖
+ 𝜇
𝑗𝑖
) 𝑛
𝑗
= �̃�
𝑖
, 𝜉

𝑖
=
̃
𝜉
𝑖

on 𝑆
4
.

(6)

We note that a rigid deformation field is characterized by

𝑢
𝑖
= 𝑤
𝑖
= 𝐴
𝑖
+ 𝜀
𝑖𝑗𝑘
𝐵
𝑗
𝑥
𝑘
, 𝜑

𝑖
= 𝜓
𝑖
= 𝐵
𝑖
, (7)

where 𝐴
𝑖
and 𝐵

𝑖
are arbitrary constants.
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3. Minimum Principle

In this section we establish a minimum principle of elasto-
statics which characterize the solution of the mixed problem.

Let 𝑠 = (𝑢
𝑖
, 𝑤
𝑖
, 𝜑
𝑖
, 𝜓
𝑖
, 𝜀
𝑖𝑗
, 𝑒
𝑖𝑗
, 𝜅
𝑖𝑗
, 𝛾
𝑖𝑗
, 𝑑
𝑖
, 𝜉
𝑖
, 𝑡
𝑖𝑗
, 𝑠
𝑖𝑗
, 𝑚
𝑖𝑗
, 𝜇
𝑖𝑗
,

𝑝
𝑖
, ℎ
𝑖
) be an admissible state on𝐵.The internal energy density

corresponding to 𝑠 is defined by

𝑊(𝑠) =

1

2

𝐴
𝑖𝑗𝑟𝑠
𝜀
𝑖𝑗
𝜀
𝑟𝑠
+ 𝐵
𝑖𝑗𝑟𝑠
𝜀
𝑖𝑗
𝜅
𝑟𝑠
+

1

2

𝐶
𝑖𝑗𝑟𝑠
𝜅
𝑖𝑗
𝜅
𝑟𝑠

+

1

2

𝐷
𝑖𝑗𝑟𝑠
𝑒
𝑖𝑗
𝑒
𝑟𝑠
+ 𝐸
𝑖𝑗𝑟𝑠
𝑒
𝑖𝑗
𝛾
𝑟𝑠
+

1

2

𝐹
𝑖𝑗𝑟𝑠
𝛾
𝑖𝑗
𝛾
𝑟𝑠

+ 𝐺
𝑖𝑗𝑟𝑠
𝜀
𝑖𝑗
𝑒
𝑟𝑠
+ 𝐻
𝑖𝑗𝑟𝑠
𝜀
𝑖𝑗
𝛾
𝑟𝑠
+ 𝐽
𝑖𝑗𝑟𝑠
𝑒
𝑖𝑗
𝜅
𝑟𝑠

+ 𝐿
𝑖𝑗𝑟𝑠
𝜅
𝑖𝑗
𝛾
𝑟𝑠
+ 𝑎
𝑖𝑗𝑟
𝜀
𝑖𝑗
𝑑
𝑟
+ 𝑏
𝑖𝑗𝑟
𝑒
𝑖𝑗
𝑑
𝑟
+ 𝑐
𝑖𝑗𝑟
𝜅
𝑖𝑗
𝑑
𝑟

+ 𝑓
𝑖𝑗𝑟
𝛾
𝑖𝑗
𝑑
𝑟
+ 𝑔
𝑖𝑗𝑟
𝜀
𝑖𝑗
𝜉
𝑟
+ ℎ
𝑖𝑗𝑟
𝑒
𝑖𝑗
𝜉
𝑟

+ ℓ
𝑖𝑗𝑟
𝜅
𝑖𝑗
𝜉
𝑟
+ 𝑛
𝑖𝑗𝑟
𝛾
𝑖𝑗
𝜉
𝑟
+

1

2

𝑎
𝑖𝑗
𝑑
𝑖
𝑑
𝑗

+

1

2

𝑏
𝑖𝑗
𝜉
𝑖
𝜉
𝑗
+ 𝑐
𝑖𝑗
𝑑
𝑖
𝜉
𝑗
.

(8)

The strain energy corresponding to 𝑠 is

𝑈 (𝑠) = ∫

𝐵

𝑊(𝑠) 𝑑V. (9)

By a kinematically admissible state we mean an admissible
state that satisfies (2) and the boundary conditions

𝑢
𝑖
= �̃�
𝑖
, 𝑤

𝑖
= 𝑤
𝑖

on 𝑆
1
,

𝑑
𝑖
=
̃
𝑑
𝑖

on 𝑆
2
,

𝜑
𝑖
= 𝜑
𝑖
, 𝜓

𝑖
= �̃�
𝑖

on 𝑆
3
,

𝜉
𝑖
=
̃
𝜉
𝑖

on 𝑆
4
.

(10)

Theorem 1. Assume that the internal energy is a positive def-
inite form. Let 𝐾 denote the set of all kinematically admissible
states, and let Λ(⋅) be the functional on 𝐾 defined by

Λ (𝑠) = 𝑈 (𝑠) − ∫

𝐵

(𝜌
0

1
𝐹
(1)

𝑖
𝑢
𝑖
+ 𝜌
0

2
𝐹
(2)

𝑖
𝑤
𝑖
+ 𝜌
0

1
𝐺
(1)

𝑖
𝜑
𝑖

+𝜌
0

2
𝐺
(2)

𝑖
𝜓
𝑖
) 𝑑V

−

1

2

∫

𝑆
2

�̃�
𝑖
(𝑢
𝑖
+ 𝑤
𝑖
) 𝑑𝑎 −

1

2

∫

𝑆
4

�̃�
𝑖
(𝜑
𝑖
+ 𝜓
𝑖
) 𝑑𝑎,

(11)

for every 𝑠 = (𝑢
𝑖
, 𝑤
𝑖
, 𝜑
𝑖
, 𝜓
𝑖
, 𝜀
𝑖𝑗
, 𝑒
𝑖𝑗
, 𝜅
𝑖𝑗
, 𝛾
𝑖𝑗
, 𝑑
𝑖
, 𝜉
𝑖
, 𝑡
𝑖𝑗
, 𝑠
𝑖𝑗
, 𝑚
𝑖𝑗
, 𝜇
𝑖𝑗
,

𝑝
𝑖
, ℎ
𝑖
) ∈ 𝐾. Further, let 𝑠 be a solution of the mixed problem.

Then

Λ (𝑠) ≤ Λ (𝑠
∗
) , (12)

for every 𝑠∗ ∈ 𝐾, and equality holds only if 𝑠∗ = 𝑠 modulo a
rigid displacement.

Proof. Let 𝑠, 𝑠∗ ∈ 𝐾 and define

𝑠

= 𝑠
∗
− 𝑠. (13)

Then 𝑠 = (𝑢


𝑖
, 𝑤


𝑖
, 𝜑


𝑖
, 𝜓


𝑖
, 𝜀


𝑖𝑗
, 𝑒


𝑖𝑗
, 𝜅


𝑖𝑗
, 𝛾


𝑖𝑗
, 𝑑


𝑖
, 𝜉


𝑖
, 𝑡


𝑖𝑗
, 𝑠


𝑖𝑗
, 𝑚


𝑖𝑗
, 𝜇


𝑖𝑗
,

𝑝


𝑖
, ℎ


𝑖
) is an admissible state with the properties

𝜀


𝑖𝑗
= 𝑢


𝑗,𝑖
+

1

2

𝜀
𝑖𝑗𝑘
(𝜑


𝑘
+ 𝜓


𝑘
) ,

𝜅


𝑖𝑗
= 𝜑


𝑗,𝑖
, 𝑑



𝑖
= 𝑢


𝑖
− 𝑤


𝑖
,

𝑒


𝑖𝑗
= 𝑤


𝑗,𝑖
+

1

2

𝜀
𝑖𝑗𝑘
(𝜑


𝑘
+ 𝜓


𝑘
) ,

𝛾


𝑖𝑗
= 𝜓


𝑗,𝑖
, 𝜉



𝑖
= 𝜑


𝑖
− 𝜓


𝑖
,

(14)

𝑢


𝑖
= 0, 𝑤



𝑖
= 0 on 𝑆

1
, 𝑑



𝑖
= 0 on 𝑆

2
,

𝜑


𝑖
= 0, 𝜓



𝑖
= 0 on 𝑆

3
, 𝜉



𝑖
= 0 on 𝑆

4
.

(15)

It follows from (4), (8), (9), (11), and (13) that

Λ (𝑠
∗
) = Λ (𝑠) + 𝐸 (𝑠


)

+ ∫

𝐵

(𝑡
𝑖𝑗
𝜀


𝑖𝑗
+ 𝑠
𝑖𝑗
𝑒


𝑖𝑗
+ 𝑚
𝑖𝑗
𝜅


𝑖𝑗
+ 𝜇
𝑖𝑗
𝛾


𝑖𝑗
+ 𝑝
𝑖
𝑑


𝑖
+ ℎ
𝑖
𝜉


𝑖
) 𝑑V

− ∫

𝐵

(𝜌
0

1
𝐹
(1)

𝑖
𝑢


𝑖
+ 𝜌
0

2
𝐹
(2)

𝑖
𝑤


𝑖
+ 𝜌
0

1
𝐺
(1)

𝑖
𝜑


𝑖

+𝜌
0

2
𝐺
(2)

𝑖
𝜓


𝑖
) 𝑑V

−

1

2

∫

𝑆
𝑖

�̃�
𝑖
(𝑢


𝑖
+ 𝑤


𝑖
) 𝑑𝑎 −

1

2

∫

𝑆
4

�̃�
𝑖
(𝜑


𝑖
+ 𝜓


𝑖
) 𝑑𝑎.

(16)

If we take into account (14) and use (1), then we obtain

𝑡
𝑖𝑗
𝜀


𝑖𝑗
+ 𝑠
𝑖𝑗
𝑒


𝑖𝑗
+ 𝑚
𝑖𝑗
𝜅


𝑖𝑗
+ 𝜇
𝑖𝑗
𝛾


𝑖𝑗
+ 𝑝
𝑖
𝑑


𝑖
+ ℎ
𝑖
𝜉


𝑖

= (𝑡
𝑗𝑖
𝑢


𝑖
+ 𝑠
𝑗𝑖
𝑤


𝑖
+ 𝑚
𝑗𝑖
𝜑


𝑖
+ 𝜇
𝑗𝑖
𝜓


𝑖
)
,𝑗

− (𝑡
𝑗𝑖,𝑗
− 𝑝
𝑖
) 𝑢


𝑖
− (𝑠
𝑗𝑖,𝑗
+ 𝑝
𝑖
)𝑤


𝑖

− [𝑚
𝑗𝑖,𝑗
+

1

2

𝜀
𝑖𝑟𝑘
(𝑡
𝑟𝑘
+ 𝑠
𝑟𝑘
) − ℎ
𝑖
] 𝜑


𝑖

− [𝜇
𝑗𝑖,𝑗
+

1

2

𝜀
𝑖𝑟𝑗
(𝑡
𝑟𝑗
+ 𝑠
𝑟𝑗
) + ℎ
𝑖
]𝜓


𝑖

= (𝑡
𝑗𝑖
𝑢


𝑖
+ 𝑠
𝑗𝑖
𝑤


𝑖
+ 𝑚
𝑗𝑖
𝜑


𝑖
+ 𝜇
𝑗𝑖
𝜓


𝑖
)
,𝑗

+ 𝜌
0

1
𝐹
(1)

𝑖
𝑢


𝑖
+ 𝜌
0

2
𝐹
(2)

𝑖
𝑤


𝑖
+ 𝜌
0

1
𝐺
(1)

𝑖
𝜑


𝑖
+ 𝜌
0

2
𝐺
(2)

𝑖
𝜓


𝑖
.

(17)
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By using the divergence theorem, (15), and (17) we get

∫

𝐵

(𝑡
𝑗𝑖
𝜀


𝑖𝑗
+ 𝑠
𝑖𝑗
𝑒


𝑖𝑗
+ 𝑚
𝑖𝑗
𝜅


𝑖𝑗
+ 𝜇
𝑖𝑗
𝛾


𝑖𝑗
+ 𝑝
𝑖
𝑑


𝑖
+ ℎ
𝑖
𝜉


𝑖
) 𝑑V

=

1

2

∫

𝜕𝐵

[(𝑡
𝑗𝑖
+ 𝑠
𝑗𝑖
) 𝑛
𝑗
(𝑢


𝑖
+ 𝑤


𝑖
) + (𝑡

𝑗𝑖
− 𝑠
𝑗𝑖
) 𝑛
𝑗
𝑑


𝑖

+ (𝑚
𝑗𝑖
+ 𝜇
𝑗𝑖
) 𝑛
𝑗
(𝜑


𝑖
+ 𝜓


𝑖
) + (𝑚

𝑗𝑖
− 𝜇
𝑗𝑖
) 𝜉


𝑖
] 𝑑𝑎

+ ∫

𝐵

(𝜌
0

1
𝐹
(1)

𝑖
𝑢


𝑖
+ 𝜌
0

2
𝐹
(2)

𝑖
𝑤


𝑖
+ 𝜌
0

1
𝐺
(1)

𝑖
𝜑


𝑖
+ 𝜌
0

2
𝐺
(2)

𝑖
𝜓


𝑖
) 𝑑V

=

1

2

∫

𝑆
2

(𝑡
𝑗𝑖
+ 𝑠
𝑗𝑖
) 𝑛
𝑗
(𝑢


𝑖
+ 𝑤


𝑖
) 𝑑𝑎

+

1

2

∫

𝑆
4

(𝑚
𝑗𝑖
+ 𝜇
𝑗𝑖
) 𝑛
𝑗
(𝜑


𝑖
+ 𝜓


𝑖
) 𝑑𝑎

+ ∫

𝐵

(𝜌
0

1
𝐹
(1)

𝑖
𝑢


𝑖
+ 𝜌
0

2
𝐹
(2)

𝑖
𝑤


𝑖
+ 𝜌
0

1
𝐺
(1)

𝑖
𝜑


𝑖
+ 𝜌
0

2
𝐺
(2)

𝑖
𝜓


𝑖
) 𝑑V.

(18)

In view of (18), relation (16) can be written as

Λ (𝑠
∗
) = Λ (𝑠) + 𝐸 (𝑠


)

+

1

2

∫

𝑆
2

[(𝑡
𝑗𝑖
+ 𝑠
𝑗𝑖
) 𝑛
𝑗
− �̃�
𝑖
] (𝑢


𝑖
+ 𝑤


𝑖
) 𝑑𝑎

+

1

2

∫

𝑆
4

[(𝑚
𝑗𝑖
+ 𝜇
𝑗𝑖
) 𝑛
𝑗
− �̃�
𝑖
] (𝜑


𝑖
+ 𝜓


𝑖
) 𝑑𝑎.

(19)

Since 𝑠 is a solution of the mixed problem, (19) implies

Λ (𝑠
∗
) − Λ (𝑠) = 𝐸 (𝑠


) . (20)

Since the internal energy is positive definite, we obtain

Λ (𝑠) ≤ Λ (𝑠
∗
) . (21)

Moreover, Λ(𝑠) = Λ(𝑠∗) only if 𝜀
𝑖𝑗
= 0, 𝑒

𝑖𝑗
= 0, 𝜅

𝑖𝑗
= 0,

𝛾


𝑖𝑗
= 0, 𝑑

𝑖
= 0, and 𝜉

𝑖
= 0. Thus, Λ(𝑠) = Λ(𝑠∗) only if 𝑠∗ = 𝑠

modulo a rigid displacement.

Theorem 1 extends the principle of minimum potential
energy from the classical elasticity (see, e.g., [16]).

4. Dynamic Theory

In this sectionwe establish aminimumprinciple of Reiss type
(see [17, 18]) in the dynamic theory.The equations of motions
are

𝑡
𝑗𝑖,𝑗
− 𝑝
𝑖
+ 𝜌
0

1
𝐹
(1)

𝑖
= 𝜌
1
�̈�
𝑖
,

𝑠
𝑗𝑖,𝑗
+ 𝑝
𝑖
+ 𝜌
0

2
𝐹
(2)

𝑖
= 𝜌
0

2
�̈�
𝑖
,

𝑚
𝑗𝑖,𝑗
+

1

2

𝜀
𝑖𝑗𝑘
(𝑡
𝑗𝑘
+ 𝑠
𝑗𝑘
) − ℎ
𝑖
+ 𝜌
0

1
𝐺
(1)

𝑖
= 𝐽
(1)

𝑖𝑗
�̈�
𝑗
,

𝜇
𝑗𝑖,𝑗
+

1

2

𝜀
𝑖𝑗𝑘
(𝑡
𝑗𝑘
+ 𝑠
𝑗𝑘
) + ℎ
𝑖
+ 𝜌
0

2
𝐺
(2)

𝑖
= 𝐽
(2)

𝑖𝑗
�̈�
𝑗
,

(22)

on 𝐵 × 𝐼, where 𝐽(1)
𝑖𝑗

and 𝐽(2)
𝑖𝑗

are coefficients of inertia and
𝐼 = (0,∞). To the field equations (22), (2), and (3) we must
add boundary conditions and initial conditions. The initial
conditions are

𝑢
𝑖
(x, 0) = 𝑢0

𝑖
(x) , �̇�

𝑖
(x, 0) = V0

𝑖
(x) ,

𝑤
𝑖
(x, 0) = 𝑤0

𝑖
(x) , �̇�

𝑖
(x, 0) = 𝜔0

𝑖
(x) ,

𝜑
𝑖
(x, 0) = 𝜑0

𝑖
(x) , �̇�

𝑖
(x, 0) = 𝜁0

𝑖
(x) ,

𝜓
𝑖
(x, 0) = 𝜓0

𝑖
(x) , �̇�

𝑖
(x, 0) = 𝜒0

𝑖
(x) ,

(23)

where 𝑢0
𝑖
, V0
𝑖
, 𝑤0
𝑖
, 𝜔0
𝑖
, 𝜑0
𝑖
, 𝜁0
𝑖
, 𝜓0
𝑖
, and 𝜒

0

𝑖
are prescribed

functions. We consider the boundary conditions

𝑢
𝑖
= �̃�
𝑖
, 𝑤

𝑖
= 𝑤
𝑖

on 𝑆
1
× 𝐼,

(𝑡
𝑗𝑖
+ 𝑠
𝑗𝑖
) 𝑛
𝑗
= �̃�
𝑖
, 𝑑

𝑖
=
̃
𝑑
𝑖

on 𝑆
2
× 𝐼,

𝜑
𝑖
= 𝜑
𝑖
, 𝜓

𝑖
= �̃�
𝑖

on 𝑆
3
× 𝐼,

(𝑚
𝑗𝑖
+ 𝜇
𝑗𝑖
) 𝑛
𝑗
= �̃�
𝑖
, 𝜉

𝑖
=
̃
𝜉
𝑖

on 𝑆
4
× 𝐼,

(24)

where �̃�
𝑖
, 𝑤
𝑖
, �̃�
𝑖
, ̃𝑑
𝑖
, 𝜑
𝑖
, �̃�
𝑖
, �̃�
𝑖
, and ̃𝜉

𝑖
are given.

We assume that

(i) 𝐹(1)
𝑖
, 𝐹(2)
𝑖
, 𝐺(1)
𝑖
, and 𝐺(2)

𝑖
are continuous on 𝐵× [0,∞);

(ii) 𝜌0
1
, 𝜌
0

2
, 𝐽(1)
𝑖𝑗
, 𝐽
(2)

𝑖𝑗
, 𝑢0
𝑖
, V0
𝑖
, 𝑤
0

𝑖
, 𝜔0
𝑖
, 𝜑
0

𝑖
, 𝜁0
𝑖
, 𝜓
0

𝑖
, and 𝜒0

𝑖
are

continuous on 𝐵;
(iii) the constitutive coefficients are continuously differen-

tiable on 𝐵;
(iv) the constitutive coefficients satisfy relations (4), and

the coefficients of inertia are symmetric;

(v) 𝜌0
1
and 𝜌0

2
are strictly positive on 𝐵, and 𝐽(1)

𝑖𝑗
and 𝐽(2)
𝑖𝑗

are positive definite tensors on 𝐵;
(vi) �̃�

𝑖
, 𝑤
𝑖
are continuous on 𝑆

1
× 𝐼, and 𝜑

𝑖
, �̃�
𝑖
are contin-

uous on 𝑆
3
× 𝐼;

(vii) ̃𝑑
𝑖
and ̃

𝜉
𝑖
are continuous on 𝑆

2
× 𝐼 and 𝑆

4
× 𝐼,

respectively;
(viii) �̃�

𝑖
and �̃�

𝑖
are continuous in time and piecewise regular

on 𝑆
2
× 𝐼 and 𝑆

4
× 𝐼, respectively.

Let 𝑀 and 𝑁 bo nonnegative integers. We say that 𝐹 is
of class 𝐶𝑀,𝑁 on 𝐵 × 𝐼 if 𝐹 is continuous on 𝐵 × 𝐼 and the
functions

𝜕
𝑚

𝜕𝑥
𝑖
𝜕𝑥
𝑗
⋅ ⋅ ⋅ 𝜕𝑥
𝑟

(

𝜕
𝑛
𝐹

𝜕𝑡
𝑛
) ,

𝑚 ∈ {0, 1, 2, . . . ,𝑀} , 𝑛 ∈ {0, 1, 2, . . . , 𝑁} ,

𝑚 + 𝑛 ≤ max {𝑀,𝑁}

(25)

exist and are continuous on 𝐵 × 𝐼. We denote 𝐶𝑀,𝑁 by 𝐶𝑀.
We say that𝜔 = (𝑢

𝑖
, 𝑤
𝑖
, 𝜑
𝑖
, 𝜓
𝑖
) is a dynamically admissible

deformation field on 𝐵 × 𝐼 provided that (𝛼) 𝑢
𝑖
, 𝑤
𝑖
, 𝜑
𝑖
, 𝜓
𝑖
∈
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𝐶
2
(𝐵)∩𝐶

1
(𝐵); (𝛽) 𝑢

𝑖
, �̇�
𝑖
, 𝑢
𝑖,𝑗
,𝑤
𝑖
, �̇�
𝑖
, 𝑤
𝑖,𝑗
, 𝜑
𝑖
, �̇�
𝑖
, 𝜑
𝑖,𝑗
,𝜓
𝑖
, �̇�
𝑖
,𝜓
𝑖,𝑗

are continuous on 𝐵 × [0,∞). By a dynamically admissible
stress field on 𝐵 × 𝐼 we mean an ordered array of func-
tions (𝑡

𝑖𝑗
, 𝑠
𝑖𝑗
, 𝑚
𝑖𝑗
, 𝜇
𝑖𝑗
, 𝑝
𝑖
, ℎ
𝑖
) with the following properties: (a)

𝑡
𝑖𝑗
, 𝑠
𝑖𝑗
, 𝑚
𝑖𝑗
, and 𝜇

𝑖𝑗
are of class 𝐶1,0 on 𝐵 × 𝐼; (b) 𝑝

𝑖
, ℎ
𝑖
∈ 𝐶
0

on 𝐵 × 𝐼; (c) 𝑡
𝑖𝑗
, 𝑡
𝑗𝑖,𝑗
, 𝑠
𝑖𝑗
, 𝑠
𝑗𝑖,𝑗

, 𝑚
𝑖𝑗
, 𝑚
𝑗𝑖,𝑗

, 𝜇
𝑖𝑗
, 𝜇
𝑗𝑖,𝑗
, 𝑝
𝑖
, and ℎ

𝑖
are

continuous on 𝐵 × [0,∞).
An admissible process on 𝐵 × 𝐼 is an ordered array 𝑃 =

(𝑢
𝑖
, 𝑤
𝑖
, 𝜑
𝑖
, 𝜓
𝑖
, 𝜀
𝑖𝑗
, 𝑒
𝑖𝑗
, 𝜅
𝑖𝑗
, 𝛾
𝑖𝑗
, 𝑑
𝑖
, 𝜉
𝑖
, 𝑡
𝑖𝑗
, 𝑠
𝑖𝑗
, 𝑚
𝑖𝑗
, 𝜇
𝑖𝑗
, 𝑝
𝑖
, ℎ
𝑖
)with the

following properties:

(1) (𝑢
𝑖
, 𝑤
𝑖
, 𝜑
𝑖
, 𝜓
𝑖
) is a dynamically admissible deforma-

tion field;

(2) 𝜀
𝑖𝑗
, 𝑒
𝑖𝑗
, 𝜅
𝑖𝑗
, 𝛾
𝑖𝑗
, 𝑑
𝑖
, 𝜉
𝑖
∈ 𝐶
1,0 on 𝐵 × 𝐼;

(3) 𝜀
𝑖𝑗
, 𝑒
𝑖𝑗
, 𝜅
𝑖𝑗
, 𝛾
𝑖𝑗
, 𝑑
𝑖
, and 𝜉

𝑖
are continuous on 𝐵 × [0,∞);

(4) (𝑡
𝑖𝑗
, 𝑠
𝑖𝑗
, 𝑚
𝑖𝑗
, 𝜇
𝑖𝑗
, 𝑝
𝑖
, ℎ
𝑖
) is a dynamically admissible

stress field on 𝐵 × 𝐼.

We say that 𝑃 = (𝑢
𝑖
, 𝑤
𝑖
, 𝜑
𝑖
, 𝜓
𝑖
, 𝜀
𝑖𝑗
, 𝑒
𝑖𝑗
, 𝜅
𝑖𝑗
, 𝛾
𝑖𝑗
, 𝑑
𝑖
, 𝜉
𝑖
, 𝑡
𝑖𝑗
,

𝑠
𝑖𝑗
, 𝑚
𝑖𝑗
, 𝜇
𝑖𝑗
, 𝑝
𝑖
, ℎ
𝑖
) is an elastic process corresponding to the

body loads (𝐹(1)
𝑖
, 𝐹
(2)

𝑖
, 𝐺
(1)

𝑖
, 𝐺
(2)

𝑖
) if 𝑃 is an admissible pro-

cess that satisfies (22), (2), and (3) on 𝐵 × 𝐼. Given an
external data system (𝐹

(1)

𝑖
, 𝐹
(2)

𝑖
, 𝐺
(1)

𝑖
, 𝐺
(2)

𝑖
, �̃�
𝑖
, 𝑤
𝑖
, 𝜑
𝑖
, �̃�
𝑖
, �̃�
𝑖
, �̃�
𝑖
,

̃
𝑑
𝑖
,
̃
𝜉
𝑖
, 𝑢
0

𝑖
, V0
𝑖
, 𝑤
0

𝑖
, 𝜔
0

𝑖
, 𝜑
0

𝑖
, 𝜁
0

𝑖
, 𝜓
0

𝑖
, 𝜒
0

𝑖
) on 𝐵 × 𝐼, the dynamic

problem consists in finding an elastic process corresponding
to the body loads (𝐹(1)

𝑖
, 𝐹
(2)

𝑖
, 𝐺
(1)

𝑖
, 𝐺
(2)

𝑖
) which satisfies the

initial conditions (23) and the boundary conditions (24). We
call such an elastic process a solution of the mixed problem.

Let 𝑘 be the function defined by

𝑘 (𝑡) = 𝑡, 𝑡 ∈ [0,∞) . (26)

Let 𝐹 and 𝐺 be functions on 𝐵 × 𝐼 that are continuous in
time. We denote by 𝐹 ∗ 𝐺 the convolution of 𝐹 and 𝐺:

[𝐹 ∗ 𝐺] (x, 𝑡) = ∫
𝑡

0

𝐹 (x, 𝑡 − 𝜏) 𝐺 (x, 𝜏) 𝑑𝜏, x ∈ 𝐵, 𝑡 ∈ 𝐼.
(27)

We define the functions 𝑓(1)
𝑖
, 𝑓
(2)

𝑖
, 𝑔
(1)

𝑖
, and 𝑔(2)

𝑖
on 𝐵 ×

[0,∞) by

𝑓
(1)

𝑖
= 𝜌
0

1
𝑘 ∗ 𝐹
(1)

𝑖
+ 𝜌
0

1
(𝑡V0
𝑖
+ 𝑢
0

𝑖
) ,

𝑓
(2)

𝑖
= 𝜌
0

2
𝑘 ∗ 𝐹
(2)

𝑖
+ 𝜌
0

2
(𝑡𝜔
0

𝑖
+ 𝑤
0

𝑖
) ,

𝑔
(1)

𝑖
= 𝜌
0

1
𝑘 ∗ 𝐺
(1)

𝑖
+ 𝜌
0

1
(𝑡𝜁
0

𝑖
+ 𝜑
0

𝑖
) ,

𝑔
(2)

𝑖
= 𝜌
0

2
𝑘 ∗ 𝐺
(2)

𝑖
+ 𝜌
0

2
(𝑡𝜒
0

𝑖
+ 𝜓
0

𝑖
) .

(28)

Following [16] we can prove the following.

Theorem 2. Let 𝑢
𝑖
, 𝑤
𝑖
, 𝜑
𝑖
, 𝜓
𝑖
∈ 𝐶
0,2, 𝑡
𝑖𝑗
, 𝑠
𝑖𝑗
, 𝑚
𝑖𝑗
, 𝜇
𝑖𝑗
∈ 𝐶
1,0,

𝑝
𝑖
, ℎ
𝑖
∈ 𝐶
0. Then 𝑢

𝑖
, 𝑤
𝑖
, 𝜑
𝑖
, 𝜓
𝑖
, 𝑡
𝑖𝑗
, 𝑠
𝑖𝑗
, 𝑚
𝑖𝑗
, 𝜇
𝑖𝑗
, 𝑝
𝑖
, and ℎ

𝑖
satisfy

(22) and the initial conditions (23) if and only if

𝑘 ∗ (𝑡
𝑗𝑖,𝑗
− 𝑝
𝑖
) + 𝑓
(1)

𝑖
= 𝜌
0

1
𝑢
𝑖
,

𝑘 ∗ (𝑠
𝑗𝑖,𝑗
+ 𝑝
𝑖
) + 𝑓
(2)

𝑖
= 𝜌
0

2
𝑤
𝑖
,

𝑘 ∗ [𝑚
𝑗𝑖,𝑗
+

1

2

𝜀
𝑖𝑗𝑘
(𝑡
𝑗𝑘
+ 𝑠
𝑗𝑘
) − ℎ
𝑖
] + 𝑔
(1)

𝑖
= 𝐽
(1)

𝑖𝑗
𝜑
𝑗
,

𝑘 ∗ [𝜇
𝑗𝑖,𝑗
+

1

2

𝜀
𝑖𝑗𝑘
(𝑡
𝑗𝑘
+ 𝑠
𝑗𝑘
) + ℎ
𝑖
] + 𝑔
(2)

𝑖

= 𝐽
(2)

𝑖𝑗
𝜓
𝑗

on 𝐵 × [0,∞) .

(29)

The next theorem gives an alternative characterization
of the mixed problem in which the initial conditions are
incorporated into the field equations. This result is useful in
the derivation of minimum principle.

Theorem 3. Let 𝑃 be an admissible process. Then 𝑃 is a
solution of the mixed problem if and only if 𝑃 satisfies (2), (3),
and (29) on 𝐵 × [0,∞) and the boundary conditions (24).

In what follows we denote by �̂� or L𝐻 the Laplace
transform with respect to the time of the function𝐻:

�̂� (𝑝) = (L𝐻) (𝑝) = ∫
∞

0

𝑒
−𝑝𝑡
𝐻(𝑡) 𝑑𝑡, (𝑝

0
≤ 𝑝 < ∞) ,

(30)

for some 𝑝
0
≥ 0.

In addition to the assumptions made previously, we
assume that

(𝐴
1
) 𝐹(1)
𝑖
, 𝐹
(2)

𝑖
, 𝐺
(1)

𝑖
, 𝐺
(2)

𝑖
, �̃�
𝑖
, 𝑤
𝑖
, �̃�
𝑖
,
̃
𝑑
𝑖
, 𝜑
𝑖
, �̃�
𝑖
, �̃�
𝑖
, and ̃𝜉

𝑖
pos-

sess Laplace transforms;

(𝐴
2
) the internal energy 𝑊 is positive for any
𝜀
𝑖𝑗
, 𝑒
𝑖𝑗
, 𝜅
𝑖𝑗
, 𝛾
𝑖𝑗
, 𝑑
𝑖
, and 𝜉

𝑖
.

We say that 𝑓 is bounded at infinity if lim
𝑡→∞

𝑓(x, 𝑡)
exists for each x in the domain of definition of 𝑓. We will
assume that the functions used to describe themixed problem
are bounded at infinity.

We write 𝑓[𝑛] for the 𝑛th derivative of 𝑓 with respect to
𝑡 holding x fixed. Following [17] we introduce the set Γ of
admissible weight functions. We say that 𝑔 ∈ Γ if 𝑔 is a
function on [0,∞) with the following properties:

(𝛼) ∫∞
0
∫

∞

0
𝑔
[𝑘]
(𝑡 + 𝑠)𝑑𝑡 𝑑𝑠 exists for 𝑘 ≥ 0;

(𝛽) 𝑔(𝑡) = ∫∞
0
𝐺(𝑝)𝑒

−𝑝𝑡
𝑑𝑝, 𝑡 ∈ [0,∞),

where 𝐺 is a continuous and positive function on [0,∞) and
has a finite limit at infinity. An example of a weight function
is 𝑔(𝑡) = (𝑡 + 2)−3 with 2𝐺(𝑡) = 𝑡2 exp(−2𝑡) (cf. [17]).
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By a kinematically admissible process wemean an admis-
sible process that satisfies (2) and the boundary conditions

𝑢
𝑖
= �̃�
𝑖
, 𝑤

𝑖
= 𝑤
𝑖

on 𝑆
1
× 𝐼,

𝑑
𝑖
=
̃
𝑑
𝑖

on 𝑆
2
× 𝐼,

𝜑
𝑖
= 𝜑
𝑖
, 𝜓

𝑖
= �̃�
𝑖

on 𝑆
3
× 𝐼,

𝜉
𝑖
=
̃
𝜉
𝑖

on 𝑆
4
× 𝐼.

(31)

Let K denote the set of all kinematically admissible
processes 𝑃 such that the functions of 𝑃 and their first
derivatives with respect to cartesian coordinates possess
Laplace transforms.

Theorem 4. Assume that hypotheses (𝐴
1
) and (𝐴

2
) hold. Let

Φ
𝑔
(⋅) be the functional onK defined by

Φ
𝑔
(𝑃) = ∫

𝐵

∫

∞

0

∫

∞

0

𝑔 (𝑡 + 𝑠)

⋅ {(𝐴
𝑖𝑗𝑚𝑛

𝑘 ∗ 𝜀
𝑚𝑛
) (x, 𝑡) 𝜀

𝑖𝑗
(x, 𝑠)

+ 2 (𝐵
𝑖𝑗𝑚𝑛

𝑘 ∗ 𝜅
𝑚𝑛
) (x, 𝑡) 𝜀

𝑖𝑗
(x, 𝑠)

+ (𝐶
𝑖𝑗𝑚𝑛

𝑘 ∗ 𝜅
𝑚𝑛
) (x, 𝑡) 𝜅

𝑖𝑗
(x, 𝑠)

+ (𝐷
𝑖𝑗𝑚𝑛

𝑘 ∗ 𝑒
𝑚𝑛
) (x, 𝑡) 𝑒

𝑖𝑗
(x, 𝑠)

+ 2 (𝐸
𝑖𝑗𝑚𝑛

𝑘 ∗ 𝛾
𝑚𝑛
) (x, 𝑡) 𝑒

𝑖𝑗
(x, 𝑠)

+ (𝐹
𝑖𝑗𝑚𝑛

𝑘 ∗ 𝛾
𝑚𝑛
) (x, 𝑡) 𝛾

𝑖𝑗
(x, 𝑠)

+ 2 (𝐺
𝑖𝑗𝑚𝑛

𝑘 ∗ 𝑒
𝑚𝑛
) (x, 𝑡) 𝜀

𝑖𝑗
(x, 𝑠)

+ 2 (𝐻
𝑖𝑗𝑚𝑛

𝑘 ∗ 𝛾
𝑚𝑛
) (x, 𝑡) 𝜀

𝑖𝑗
(x, 𝑠)

+ 2 (𝐽
𝑖𝑗𝑚𝑛

𝑘 ∗ 𝜅
𝑚𝑛
) (x, 𝑡) 𝑒

𝑖𝑗
(x, 𝑠)

+ 2 (𝐿
𝑖𝑗𝑚𝑛

𝑘 ∗ 𝛾
𝑚𝑛
) (x, 𝑡) 𝜅

𝑖𝑗
(x, 𝑠)

+ 2 (𝑎
𝑖𝑗𝑟
𝑘 ∗ 𝑑
𝑟
) (x, 𝑡) 𝜀

𝑖𝑗
(x, 𝑠)

+ 2 (𝑏
𝑖𝑗𝑚
𝑘 ∗ 𝑑
𝑚
) (x, 𝑡) 𝑒

𝑖𝑗
(x, 𝑠)

+ 2 (𝑐
𝑖𝑗𝑚
𝑘 ∗ 𝑑
𝑚
) (x, 𝑡) 𝜅

𝑖𝑗
(x, 𝑠)

+ 2 (𝑓
𝑖𝑗𝑚
𝑘 ∗ 𝑑
𝑚
) (x, 𝑡) 𝛾

𝑖𝑗
(x, 𝑠)

+ 2 (𝑔
𝑖𝑗𝑚
𝑘 ∗ 𝜉
𝑚
) (x, 𝑡) 𝜀

𝑖𝑗
(x, 𝑠)

+ 2 (ℎ
𝑖𝑗𝑚
𝑘 ∗ 𝜉
𝑚
) (x, 𝑡) 𝑒

𝑖𝑗
(x, 𝑠)

+ 2 (ℓ
𝑖𝑗𝑚
𝑘 ∗ 𝜉
𝑚
) (x, 𝑡) 𝜅

𝑖𝑗
(x, 𝑠)

+ 2 (𝑛
𝑖𝑗𝑚
𝑘 ∗ 𝜉
𝑚
) (x, 𝑡) 𝛾

𝑖𝑗
(x, 𝑠)

+ (𝑎
𝑖𝑗
𝑘 ∗ 𝑑
𝑗
) (x, 𝑡) 𝑑

𝑖
(x, 𝑠)

+ (𝑏
𝑖𝑗
𝑘 ∗ 𝜉
𝑗
) (x, 𝑡) 𝜉

𝑖
(x, 𝑠)

+ 2 (𝑐
𝑖𝑗
𝑘 ∗ 𝜉
𝑗
) (x, 𝑡) 𝑑

𝑖
(x, 𝑠)

+ (𝜌
0

1
𝑢
𝑖
) (x, 𝑡) 𝑢

𝑖
(x, 𝑠)

+ (𝜌
0

2
𝑤
𝑖
) (x, 𝑡) 𝑤

𝑖
(x, 𝑠)

+ (𝐽
(1)

𝑖𝑗
𝜑
𝑗
) (x, 𝑡) 𝜑

𝑖
(x, 𝑠)

+ (𝐽
(2)

𝑖𝑗
𝜓
𝑗
) (x, 𝑡) 𝜓

𝑖
(x, 𝑠)} 𝑑𝑡 𝑑𝑠 𝑑V

𝑥

− 2∫

𝐵

∫

∞

0

∫

∞

0

𝑔 (𝑡 + 𝑠)

⋅ [𝑓
(1)

𝑖
(x, 𝑡) 𝑢

𝑖
(x, 𝑠) + 𝑓(2)

𝑖
(x, 𝑡) 𝑤

𝑖
(x, 𝑠)

+ 𝑔
(1)

𝑖
(x, 𝑡) 𝜑

𝑖
(x, 𝑠)

+𝑔
(2)

𝑖
(x, 𝑡) 𝜓

𝑖
(x, 𝑠)] 𝑑𝑡 𝑑𝑠 𝑑V

𝑥

− ∫

𝑆
2

∫

∞

0

∫

∞

0

𝑔 (𝑡 + 𝑠) (𝑘 ∗ �̃�
𝑖
) (x, 𝑡) (𝑢

𝑖
+ 𝑤
𝑖
)

⋅ (x, 𝑠) 𝑑𝑡 𝑑𝑠 𝑑𝑎
𝑥

− ∫

𝑆
4

∫

∞

0

∫

∞

0

𝑔 (𝑡 + 𝑠) (𝑘 ∗ �̃�
𝑖
) (x, 𝑡) (𝜑

𝑖
+ 𝜓
𝑖
)

⋅ (x, 𝑠) 𝑑𝑡 𝑑𝑠 𝑑𝑎
𝑥
,

(32)

for every 𝑃 ∈ K. Further, let 𝑃 be a solution of the mixed
problem. Then

Φ
𝑔
(𝑃) ≤ Φ

𝑔
(𝑃
∗
) , (33)

for every 𝑃∗ ∈K.

Proof. We consider 𝑃, 𝑃∗ ∈ K and introduce 𝑃 by 𝑃 =
𝑃
∗
− 𝑃. If we denote 𝑃 = (𝑢

𝑖
, 𝑤


𝑖
, 𝜑


𝑖
, 𝜓


𝑖
, 𝜀


𝑖𝑗
, 𝑒
𝑖𝑗
, 𝜅


𝑖𝑗
, 𝛾


𝑖𝑗
, 𝑑


𝑖
, 𝜉


𝑖
,

𝑡


𝑖𝑗
, 𝑠


𝑖𝑗
, 𝜇


𝑖𝑗
, 𝑝


𝑖
, ℎ


𝑖
) then we have

2𝜀


𝑖𝑗
= 𝑢


𝑗,𝑖
+ 𝜀
𝑖𝑗𝑘
(𝜑


𝑘
+ 𝜓


𝑘
) ,

𝜅


𝑖𝑗
= 𝜑


𝑗,𝑖
, 𝑑



𝑖
= 𝑢


𝑖
− 𝑤


𝑖
,

2𝑒


𝑖𝑗
= 𝑤


𝑗,𝑖
+ 𝜀
𝑖𝑗𝑘
(𝜑


𝑘
+ 𝜓


𝑘
) ,

𝛾


𝑖𝑗
= 𝜓


𝑗,𝑖
, 𝜉



𝑖
= 𝜑


𝑖
− 𝜓


𝑖
,

𝑢


𝑖
= 0, 𝑤



𝑖
= 0 on 𝑆

2
,

𝜑


𝑖
= 0, 𝜓



𝑖
= 0 on 𝑆

3
, 𝜉



𝑖
= 0 on 𝑆

4
.

(34)

We note that

L (𝑀 ∗ 𝑁) = �̂��̂�, (L𝑘) (𝑝) = 𝑝
−2
. (35)
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If we use the definition of the weight functions we get

∫

𝐵

∫

∞

0

∫

∞

0

𝑔 (𝑡 + 𝑠)𝐻 (x, 𝑡) 𝑄 (x, 𝑠) 𝑑𝑡 𝑑𝑠 𝑑V
𝑥

= ∫

𝐵

∫

∞

0

𝐺 (𝑃) �̂� (x, 𝑝)𝑄 (x, 𝑝) 𝑑𝑝 𝑑V
𝑥
.

(36)

By using (35) and (36) the functional Φ
𝑔
(⋅) can be expressed

in the form

Φ
𝑔
(𝑃) = ∫

𝐵

∫

∞

0

𝑝
−2
𝐺 (𝑝)

⋅ [𝐴
𝑖𝑗𝑚𝑛

𝜀
𝑚𝑛
𝜀
𝑖𝑗
+ 2𝐵
𝑖𝑗𝑚𝑛

𝜅
𝑚𝑛
𝜀
𝑖𝑗

+ 𝐶
𝑖𝑗𝑚𝑛

𝜅
𝑚𝑛
𝜅
𝑖𝑗
+ 𝐷
𝑖𝑗𝑚𝑛

𝑒
𝑚𝑛
𝑒
𝑖𝑗

+ 2𝐸
𝑖𝑗𝑚𝑛

𝛾
𝑚𝑛
𝑒
𝑖𝑗
+ 𝐹
𝑖𝑗𝑚𝑛

𝛾
𝑚𝑛
𝛾
𝑖𝑗

+ 2𝐺
𝑖𝑗𝑚𝑛

𝑒
𝑚𝑛
𝜀
𝑖𝑗
+ 2𝐻
𝑖𝑗𝑚𝑛

𝛾
𝑚𝑛
𝜀
𝑖𝑗

+ 2𝐽
𝑖𝑗𝑚𝑛

𝜅
𝑚𝑛
𝜀
𝑖𝑗
+ 2𝐿
𝑖𝑗𝑚𝑛

𝛾
𝑚𝑛
𝜀
𝑖𝑗

+ 2𝑎
𝑖𝑗𝑚
̂
𝑑
𝑚
𝜀
𝑖𝑗
+ 2𝑏
𝑖𝑗𝑚
̂
𝑑
𝑚
𝑒
𝑖𝑗

+ 2𝑐
𝑖𝑗𝑚
̂
𝑑
𝑚
𝜅
𝑖𝑗
+ 2𝑓
𝑖𝑗𝑚
̂
𝑑
𝑚
𝛾
𝑖𝑗

+ 2𝑔
𝑖𝑗𝑚
̂
𝜉
𝑚
𝜀
𝑖𝑗
+ 2ℎ
𝑖𝑗𝑚
̂
𝜉
𝑚
𝑒
𝑖𝑗

+ 2ℓ
𝑖𝑗𝑚
̂
𝜉
𝑚
𝜅
𝑖𝑗
+ 2𝑛
𝑖𝑗𝑚
̂
𝜉
𝑚
𝛾
𝑖𝑗

+ 𝑎
𝑖𝑗
̂
𝑑
𝑗
̂
𝑑
𝑖
+ 𝑏
𝑖𝑗
̂
𝜉
𝑗
̂
𝜉
𝑖
+ 2𝑐
𝑖𝑗
̂
𝜉
𝑗
̂
𝑑
𝑖

+ 𝑝
2
(𝜌
0

1
�̂�
𝑖
�̂�
𝑖
+ 𝜌
0

2
𝑤
𝑖
𝑤
𝑖
+ 𝐽
(1)

𝑖𝑗
𝜑
𝑗
𝜑
𝑖

+𝐽
(2)

𝑖𝑗
�̂�
𝑗
�̂�
𝑖
)] 𝑑𝑝 𝑑V

𝑥

− 2∫

𝐵

∫

∞

0

𝐺 (𝑝) [
̂
𝑓
(1)

𝑖
�̂�
𝑖
+
̂
𝑓
(2)

𝑖
𝑤
𝑖
+ 𝑔
(1)

𝑖
𝜑
𝑖
+ 𝑔
(2)

𝑖
�̂�
𝑖
] 𝑑𝑝 𝑑V

𝑥

− ∫

𝑆
2

∫

∞

0

𝑝
−2
𝐺 (𝑝) (�̂�

𝑖
+ 𝑤
𝑖
) (L�̃�
𝑖
) 𝑑𝑝 𝑑𝑎

𝑥

− ∫

𝑆
4

∫

∞

0

𝐺 (𝑝) (𝜑
𝑖
+ �̂�
𝑖
) (L�̃�

𝑖
) 𝑑𝑝 𝑑𝑎

𝑥
,

(37)

where, for convenience, we have suppressed the argument x.
If we take the Laplace transform of relations (29) and use

(35) we get

𝑝
−2
(�̂�
𝑗𝑖,𝑗
− 𝑝
𝑖
) +

̂
𝑓
(1)

𝑖
= 𝜌
0

1
�̂�
𝑖
,

𝑝
−2
(𝑠
𝑗𝑖,𝑗
+ 𝑝
𝑖
) +

̂
𝑓
(2)

𝑖
= 𝜌
0

2
𝑤
𝑖
,

𝑝
−2
[2�̂�
𝑗𝑖,𝑗
+ 𝜀
𝑖𝑗𝑘
(�̂�
𝑗𝑘
+ 𝑠
𝑗𝑘
) − 2

̂
ℎ
𝑖
] + 2𝑔

(1)

𝑖
= 2𝐽
(2)

𝑖𝑗
𝜑
𝑗
,

𝑝
−2
[2𝜇
𝑗𝑖,𝑗
+ 𝜀
𝑖𝑗𝑘
(�̂�
𝑗𝑘
+ 𝑠
𝑗𝑘
) + 2

̂
ℎ
𝑖
] + 2𝑔

(2)

𝑖
= 2𝐽
(2)

𝑖𝑗
�̂�
𝑗
.

(38)

In view of (3), (4), (34), and (38), we have

𝐴
𝑖𝑗𝑚𝑛

(𝜀


𝑚𝑛
𝜀
𝑖𝑗
+ 𝜀
𝑚𝑛
𝜀


𝑖𝑗
) + 2𝐵

𝑖𝑗𝑚𝑛
(𝜅
𝑚𝑛
𝜀


𝑖𝑗
+ 𝜅


𝑚𝑛
𝜀
𝑖𝑗
)

+ 𝐶
𝑖𝑗𝑚𝑛

(𝜅
𝑚𝑛
𝜅


𝑖𝑗
+ 𝜅


𝑚𝑛
𝜅
𝑖𝑗
) + 𝐷
𝑖𝑗𝑚𝑛

(𝑒
𝑚𝑛
𝑒


𝑖𝑗
+ 𝑒


𝑚𝑛
𝑒
𝑖𝑗
)

+ 2𝐸
𝑖𝑗𝑚𝑛

(𝛾
𝑚𝑛
𝑒


𝑖𝑗
+ 𝛾


𝑚𝑛
𝑒
𝑖𝑗
) + 𝐹
𝑖𝑗𝑚𝑛

(𝛾
𝑚𝑛
𝛾


𝑖𝑗
+ 𝛾


𝑚𝑛
𝛾
𝑖𝑗
)

+ 2𝐺
𝑖𝑗𝑚𝑛

(𝑒
𝑚𝑛
𝜀


𝑖𝑗
+ 𝑒


𝑚𝑛
𝜀
𝑖𝑗
) + 2𝐻

𝑖𝑗𝑚𝑛
(𝛾
𝑚𝑛
𝜀


𝑖𝑗
+ 𝛾


𝑚𝑛
𝜀
𝑖𝑗
)

+ 2𝐽
𝑖𝑗𝑚𝑛

(𝜅
𝑚𝑛
𝜀


𝑖𝑗
+ 𝜅


𝑚𝑛
𝜀
𝑖𝑗
) + 2𝐿

𝑖𝑗𝑚𝑛
(𝛾
𝑚𝑛
𝜀


𝑖𝑗
+ 𝛾


𝑚𝑛
𝜀
𝑖𝑗
)

+ 2𝑎
𝑖𝑗𝑚
(
̂
𝑑
𝑚
𝜀


𝑖𝑗
+
̂
𝑑


𝑚
𝜀
𝑖𝑗
) + 2𝑏

𝑖𝑗𝑚
(
̂
𝑑
𝑚
𝑒


𝑖𝑗
+
̂
𝑑


𝑚
𝑒
𝑖𝑗
)

+ 2𝑐
𝑖𝑗𝑚
(
̂
𝑑
𝑚
𝜅


𝑖𝑗
+
̂
𝑑


𝑚
𝜅
𝑖𝑗
) + 2𝑓

𝑖𝑗𝑚
(
̂
𝑑
𝑚
𝛾


𝑖𝑗
+
̂
𝑑


𝑚
𝛾
𝑖𝑗
)

+ 2𝑔
𝑖𝑗𝑚
(
̂
𝜉
𝑚
𝜀


𝑖𝑗
+
̂
𝜉


𝑚
𝜀
𝑖𝑗
) + 2ℎ

𝑖𝑗𝑚
(
̂
𝜉
𝑚
𝑒


𝑖𝑗
+
̂
𝜉


𝑚
𝑒
𝑖𝑗
)

+ 2ℓ
𝑖𝑗𝑚
(
̂
𝜉
𝑚
𝜅


𝑖𝑗
+
̂
𝜉


𝑚
𝜅
𝑖𝑗
) + 2𝑛

𝑖𝑗𝑚
(
̂
𝜉
𝑚
𝛾


𝑖𝑗
+
̂
𝜉


𝑚
𝛾
𝑖𝑗
)

+ 𝑎
𝑖𝑗
(
̂
𝑑
𝑗
̂
𝑑


𝑖
+
̂
𝑑


𝑗

̂
𝑑
𝑖
) + 𝑏
𝑖𝑗
(
̂
𝜉
𝑗
̂
𝜉


𝑖
+
̂
𝜉


𝑗

̂
𝜉
𝑖
) + 2𝑐

𝑖𝑗
(
̂
𝜉
𝑗
̂
𝑑


𝑖
+
̂
𝜉


𝑗

̂
𝑑
𝑖
)

= 2 (�̂�
𝑖𝑗
𝜀


𝑖𝑗
+ 𝑠
𝑖𝑗
𝑒


𝑖𝑗
+ �̂�
𝑖𝑗
𝜅


𝑖𝑗
+ 𝜇
𝑖𝑗
𝛾


𝑖𝑗
+ 𝑝
𝑖
̂
𝑑


𝑖
+
̂
ℎ
𝑖
̂
𝜉


𝑖
)

= 2 [(�̂�
𝑗𝑖
�̂�


𝑖
+ 𝑠
𝑗𝑖
𝑤


𝑖
+ �̂�
𝑗𝑖
𝜑


𝑖
+ 𝜇
𝑗𝑖
�̂�


𝑖
)
,𝑗

+ 𝑝
2 ̂
𝑓
(1)

𝑖
�̂�


𝑖
+ 𝑝
2 ̂
𝑓
(2)

𝑖
𝑤


𝑖
+ 𝑝
2
𝑔
(1)

𝑖
𝜑


𝑖

+ 𝑝
2
𝑔
(2)

𝑖
�̂�


𝑖
− 𝜌
0

1
𝑝
2
�̂�
𝑖
�̂�


𝑖
− 𝜌
0

2
𝑝
2
𝑤
𝑖
𝑤


𝑖

−𝑝
2
𝐽
(1)

𝑖𝑗
𝜑
𝑗
𝜑


𝑖
− 𝑝
2
𝐽
(2)

𝑖𝑗
�̂�
𝑗
�̂�


𝑖
] .

(39)

With the aid of the divergence theorem and taking into
account that 𝑃 is a solution of the problem, from (32), (37),
(39), and (34) we find that

Φ
𝑔
(𝑠
∗
) = Φ

𝑔
(𝑠)

+ ∫

𝐵

∫

∞

0

𝑝
−2
𝐺 (𝑝)

⋅ [𝐴
𝑖𝑗𝑚𝑛

𝜀


𝑚𝑛
𝜀


𝑖𝑗
+ 2𝐵
𝑖𝑗𝑚𝑛

𝜅


𝑚𝑛
𝜀


𝑖𝑗

+ 𝐶
𝑖𝑗𝑚𝑛

𝜅


𝑚𝑛
𝜅


𝑖𝑗
+ 𝐷
𝑖𝑗𝑚𝑛

𝑒


𝑚𝑛
𝑒


𝑖𝑗

+ 2𝐸
𝑖𝑗𝑚𝑛

𝛾


𝑚𝑛
𝑒


𝑖𝑗
+ 𝐹
𝑖𝑗𝑚𝑛

𝛾


𝑚𝑛
𝛾


𝑖𝑗

+ 2𝐺
𝑖𝑗𝑚𝑛

𝑒


𝑚𝑛
𝜀


𝑖𝑗
+ 2𝐻
𝑖𝑗𝑚𝑛

𝛾
𝑚𝑛
𝜀


𝑖𝑗

+ 2𝐽
𝑖𝑗𝑚𝑛

𝜅


𝑚𝑛
𝜀


𝑖𝑗
+ 2𝐿
𝑖𝑗𝑚𝑛

𝛾


𝑚𝑛
𝜀


𝑖𝑗
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+ 2𝑎
𝑖𝑗𝑚
̂
𝑑


𝑚
𝜀


𝑖𝑗
+ 2𝑏
𝑖𝑗𝑚
̂
𝑑


𝑚
𝑒


𝑖𝑗

+ 2𝑐
𝑖𝑗𝑚
̂
𝑑


𝑚
𝜅


𝑖𝑗
+ 2𝑓
𝑖𝑗𝑚
̂
𝑑


𝑚
𝛾


𝑖𝑗

+ 2𝑔
𝑖𝑗𝑚
̂
𝜉


𝑚
𝜀


𝑖𝑗
+ 2ℎ
𝑖𝑗𝑚
̂
𝜉


𝑚
𝑒


𝑖𝑗

+ 2ℓ
𝑖𝑗𝑚
̂
𝜉


𝑚
𝜅


𝑖𝑗
+ 2𝑛
𝑖𝑗𝑚
̂
𝜉


𝑚
𝛾


𝑖𝑗

+ 𝑎
𝑖𝑗
̂
𝑑


𝑗

̂
𝑑


𝑖
+ 𝑏
𝑖𝑗
̂
𝜉


𝑗

̂
𝜉


𝑖
+ 2𝑐
𝑖𝑗
̂
𝜉


𝑗

̂
𝑑


𝑖

+ 𝑝
2
(𝜌
0

1
�̂�


𝑖
�̂�


𝑖
+ 𝜌
0

2
𝑤


𝑖
𝑤


𝑖
+ 𝐽
(1)

𝑖𝑗
𝜑


𝑗
𝜑


𝑖

+𝐽
(2)

𝑖𝑗
�̂�


𝑗
�̂�


𝑖
)] 𝑑𝑝 𝑑V

𝑥
.

(40)

From (40) and hypotheses (𝐴
2
) and (v) we conclude that (33)

holds.

In a similar way we can establish a minimum principle
for the problem characterized by the following boundary
conditions:

𝑢
𝑖
= �̃�
𝑖
, 𝑤

𝑖
= 𝑤
𝑖

on 𝑆
1
× 𝐼,

𝑡
𝑗𝑖
𝑛
𝑗
= �̃�
𝑖
, 𝑠

𝑗𝑖
𝑛
𝑗
= 𝑠
𝑖

on 𝑆
2
× 𝐼,

𝜑
𝑖
= 𝜑
𝑖
, 𝜓

𝑖
= �̃�
𝑖

on 𝑆
3
× 𝐼,

𝑚
𝑗𝑖
𝑛
𝑗
= �̃�
𝑖
, 𝜇

𝑗𝑖
𝑛
𝑗
= 𝜇
𝑖

on 𝑆
4
× 𝐼,

(41)

where �̃�
𝑖
, 𝑤
𝑖
, 𝜑
𝑖
, �̃�
𝑖
, �̃�
𝑖
, 𝑠
𝑖
, �̃�
𝑖
, and 𝜇

𝑖
are prescribed functions.

5. Conclusions

In the present work, a theory of composites modelled as
mixtures of two elastic Cosserat continua is investigated. A
counterpart of the principle of minimum potential energy
of the classical elastostatics is presented. In the dynamic
theory, the solution of the boundary-initial-value problem
is characterized by equations which incorporate the initial
conditions. Aminimumprinciple for the solution of dynamic
problems is established.
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